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The MIPS32™ 4Kc™ core from MIPS® Technologies is a member of the MIPS32 4K™ processor core family. It is a
performance, low-power, 32-bit MIPS RISC core designed for custom system-on-silicon applications. The core is de
for semiconductor manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate the
custom logic and peripherals with a high-performance RISC processor. It is highly portable across processes, an
easily integrated into full system-on-silicon designs, allowing developers to focus their attention on end-user produc
4Kc core is ideally positioned to support new products for emerging segments of the digital consumer, network, s
and information management markets, enabling new tailored solutions for embedded applications.

The 4Kc core implements the MIPS32 Architecture and contains all MIPS II™ instructions; special multiply-accum
(MAC), conditional move, prefetch, wait, and leading zero/one detect instructions; and the 32-bit privileged resou
architecture. The R4000®-style Memory Management Unit contains 3-entry instruction and data TLBs (ITLB/DTLB
a 16 dual-entry joint TLB (JTLB) with variable page sizes.

The synthesizable 4Kc core implements single cycle MAC instructions, which enable DSP algorithms to be perfo
efficiently. The Multiply/Divide Unit (MDU) allows 32-bit x 16-bit MAC instructions to be issued every cycle. A 32-bit
32-bit MAC instruction can be issued every 2 cycles.

Instruction and data caches are fully configurable from 0 - 16 Kbytes in size. In addition, each cache can be orga
direct-mapped or 2-way, 3-way, or 4-way set associative. Load and fetch cache misses only block until the critica
becomes available. The pipeline resumes execution while the remaining words are being written to the cache. Both
are virtually indexed and physically tagged to allow them to be accessed in the same clock that the address is tra

An optional Enhanced JTAG (EJTAG) block allows for single-stepping of the processor as well as instruction and
virtual address breakpoints.

Figure 1 shows a block diagram of the 4Kc core. The core is divided intorequired andoptional blocks as shown.

Figure 1  4Kc Core Block Diagram

Mul/Div Unit

Execution
Core

System
Coprocessor

MMU

TLB

EJTAG

Cache
Control

Instruction
Cache

Data
Cache

B
IU

T
hi

n 
I/F

O
n-

C
hi

p 
B

us
(e

s)

Fixed/Required Optional

Power
Mgmt.

Processor Core
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.



s.
k

c

d

Features

• 32-bit Address and Data Paths

• MIPS32-Compatible Instruction Set

– All MIPS II Instructions
– Multiply-Accumulate and Multiply-Subtract

Instructions (MADD, MADDU, MSUB, MSUBU)
– Targeted Multiply Instruction (MUL)
– Zero/One Detect Instructions (CLZ, CLO)
– Wait Instruction (WAIT)
– Conditional Move Instructions (MOVZ, MOVN)
– Prefetch Instruction (PREF)

• Programmable Cache Sizes

– Individually configurable instruction and data caches
– Sizes from 0 - 16KB
– Direct Mapped, 2-, 3-, or 4-Way Set Associative
– Loads block only until critical word is available
– Write-through, no write-allocate
– 16-byte cache line size, word sectored
– Virtually indexed, physically tagged
– Cache line locking support
– Non-blocking prefetches

• Scratchpad RAM Support

– Can optionally replace 1 way of the I- and/or D-cache
with a fast scratchpad RAM

– 20 index address bits allow access of arrays up to 1MB
– Memory-mapped registers attached to the scratchpad

port can be used as a coprocessor interface

• R4000-style Privileged Resource Architecture

– Count/Compare registers for real-time timer interrupts
– I and D watch registers for SW breakpoints
– Separate interrupt exception vector

• Programmable Memory Management Unit

– 16 dual-entry R4000-style JTLB with variable page size
– 3-entry ITLB
– 3-entry DTLB

• Simple Bus Interface Unit (BIU)

– All I/Os fully registered
– Separate unidirectional 32-bit address and data buses
– Two 16-byte collapsing write buffers

• Multiply/Divide Unit

– Maximum issue rate of one 32x16 multiply per clock
– Maximum issue rate of one 32x32 multiply every other

clock
– Early-in iterative divide. Minimum 11 and maximum 34

clock latency (dividend (rs) sign extension-dependent)

• Power Control

– Minimum frequency: 0 MHz
– Power-down mode (triggered by WAIT instruction)

– Support for software-controlled clock divider

• EJTAG Debug Support with single stepping, virtual
instruction and data address breakpoints

Architecture Overview

The 4Kc core contains both required and optional block
Required blocks are the lightly shaded areas of the bloc
diagram inFigure 1 and must be implemented to remain
MIPS-compliant. Optional blocks can be added to the 4K
core based on the needs of the implementation.

The required blocks are as follows:

• Execution Unit

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Transition Lookaside Buffer (TLB)

• Cache Controllers

• Bus Interface Unit (BIU)

• Power Management

Optional blocks include:

• Instruction Cache

• Data Cache

• Scratchpad RAM

• Enhanced JTAG (EJTAG) Controller

The section entitled"4Kc Core Required Logic Blocks" on
page 3 discusses the required blocks. The section entitle
"4Kc Core Optional Logic Blocks" on page 12 discusses
the optional blocks.

Pipeline Flow

The 4Kc core implements a 5-stage pipeline with
performance similar to the R3000 pipeline. The pipeline
allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and
power consumption.

The 4Kc core pipeline consists of five stages:

• Instruction (I Stage)

• Execution (E Stage)

• Memory (M Stage)
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• Align (A Stage)

• Writeback (W stage)

The 4Kc core implements a bypass mechanism that allows
the result of an operation to be forwarded directly to the
instruction that needs it without having to write the result
to the register and then read it back.

Figure 2 shows a timing diagram of the 4Kc core pipeline.

Figure 2   4Kc Core Pipeline

I Stage: Instruction Fetch

During the Instruction fetch stage:

• An instruction is fetched from instruction cache.

E Stage: Execution

During the Execution stage:

• Operands are fetched from register file.

• The arithmetic logic unit (ALU) begins the arithmetic
or logical operation for register-to-register instructions.

• The ALU calculates the data virtual address for load
and store instructions.

• The ALU determines whether the branch condition is
true and calculates the virtual branch target address for
branch instructions.

• Instruction logic selects an instruction address.

• All multiply and divide operations begin in this stage.

M Stage: Memory Fetch

During the memory fetch stage:

• The arithmetic ALU operation completes.

• The data cache fetch and the data virtual-to-physical
address translation are performed for load and store
instructions.

• Data cache look-up is performed and a hit/miss
determination is made.

• A 16x16 or 32x16 multiply calculation completes.

• A 32x32 multiply operation stalls for one clock in the
M stage.

• A divide operation stalls for a maximum of 34 clocks
in the M stage. Early-in sign extension detection on th
dividend will skip 7, 15, or 23 stall clocks.

A Stage: Align

During the Align stage:

• A separate aligner aligns load data to its word
boundary.

• A 16x16 or 32x16 multiply operation performs the
carry-propagate-add. The actual register writeback is
performed in the W stage.

• A MUL operation makes the result available for
writeback. The actual register writeback is performed
in the W stage.

W Stage: Writeback

• For register-to-register or load instructions, the
instruction result is written back to the register file
during the W stage.

4Kc Core Required Logic Blocks

The 4Kc core consists of the following required logic
blocks as shown inFigure 1. These logic blocks are defined
in the following subsections:

• Execution Unit

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Transition Lookaside Buffer (TLB)

• Cache Controller

• Bus Interface Control (BIU)

• Power Management
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Execution Unit

The 4Kc core execution unit implements a load/store
architecture with single-cycle ALU operations (logical,
shift, add, subtract) and an autonomous multiply/divide
unit. The 4Kc core contains thirty-two 32-bit general-
purpose registers used for integer operations and address
calculation. The register file consists of two read ports and
one write port and is fully bypassed to minimize operation
latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Address unit for calculating the next instruction
address

• Logic for branch determination and branch target
address calculation

• Load aligner

• Bypass multiplexers used to avoid stalls when
executing instructions streams where data producing
instructions are followed closely by consumers of their
results

• Leading Zero/One detect unit for implementing the
CLZ and CLO instructions

• Arithmetic Logic Unit (ALU) for performing bitwise
logical operations

• Shifter & Store Aligner

Multiply/Divide Unit (MDU)

The 4Kc core contains a multiply/divide unit (MDU) that
contains a separate pipeline for multiply and divide
operations. This pipeline operates in parallel with the
integer unit (IU) pipeline and does not stall when the IU
pipeline stalls. This setup allows long-running MDU
operations, such as a divide, to be partially masked by
system stalls and/or other integer unit instructions.

The MDU consists of a 32x16 booth recoded multiplier,
result/accumulation registers (HI and LO), a divide state
machine, and the necessary multiplexers and control logic.
The first number shown (‘32’ of 32x16) represents thers
operand. The second number (‘16’ of 32x16) represents the
rt operand. The 4Kc core only checks the value of the latter
(rt) operand to determine how many times the operation
must pass through the multiplier. The 16x16 and 32x16
operations pass through the multiplier once. A 32x32
operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16
multiply operation every clock cycle; 32x32 multiply
operations can be issued every other clock cycle.
Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations. Th
multiply operand size is automatically determined by logi
built into the MDU.

Divide operations are implemented with a simple 1 bit pe
clock iterative algorithm. An early-in detection checks th
sign extension of the dividend (rs) operand. If rs is 8 bits
wide, 23 iterations are skipped. For a 16-bit-wide rs, 15
iterations are skipped, and for a 24-bit-wide rs, 7 iteration
are skipped. Any attempt to issue a subsequent MDU
instruction while a divide is still active causes an IU
pipeline stall until the divide operation is completed.

Table 1 lists the repeat rate (peak issue rate of cycles un
the operation can be reissued) and latency (number of
cycles until a result is available) for the 4Kc core multiply
and divide instructions. The approximate latency and
repeat rates are listed in terms of pipeline clocks. For a
more detailed discussion of latencies and repeat rates, re
to Chapter 2 of theMIPS32 4K™ Processor Core Family
Software User’s Manual.

The MIPS architecture defines that the result of a multipl
or divide operation be placed in the HI and LO registers
Using the Move-From-HI (MFHI) and Move-From-LO
(MFLO) instructions, these values can be transferred to t
general-purpose register file.

Table 1 4Kc Core Integer Multiply/Divide Unit Latencies
and Repeat Rates

Opcode Operand
Size

(mul rt )
(div rs)

Latency Repeat
Rate

MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

16 bits 1 1

32 bits 2 2

MUL 16 bits 2 1

32 bits 3 2

DIV/DIVU 8 bits 12 11

16 bits 19 18

24 bits 26 25

32 bits 33 32
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As an enhancement to the MIPS II ISA, the 4Kc core
implements an additional multiply instruction, MUL,
which specifies that multiply results be placed in the
primary register file instead of the HI/LO register pair. By
avoiding the explicit MFLO instruction, required when
using the LO register, and by supporting multiple
destination registers, the throughput of multiply-intensive
operations is increased.

Two other instructions, multiply-add (MADD) and
multiply-subtract (MSUB), are used to perform the
multiply-accumulate and multiply-subtract operations. The
MADD instruction multiplies two numbers and then adds
the product to the current contents of the HI and LO
registers. Similarly, the MSUB instruction multiplies two
operands and then subtracts the product from the HI and
LO registers. The MADD and MSUB operations are
commonly used in DSP algorithms.

System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-
to-physical address translation and cache protocols, the
exception control system, the processor’s diagnostics
capability, the operating modes (kernel, user, and debug),
and interrupts enabled or disabled. Configuration
information such as cache size and set associativity is
available by accessing the CP0 registers, listed inTable 2.

Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a
variety of sources, including boundary cases in data,
external events, or program errors.Table 3 shows the
exception types in order of priority.

Table 2    Coprocessor 0 Registers in Numerical Order

Register
Number

Register
Name

Function

0 Index1 Index into the TLB array.

1 Random1 Randomly generated index into the
TLB array.

2 EntryLo01 Randomly generated index into the
TLB array.

3 EntryLo11 Low-order portion of the TLB
entry for odd-numbered virtual
pages.

4 Context2 Pointer to page table entry in
memory.

5 PageMask1 Control for variable page sizes in
TLB entries.

6 Wired1 Controls the number of fixed
(“wired”) TLB entries.

7 Reserved Reserved.

8 BadVAddr2 Reports the address for the most
recent address-related exception.

9 Count2 Processor cycle count.

10 EntryHi1 High-order portion of the TLB
entry.

11 Compare2 Timer interrupt control.

12 Status2 Processor status and control.

13 Cause2 Cause of last general exception.

14 EPC2 Program counter at last exception.

15 PRId Processor identification and
revision.

16 Config Configuration register.

16 Config1 Configuration register 1.

17 LLAddr Load linked address.

18 WatchLo2 Low-order watchpoint address.

19 WatchHi2 High-order watchpoint address.

20 - 22 Reserved Reserved.

23 Debug3 Debug control and exception
status.

24 DEPC3 Program counter at last debug
exception.

25 - 27 Reserved Reserved.

28 TagLo/
DataLo

Low-order portion of cache tag
interface.

29 Reserved Reserved.

30 ErrorEPC2 Program counter at last error.

31 DeSave3 Debug handler scratchpad register.

1. Registers used in memory management.

2. Registers used in exception processing.

3. Registers used during debug.

Table 2    Coprocessor 0 Registers in Numerical Orde

Register
Number

Register
Name

Function
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 5
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Modes of Operation

The 4Kc core supports three modes of operation: user
mode, kernel mode, and debug mode. User mode is mo
often used for applications programs. Kernel mode is
typically used for handling exceptions and operating
system kernel functions, including CP0 management and
O device accesses. An additional Debug mode is used
during system bring-up and software development. Refer
the EJTAG section for more information on debug mode

Table 3    4Kc Core Exception Types

Exception Description

Reset Assertion ofSI_ColdReset signal.

Soft Reset Assertion ofSI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the
assertion of the externalEJ_DINT
input, or by setting the EjtagBrk bit in
the ECR register.

NMI Assertion ofEB_NMI signal.

Machine Check TLB write that conflicts with an
existing entry.

Interrupt Assertion of unmasked hardware or
software interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM-
>!(K|DM) transition).

DIB EJTAG debug hardware instruction
break matched.

WATCH A reference to an address in one of the
watch registers (fetch).

AdEL Fetch address alignment error.

Fetch reference to protected address.

TLBL Fetch TLB miss.

TLBL Fetch TLB hit to page with V=0.

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of
SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

RI Execution of a Reserved Instruction.

CpU Execution of a coprocessor instruction
for a coprocessor that is not enabled.

Ov Execution of an arithmetic instruction
that overflowed.

Tr Execution of a trap (when trap
condition is true).

DDBL / DDBS EJTAG Data Address Break (address
only) or EJTAG Data Value Break on
Store (address+value).

WATCH A reference to an address in one of the
watch registers (data).

AdEL Load address alignment error.

Load reference to protected address.

AdES Store address alignment error.

Store to protected address.

TLBL Load TLB miss.

TLBL Load TLB hit to page with V=0.

TLBS Store TLB miss.

TLBS Store TLB hit to page with V=0.

TLB Mod Store to TLB page with D=0.

DBE Load or store bus error.

DDBL EJTAG data hardware breakpoint
matched in load data compare.

Table 3    4Kc Core Exception Types (Continued)

Exception Description
6 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07
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Figure 3    4Kc Core Virtual Address Map

Memory Management Unit (MMU)

The 4Kc core contains a fully functional MMU that
interfaces between the execution unit and the cache
controller. Although the 4Kc core implements a 32-bit
architecture, the MMU is modeled after that found in the
64-bit R4000 family.

The TLB consists of two address translation buffers: a 16-
dual-entry, fully associative Joint TLB (JTLB) and two 3-
entry, fully associative Instruction/Data TLBs (ITLB/
DTLB).

When an instruction address is calculated, the virtual
address is compared to the contents of the 3-entry ITLB. If
the address is not found in the ITLB, the JTLB is accessed.
If the entry is found in the JTLB, that entry is then written
into the ITLB. If the address is not found in the JTLB, a
TLB refill exception is taken.

When a data address is calculated, the virtual address i
compared to both the 3-entry DTLB and the JTLB. If the
address is not found in the DTLB, but is found in the JTLB
that address is immediately written to the DTLB. If the
address is not found in the JTLB, a TLB refill exception is
taken.

Figure 4 shows how the ITLB, DTLB, and JTLB are
implemented in the 4Kc core.

Figure 4   Address Translation During a Cache Acces

Translation Lookaside Buffer (TLB)

The TLB consists of three address translation buffers:

• 16 dual-entry fully associative Joint TLB (JTLB)

• 3-entry fully associative Instruction TLB (ITLB)

• 3-entry fully associative Data TLB (DTLB)

Joint TLB (JTLB)

The 4Kc core implements a 16-dual-entry, fully associativ
JTLB that maps 32 virtual pages to their corresponding
physical addresses. The JTLB is organized as 16 pairs 
even and odd entries containing pages that range in siz
from 4 Kbytes to 16 Mbytes into the 4-Gbyte physical
address space. The purpose of the TLB is to translate
virtual addresses and their corresponding ASIDs into a
physical memory address. The translation is performed
comparing the upper bits of the virtual address (along wi
the ASID) against each of the entries in thetag portion of
the joint TLB structure.

The JTLB is organized in page pairs to minimize the
overall size. Eachtag entry corresponds to 2 data entries:
an even page entry and an odd page entry. The highest or
virtual address bit not participating in the tag comparison
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used to determine which of the data entries is used. Since
page size can vary on a page-pair basis, the determination
of which address bits participate in the comparison and
which bit is used to make the even-odd determination is
decided dynamically during the TLB look-up.

Instruction TLB (ITLB)

The ITLB is a small 3-entry, fully associative TLB
dedicated to performing translations for the instruction
stream. The ITLB only maps 4-Kbyte pages/subpages.

The ITLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing store for the
ITLB. If a fetch address cannot be translated by the ITLB,
the JTLB is used to attempt to translate it in the following
clock cycle. If successful, the translation information is
copied into the ITLB for future use. There is a two cycle
ITLB miss penalty.

Data TLB (DTLB)

The DTLB is a small 3-entry, fully associative TLB
dedicated to performing translations for loads and stores.
The DTLB also only maps 4-Kbyte pages/subpages.

The DTLB is managed by hardware and is transparent 
software. The larger JTLB is used as a backing store for t
DTLB. The JTLB is looked up in parallel with the DTLB
to minimize the DTLB miss penalty. If the JTLB
translation is successful, the translation information is
copied into the DTLB for future use. There is a one cycl
DTLB miss penalty.

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins
comparing the virtual address from the processor with t
virtual addresses in the TLB; there is a match when the
virtual page number (VPN) of the address is the same as
VPN field of the entry, and either:

• The Global (G) bit of the TLB entry is set, or

• The ASID field of the virtual address is the same as th
ASID field of the TLB entry.

This match is referred to as a TLBhit. If there is no match,
a TLB miss exception is taken by the processor and
software is allowed to refill the TLB from a page table o
virtual/physical addresses in memory.

Figure 5 shows a flow diagram of the address translation
process.

Figure 5  32-bit Virtual Address Translation
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3239
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Virtual Address with 1M (220) 4-Kbyte pages
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   8 24
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8 bits = 256 pages
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24
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translation in TLB
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kernel address spaces

Offset passed unchanged to
physical memory
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translation in TLB

 TLB

 TLB
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32-bit Physical Address
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The top portion ofFigure 5shows a virtual address for a 4-
Kbyte page size. The width of theOffsetin Figure 5 is
defined by the page size. The remaining 20 bits of the
address represent the virtual page number (VPN), and
index the 1M-entry page table.

The bottom portion ofFigure 5 shows the virtual address
for a 16-Mbyte page size. The remaining 8 bits of the
address represent the VPN, and index the 256-entry page
table.

In this figure, the virtual address is extended with an 8-bit
address space identifier (ASID), which reduces the
frequency of TLB flushing during a context switch. This 8-
bit ASID contains the number assigned to that process and
is stored in the CP0EntryHi register.

Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag portion and a data portion.
If a match is found, the upper bits of the virtual address are
replaced with the page frame number (PFN) stored in the
corresponding entry in the data array of the joint TLB
(JTLB). The granularity of JTLB mappings is defined in
terms of TLBpages. The 4Kc core’s JTLB supports pages
of different sizes ranging from 4 KB to 16 MB in powers of
4.

If no match occurs (TLB miss), an exception is taken and
software refills the TLB from the page table resident in
memory. Software can write over a selected TLB entry or
use a hardware mechanism to write into a random entry.

The 4Kc core implements a TLB write compare
mechanism to ensure that multiple TLB matches do not
occur. On the TLB write operation, the write value is
compared with all other entries in the TLB. If a match
occurs, the 4Kc core takes a machine check exception, sets
the TS bit in the CP0Status register, and aborts the write
operation.

Table 4 shows the address bits used for even/odd bank
selection depending on page size and the relationship
between the legal values in the mask register and the
selected page size.

TLB Tag and Data Formats

Figure 6shows the format of a TLBtagentry. The entry is
divided into the follow fields:

• Global process indicator

• Address space identifier

• Virtual page number

• Compressed page mask

Setting the global process indicator (G bit) indicates tha
the entry is global to all processes and/or threads in the
system. In this case, the 8-bit ASID value is ignored sin
the entry is not relative to a specific thread or process.

The address space identifier (ASID) helps to reduce the
frequency of TLB flushing on a context switch. The
existence of the ASID allows multiple processes to exist
both the TLB and instruction caches. The current ASID
value is stored in theEntryHi register and is compared to
the ASID value of each entry.Figure 6 andTable 5 show
the TLB tag entry format.

Figure 6   TLB Tag Entry Format

Table 4    Mask and Page Size Values

Pagemask[24:13] Page Size Even/Odd Bank
Select Bit

000000000000 4KB VAddr[12]

000000000011 16KB VAddr[14]

000000001111 64KB VAddr[16]

000000111111 256KB VAddr[18]

000011111111 1MB VAddr[20]

001111111111 4MB VAddr[22]

111111111111 16MB VAddr[24]

Table 5    TLB Tag Entry Fields

Field Name Description

G Global Bit. When set, indicates that this
entry is global to all processes and/or threads
and thus disables inclusion of the ASID in
the comparison.

ASID[7:0] Address Space Identifier. Identifies with
which process or thread this TLB entry is
associated.

Table 4    Mask and Page Size Values (Continued)

Pagemask[24:13] Page Size Even/Odd Bank
Select Bit

G ASID[7:0] VPN2[31:25]  VPN2[24:13] CMASK[5:0]

612781
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Figure 7andTable 6show the TLB data array entry format.

Figure 7   TLB Data Array Entry Format

Page Sizes and Replacement Algorithm

To assist in controlling both the amount of mapped spac
and the replacement characteristics of various memory
regions, the 4Kc core provides two mechanisms. First, th
page size can be configured, on a per-entry basis, to ma
page size of 4 Kbytes to 16 Mbytes (in multiples of 4). Th
CP0PageMask register is loaded with the mapping page
size, which is then entered into the TLB when a new entr
is written. Thus, operating systems can provide special
purpose maps. For example, a typical frame buffer can 
memory mapped with only one TLB entry.

The second mechanism controls the replacement algorith
when a TLB miss occurs. To select a TLB entry to be
written with a new mapping, the 4Kc core provides a
random replacement algorithm. However, the processor
also provides a mechanism where a programmable num
of mappings can be locked into the TLB via theWired
register, thus avoiding random replacement.

Cache Controllers

The 4Kc core instruction and data cache controllers supp
caches of various sizes, organizations, and set-associativ
For example, the data cache can be 2 Kbytes in size and
way set associative, while the instruction cache can be 
Kbytes in size and 4-way set associative. Each cache c
each be accessed in a single processor cycle. In additio
each cache has its own 32-bit data path and both caches
be accessed in the same pipeline clock cycle. Refer to t
section entitled"4Kc Core Optional Logic Blocks" on page
12 for more information on instruction and data cache
organization.

The cache controllers also have built-in support for
replacing one way of the cache with a scratchpad RAM

VPN2[31:25],
VPN2[24:13]

Virtual Page Number divided by 2. This field
contains the upper bits of the virtual page
number. Because it represents a pair of TLB
pages, it is divided by 2. Bits 31:25 are
always included in the TLB lookup
comparison. Bits 24:13 are included
depending on the page size.

CMASK[5:0] Compressed page mask value. This field is a
compressed version of the page mask. It
defines the page size by masking the
appropriate VPN2 bits from being involved
comparison. It is also used to determine
which address bit is used to make the even-
odd page determination.

Table 6    TLB Data Array Entry Fields

Field Name Description

PFN[31:12] Physical Frame Number. Defines the upper
bits of the physical address. For page sizes
larger than 4KB, only a subset of these bits
is actually used.

C[2:0] Cacheability. Contains an encoded value
of the cacheability attributes and
determines whether the page should be
placed in the cache or not. The field is
encoded as follows:

*Values 2 and 3 are the required MIPS32
mappings for uncached and cacheable
references; other values may have different
meanings in other MIPS32 processors.

Table 5    TLB Tag Entry Fields (Continued)

Field Name Description

PFN[31:12] C[2:0] D V

11320

CS[2:0] Coherency Attribute

000* Maps to entry 011b.

001* Maps to entry 011b.

010 Uncached

011 Cacheable, noncoherent,
write through, no write
allocate

100* Maps to entry 011b.

101* Maps to entry 011.b

110* Maps to entry 011b.

111* Maps to entry 010b

D “Dirty” or write-enable bit. Indicates that
the page has been written and/or is
writable. If this bit is set, stores to the page
are permitted. If the bit is cleared, stores to
the page cause a TLB Modified exception.

V Valid bit. Indicates that the TLB entry, and
thus the virtual page mapping, are valid. If
this bit is set, accesses to the page are
permitted. If the bit is cleared, accesses to
the page cause a TLB Invalid exception.

Table 6    TLB Data Array Entry Fields (Continued)

Field Name Description
10 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07
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See the section entitled"4Kc Core Optional Logic Blocks"
on page 12 for more information on scratchpad RAMs.

Bus Interface (BIU)

The Bus Interface Unit (BIU) controls the external
interface signals. Additionally, it contains the
implementation of the 32-byte collapsing write buffer. The
purpose of this buffer is to store and combine write
transactions before issuing them at the external interface.
Since the 4Kc core caches follow a write-through cache
policy, the write buffer significantly reduces the number of
writes transactions on the external interface and reduces the
amount of stalling in the core due to issuance of multiple
writes in a short period of time.

The write buffer is organized as two 16-byte buffers. Each
buffer contains data from a single 16-byte aligned block of
memory. One buffer contains the data currently being
transferred on the external interface, while the other buffer
contains accumulating data from the core. Data from the
accumulation buffer is transferred to the external interface
buffer under one of these conditions:

• When a store is attempted from the core to a different
16-byte block than is currently being accumulated

• SYNC Instruction

• Store to an invalid merge pattern

• Any load or store to uncached memory

• A load to the line being merged

Note that if the data in the external interface buffer has not
been written out to memory, the core is stalled until the
memory write completes. After completion of the memory
write, accumulated buffer data can be written to the
external interface buffer.

Merge Pattern Control

The 4Kc core implements two 16-byte collapsing write
buffers that allow byte, halfword, tri-byte, or word writes
from the core to be accumulated in the buffer into a 16-byte
value before bursting the data out onto the bus in word
format. Note that writes to uncached areas are never
merged.

The 4Kc core provides two options for merge pattern
control:

• No merge

• Full merge

In No Merge mode, writes to a different word within the
same line are accumulated in the buffer. Writes to the sam
word cause the previous word to be driven onto the bus

In Full Mergemode, all combinations of writes to the same
line are collected in the buffer. Any pattern of byte enable
is possible.

SimpleBE Mode

To aid in attaching the 4Kc core to existing busses, there
a mode that only generates “simple” byte enables. Only
byte enables representing naturally aligned byte, half, a
word transactions will be generated. Legal byte enable
patterns are shown in Table 7. Writes with illegal byte
enable patterns will be broken into two separate write
transactions. This splitting is independent of the merge
pattern control in the write buffer. The only case where 
read can generate illegal byte enables is on an uncached
byte load (LWL/LWR). These reads will be converted into
a word read on the bus.

4Kc Core Reset

The 4Kc core has two types of reset input signals:Resetand
ColdReset.

TheColdReset signal must be asserted on either a powe
on reset or a cold reset. In a typical application, a power-o
reset occurs when the machine is first turned on. A cold
reset (also called a hard reset) typically occurs when th
machine is already on and the system is rebooted. A co
reset completely initializes the internal state machines o
the 4Kc core without saving any state information. The
ResetandColdResetsignals work in conjunction with one

Table 7    Valid SimpleBE Byte Enable Patterns

EB_BE[3:0]

0001

0010

0100

1000

0011

1100

1111
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 11
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another to determine the type of reset operation (seeTable
8).

TheResetsignal is asserted for a warm reset. A warm reset
restarts the 4Kc core and preserves more of the processors
internal state than a cold reset. TheReset signal can be
asserted synchronously or asynchronously during a cold
reset, or synchronously to initiate a warm reset. The
assertion ofReset causes a soft reset exception within the
4Kc core. In debug mode, EJTAG can request that the soft
reset function be masked. It is system dependent whether
this functionality is supported. In normal mode, the soft
reset cannot be masked.

Power Management

The 4Kc core offers a number of power management
features, including low-power design, active power
management, and power-down modes of operation. The
4Kc core is a static design that supports slowing or halting
the clocks, which reduces system power consumption
during idle periods.

The 4Kc core provides two mechanisms for system-level
low power support:

• Register-controlled power management

• Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CP0 Status register provides a software
mechanism for placing the system into a low power state.
The state of the RP bit is available externally via theSI_RP
signal. The external agent then decides whether to place the
device in low power mode, such as by reducing the system
clock frequency.

Three additional bits, StatusEXL, StatusERL, and DebugDM
support the power management function by allowing the
user to change the power state if an exception or error
occurs while the 4Kc core is in a low power state.
Depending on what type of exception is taken, one of these
three bits will be asserted and reflected on theSI_EXL,

SI_ERL, orEJ_DebugM outputs. The external agent can
look at these signals and determine whether to leave th
low power state to service the exception.

The following 4 power-down signals are part of the system
interface and change state as the corresponding bits in 
CP0 registers are set or cleared:

• TheSI_RPsignal represents the state of the RP bit (27
in the CP0 Status register.

• TheSI_EXLsignal represents the state of the EXL bit
(1) in the CP0 Status register.

• TheSI_ERLsignal represents the state of the ERL bit
(2) in the CP0 Status register.

• TheEJ_DebugMsignal represents the state of the DM
bit (30) in the CP0 Debug register.

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode
through execution of the WAIT instruction. When the
WAIT instruction is executed, the internal clock is
suspended. However, the internal timer and some of the
input pins (SI_Int[5:0], SI_NMI, SI_Reset, and
SI_ColdReset) continue to run. Once the CPU is in
instruction-controlled power management mode, any
interrupt, NMI, or reset condition causes the CPU to exi
this mode and resume normal operation.

The 4Kc core asserts theSI_SLEEPsignal, which is part of
the system interface bus, whenever the WAIT instruction
executed. The assertion ofSI_SLEEP indicates that the
clock has stopped and the 4Kc core is waiting for an
interrupt.

4Kc Core Optional Logic Blocks

The 4Kc core consists of the following optional logic
blocks as shown in the block diagram inFigure 1.

Instruction Cache

The instruction cache is an optional on-chip memory bloc
of up to 16 Kbytes. Because the instruction cache is
virtually indexed, the virtual-to-physical address
translation occurs in parallel with the cache access rath
than having to wait for the physical address translation. Th
tag holds 22 bits of physical address, 4 valid bits, a lock b
and the fill replacement bit.

Table 8    4Kc Reset Types

Reset ColdReset Action

0 0 Normal Operation, no reset.

1 0 Warm or Soft reset.

X 1 Cold or Hard reset.
12 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07
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The instruction cache block also contains and manages the
instruction line fill buffer. Besides accumulating data to be
written to the cache, instruction fetches that reference data
in the line fill buffer are serviced either by a bypass of that
data, or data coming from the external interface. The
instruction cache control logic controls the bypass
function.

The  core supports instruction-cache locking. Cache
locking allows critical code or data segments to be locked
into the cache on a “per-line” basis, enabling the system
programmer to maximize the efficiency of the system
cache.

The cache-locking function is always available on all
instruction-cache entries. Entries can then be marked as
locked or unlocked on a per entry basis using the CACHE
instruction.

Data Cache

The data cache is an optional on-chip memory block of up
to 16 Kbytes. This virtually indexed, physically tagged
cache is protected. Because the data cache is virtually
indexed, the virtual-to-physical address translation occurs
in parallel with the cache access. The tag holds 22 bits of
physical address, 4 valid bits, a lock bit, and the fill
replacement bit.

In addition to instruction-cache locking, the 4Kc core also
supports a data-cache locking mechanism identical to the
instruction cache. Critical data segments are locked into the
cache on a “per-line” basis. The locked contents can be
updated on a store hit, but cannot be selected for
replacement on a cache miss.

The cache-locking function is always available on all data
cache entries. Entries can then be marked as locked or
unlocked on a per-entry basis using the CACHE
instruction.

Cache Memory Configuration

The 4Kc core incorporates on-chip instruction and data
caches that can each be accessed in a single processor
cycle. Each cache has its own 32-bit data path and can be
accessed in the same pipeline clock cycle.Table 9lists the
4Kc core instruction and data cache attributes.

Cache Protocols

The 4Kc core supports the following cache protocols:

• Uncached:Addresses in a memory area indicated as
uncached are not read from the cache. Stores to suc
addresses are written directly to main memory, withou
changing cache contents.

• Write-through: Loads and instruction fetches first
search the cache, reading main memory only if the
desired data does not reside in the cache. On data st
operations, the cache is first searched to see if the
target address is cache resident. If it is resident, the
cache contents are updated, and main memory is als
written. If the cache look-up misses, only main
memory is written.

Scratchpad RAM

The 4Kc core also supports replacing up to one way of ea
cache with a scratchpad RAM. The scratchpad RAM is
user-defined and can consist of a variety of devices. Th
main requirement is that it must be accessible with timin
similar to a regular cache RAM. This means that an ind
will be driven one cycle, a tag will be driven the following
clock, and the scratchpad must return a hit signal and th
data in the second clock. The scratchpad can thus easi
contain a large RAM/ROM or memory-mapped registers

The core’s interface to a scratchpad RAM is slightly
different than to a regular cache RAM. Additional index
bits allow access to a larger array, 1MB of scratchpad RA

Table 9 4Kc Core Instruction and Data Cache Attribute

Parameter Instruction Data

Size 0 - 16 Kbytes 0 - 16 Kbytes

Organization 1 - 4 way set
associative

1 - 4 way set
associative

Line Size 16 bytes 16 bytes

Read Unit 32 bits 32 bits

Write Policy na write-through
without write-
allocate

Miss restart after
transfer of

miss word miss word

Cache Locking per line  per line
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 13
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versus 4KB for a cache way. These bits come from the
virtual address, so on a 4Kc core care must be taken to
avoid virtual aliasing.The core does not automatically refill
the scratchpad way and will not select it for replacement on
cache misses. Additionally, stores that hit in the scratchpad
will not generate write-throughs to main memory.

EJTAG Debug Support

The 4Kc core provides for an optional Enhanced JTAG
(EJTAG) interface for use in the software debug of
application and kernel code. In addition to standard user
mode and kernel modes of operation, the 4Kc core provides
a Debug mode that is entered after a debug exception
(derived from a hardware breakpoint, single-step
exception, etc.) is taken and continues until a debug
exception return (DERET) instruction is executed. During
this time, the processor executes the debug exception
handler routine.

Refer to the section called"4Kc Core Signal Descriptions"
on page 19 for a list of signals EJTAG interface signals.

The EJTAG interface operates through the Test Access Port
(TAP), a serial communication port used for transferring
test data in and out of the 4Kc core. In addition to the
standard JTAG instructions, special instructions defined in
the EJTAG specification define what registers are selected
and how they are used.

Debug Registers

Three debug registers (DEBUG, DEPC, and DESAVE)
have been added to the MIPS Coprocessor 0 (CP0) register
set. The DEBUG register shows the cause of the debug
exception and is used for the setting up of single-step
operations. The DEPC, or Debug Exception Program
Counter, register holds the address on which the debug
exception was taken. This is used to resume program
execution after the debug operation finishes. Finally, the
DESAVE, or Debug Exception Save, register enables the
saving of general-purpose registers used during execution
of the debug exception handler.

To exit debug mode, a Debug Exception Return (DERET
instruction is executed. When this instruction is execute
the system exits debug mode, allowing normal execution
application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the EJTAG specification. These stop the norm
operation of the CPU and force the system into debug
mode. There are two types of simple hardware breakpoin
implemented in the 4Kc core: Instruction breakpoints an
Data breakpoints.

The 4Kc core can be configured with the following
breakpoint options:

• No data or instruction breakpoints

• One data and two instruction breakpoints

• Two data and four instruction breakpoints

Instruction breaks occur on instruction fetch operations,
and the break is set on the virtual address on the bus
between the CPU and the instruction cache. Instruction
breaks can also be made on the ASID value used by th
MMU. Finally, a mask can be applied to the virtual addres
to set breakpoints on a range of instructions.

Data breakpoints occur on load/store transactions.
Breakpoints are set on virtual address and ASID values
similar to the Instruction breakpoint. Data breakpoints ca
be set on a load, a store, or both. Data breakpoints can a
be set based on the value of the load/store operation.
Finally, masks can be applied to both the virtual addres
and the load/store value.

4Kc Core Instructions

The 4Kc core instruction set complies with the MIPS32
instruction set architecture.Table 10 provides a summary
of instructions implemented by the 4Kc core.

Table  10   4Kc Core Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs + U Immed

ADDU Unsigned Integer Add Rd = Rs + U Rt
14 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07
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AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (0 16 || Immed)

BEQ Branch On Equal if Rs == Rt
 PC += (int)offset

BEQL Branch On Equal Likely if Rs == Rt
  PC += (int)offset
else
  Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
  PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And
Link

GPR[31] = PC + 8
if !Rs[31]
  PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31] = PC + 8
if !Rs[31]
  PC += (int)offset
else
  Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero
Likely

if !Rs[31]
  PC += (int)offset
else
  Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
  PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
  PC += (int)offset
else
  Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
  PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
  PC += (int)offset
else
  Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
  PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]
  PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]
  PC += (int)offset
else
  Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
  PC += (int)offset
else
  Ignore Next Instruction

Table  10   4Kc Core Instruction Set (Continued)

Instruction Description Function
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BNE Branch on Not Equal if Rs != Rt
  PC += (int)offset

BNEL Branch on Not Equal Likely if Rs != Rt
  PC += (int)offset
else
  Ignore Next Instruction

BREAK Breakpoint Break Exception

CACHE Cache Operation See Software User’s Manual

COP0 Coprocessor 0 Operation See Software User’s Manual

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

ERET Return from Exception if SR[2]
  PC = ErrorEPC
else
  PC = EPC
  SR[1] = 0
SR[2] = 0
LL = 0

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JR Jump Register PC = Rs

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWL Load Word Left See Software User’s Manual

Table  10   4Kc Core Instruction Set (Continued)

Instruction Description Function
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LWR Load Word Right See Software User’s Manual

MADD Multiply-Add HI | LO += (int)Rs * (int)Rt

MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, n, sel] = Rt

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN Move Conditional on Not Zero if Rt ≠ 0 then
   Rd = Rs

MOVZ Move Conditional on Zero if Rt = 0 then
   Rd = Rs

MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, SEL] = Rt

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI | LO =Unpredictable
Rd = ((int)Rs *
(int)Rt) 31..0

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Load Specified Line into Cache

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word if LL = 1
   mem[Rs+offset] = Rt
Rt = LL

SDBBP Software Debug Break Point Trap to SW Debug Handler

SH Store Half (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt
  Rd = 1
else
  Rd = 0

Table  10   4Kc Core Instruction Set (Continued)

Instruction Description Function
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SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
  Rt = 1
else
  Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
  Rt = 1
else
  Rt = 0

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
  Rd = 1
else
  Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation NOP

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

SWL Store Word Left See Software User’s Manual

SWR Store Word Right See Software User’s Manual

SYNC Synchronize See Software User’s Manual

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
  TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
  TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
  TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
  TrapException

TGEIU Trap if Greater Than or Equal Immediate
Unsigned

if (uns)Rs >= (uns)Immed
  TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
  TrapException

TLBWI Write Indexed TLB Entry See Software Users Manual

TLBWR Write Random TLB Entry See Software Users Manual

TLBP Probe TLB for Matching Entry See Software Users Manual

Table  10   4Kc Core Instruction Set (Continued)

Instruction Description Function
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4Kc Core Signal Descriptions

This section describes the signal interface of the 4Kc
microprocessor core.

The pin direction key for the signal descriptions is show
in Table 11 below.

The 4Kc core signals are listed inTable 12below. Note that
the signals are grouped by logical function, not by expected
physical location. All signals, with the exception of

EJ_TRST_N, are active-high signals.EJ_DINT and
SI_NMI go through edge-detection logic so that only one
exception is taken each time they are asserted.

TLBR Read Index for TLB Entry See Software Users Manual

TLT Trap if Less Than if (int)Rs < (int)Rt
  TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
  TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
  TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
  TrapException

TNE Trap if Not Equal if Rs != Rt
  TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
  TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

Table  10   4Kc Core Instruction Set (Continued)

Instruction Description Function

Table  11   4Kc Core Signal Direction Key

Dir Description

I Input to the 4Kc core sampled on the rising edge of the appropriate CLK signal.

O Output of the 4Kc core, unless otherwise noted, driven at the rising edge of the appropriate CLK signal.

A Asynchronous inputs that are synchronized by the core.

S Static input to the 4Kc core. These signals are normally tied to either power or ground and should not
change state whileSI_ColdReset is deasserted.

Table  12   4Kc Signal Descriptions

Signal Name Type Description

System Interface

Clock Signals:

SI_ClkIn I Clock Input. All inputs and outputs, except a few of the EJTAG signals, are sampled and/o
asserted relative to the rising edge of this signal.
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 19
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SI_ClkOut O Reference Clock for the External Bus Interface. This clock signal provides a reference for
deskewing any clock insertion delay created by the internal clock buffering in the core.

Reset Signals:

SI_ColdReset A Hard/Cold Reset Signal. Causes a Reset Exception in the core.

SI_NMI A Non-Maskable Interrupt. An edge detect is used on this signal. When this signal is sample
asserted (high) one clock after being sampled deasserted, an NMI is posted to the core.

SI_Reset A Soft/Warm Reset Signal. Causes a SoftReset Exception in the core.

Power Management Signals:

SI_ERL O This signal represents the state of the ERL bit (2) in the CP0 Status register and indicates
error level. The core assertsSI_ERLwhenever a Reset, Soft Reset, or NMI exception is taken

SI_EXL O This signal represents the state of the EXL bit (1) in the CP0 Status register and indicates
exception level. The core assertsSI_EXL whenever any exception other than a Reset, Soft
Reset, NMI, or Debug exception is taken.

SI_RP O This signal represents the state of the RP bit (27) in the CP0 Status register. Software can w
this bit to indicate that the device can enter a reduced power mode.

SI_SLEEP O This signal is asserted by the core whenever the WAIT instruction is executed. The assertio
this signal indicates that the clock has stopped and that the core is waiting for an interrupt

Interrupt Signals:

SI_Int[5:0] A Active-high Interrupt Pins. These signals are driven by external logic and, when asserted,
indicate the corresponding interrupt exception to the core. These signals go through
synchronization logic and can be asserted asynchronously toSI_ClkIn.

SI_TimerInt O This signal is asserted whenever the Count and Compare registers match and is deasser
when the Compare register is written. In order to have timer interrupts, this signal needs to
brought back into the 4K core on one of the 6SI_Intinterrupt pins. Traditionally, this has been
accomplished via muxingSI_TimerInt with SI_Int[5]. ExposingSI_TimerInt as an output
allows more flexibility for the system designer. Timer interrupts can be muxed or ORed int
one of the interrupts, as desired in a particular system. In a complex system, it could even
fed into a priority encoder to allowSI_Int[5:0] to map up to 63 interrupt sources.

Configuration Inputs:

SI_Endian S Indicates the base endianess of the core.

Table  12   4Kc Signal Descriptions

Signal Name Type Description

EB_Endian Base Endian Mode

0 Little Endian

1 Big Endian
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SI_MergeMode[1:0] S The state of these signals determines the merge mode for the 16-byte collapsing write b

SI_SimpleBE[1:0] S The state of these signals can constrain the core to only generate certain byte enables on
interface transactions. This eases connection to some existing bus standards.

External Bus Interface

EB_ARdy I Indicates whether the target is ready for a new address. The core will not complete the addr
phase of a new bus transaction until the clock cycle afterEB_ARdy is sampled asserted.

EB_AValid O When asserted, indicates that the values on the address bus and access types lines are v
signifying the beginning of a new bus transaction.EB_AValid must always be valid.

EB_Instr O When asserted, indicates that the transaction is an instruction fetch versus a data referen
EB_Instr is only valid whenEB_AValid is asserted.

EB_Write O When asserted, indicates that the current transaction is a write. This signal is only valid wh
EB_AValid is asserted.

EB_Burst O When asserted, indicates that the current transaction is part of a cache fill or a write burst. N
that there is redundant information contained inEB_Burst, EB_BFirst, EB_BLast, and
EB_BLen. This is done to simplify the system design—the information can be used in whateve
form is easiest.

EB_BFirst O When asserted, indicates the beginning of the burst.EB_BFirst is always valid.

EB_BLast O When asserted, indicates the end of the burst.EB_BLast is always valid.

EB_BLen<1:0> O Indicates the length of the burst. This signal is only valid whenEB_AValid is asserted.

EB_SBlock SI When sampled asserted, sub-block ordering is used. When sampled deasserted, sequen
addressing is used.

Table  12   4Kc Signal Descriptions

Signal Name Type Description

Encoding Merge Mode

002 No Merge

012 Reserved

102 Full Merge

112 Reserved

SI_SimpleBE[1:0] Byte Enable Mode

002 All BEs allowed

012 Naturally aligned bytes, half-
words, and words only

102 Reserved

112 Reserved

EB_BLength<1:0> Burst Length

0 reserved

1 4

2 reserved

3 reserved
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EB_BE<3:0> O Indicates which bytes of theEB_RData or EB_WData buses are involved in the current
transaction. If anEB_BEsignal is asserted, the associated byte is being read or written.EB_BE
lines are only valid whileEB_AValid is asserted.

EB_A<35:2> O Address lines for external bus. Only valid whenEB_AValid is asserted.EB_A[35:32] are tied
to 0 in this core.

EB_WData<31:0> O Output data for writes.

EB_RData<31:0> I Input Data for reads.

EB_RdVal I Indicates that the target is driving read data onEB_RData lines.EB_RdVal must always be
valid. EB_RdVal may never be sampled asserted until the rising edge after the correspondi
EB_ARdy was sampled asserted.

EB_WDRdy I Indicates that the target of a write is ready. TheEB_WDatalines can change in the next clock
cycle.EB_WDRdywill not be sampled until the rising edge where the correspondingEB_ARdy
is sampled asserted.

EB_RBErr I Bus error indicator for read transactions.EB_RBErris sampled on every rising clock edge until
an active sampling ofEB_RdVal. EB_RBErrsampled with assertedEB_RdValindicates a bus
error during read.EB_RBErr must be deasserted in idle phases.

EB_WBErr I Bus error indicator for write transactions.EB_WBErr is sampled on the rising clock edge
following an active sample ofEB_WDRdy. EB_WBErr must be deasserted in idle phases.

EB_EWBE I Indicates that any external write buffers are empty. The external write buffers must deasse
EB_EWBE in the cycle after the correspondingEB_WDRdy is asserted and keepEB_EWBE
deasserted until the external write buffers are empty.

EB_WWBE O When asserted, indicates that the core is waiting for external write buffers to empty.

EJTAG Interface

TAP interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core does n
implement the TAP controller.

EJ_TRST_N I Active-low Test Reset Input (TRST*) for the EJTAG TAP. At power-up, the assertion of
EJ_TRST_N causes the TAP controller to be reset.

EJ_TCK I Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS I Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TDI I Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO O Test Data Output (TDO) for the EJTAG TAP.

Table  12   4Kc Signal Descriptions

Signal Name Type Description

EB_BE
Signal

Read Data Bits
Sampled

Write Data Bits
Driven Valid

EB_BE<0> EB_RData<7:0> EB_WData<7:0>

EB_BE<1> EB_RData<15:8> EB_WData<15:8>

EB_BE<2> EB_RData<23:16> EB_WData<23:16>

EB_BE<3> EB_RData<31:24> EB_WData<31:24>
22 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.



ore

G

wer
e

se
et these

n

y
t

ers.

ing

gnal

be fed

nce.
EJ_TDOzstate O Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state
0: The TDO output at chip level must be driven to the value ofEJ_TDO

IEEE Standard 1149.1-1990 defines TDO as a 3-stated signal. To avoid having a 3-state c
output, the 4K core outputs this signal to drive an external 3-state buffer.

Debug Interrupt:

EJ_DINTsup S Value of DINTsup for the Implementation register. A 1 on this signal indicates that the EJTA
probe can use the DINT signal to interrupt the processor.

EJ_DINT I Debug exception request when this signal is asserted in a CPU clock period after being
deasserted in the previous CPU clock period. The request is cleared when debug mode is
entered. Requests when in debug mode are ignored.

Debug Mode Indication:

EJ_DebugM O Asserted when the core is in Debug Mode. This can be used to bring the core out of a low po
mode. In systems with multiple processor cores, this signal can be used to synchronize th
cores when debugging.

Device ID bits:

These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not implemented, the
inputs are not connected. These inputs are always available for soft core customers. On hard cores, the core “hardener” can s
inputs to their own values.

EJ_ManufID[10:0] S Value of the ManufID[10:0] field in the Device ID register. As per IEEE 1149.1-1990 sectio
11.2, the manufacturer identity code shall be a compressed form of JEDEC standard
manufacturer’s identification code in the JEDEC Publications 106, which can be found at:
http://www.jedec.org/

ManufID[6:0] bits are derived from the last byte of the JEDEC code by discarding the parit
bit. ManufID[10:7] bits provide a binary count of the number of bytes in the JEDEC code tha
contain the continuation character (0x7F). Where the number of continuations characters
exceeds 15, these 4 bits contain the modulo-16 count of the number of continuation charact

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0] S Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs:

These signals come from EJTAG control registers. They have no effect on the core, but can be used to give EJTAG debugg
software additional control over the system.

EJ_SRstE O Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft resets. If this si
is deasserted, none, some, or all soft reset sources are masked.

EJ_PerRst O Peripheral Reset. EJTAG can assert this signal to request the reset of some or all of the
peripheral devices in the system.

EJ_PrRst O Processor Reset. EJTAG can assert this signal to request that the core be reset. This can
into theSI_Reset signal.

Performance Monitoring Interface

 These signals can be used to implement performance counters, which can be used to monitor hardware/software performa

PM_DCacheHit O This signal is asserted whenever there is a data cache hit.

Table  12   4Kc Signal Descriptions

Signal Name Type Description
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4Kc Core Bus Transactions

The 4Kc core implements the EC™ interface for its bus
transactions. This interface uses a pipelined, in-order
protocol with independent address, read data, and write
data buses. The following subsections describe the four
basic bus transactions: single read, single write, burst read,
and burst write.

Single Read

Figure 8 shows the basic timing relationships of signals
during a simple read transaction. During a single read
cycle, the 4Kc core drives the address ontoEB_A[35:2]

and byte enable information ontoEB_BE[3:0]. To
maximize performance, the EC interface does not define
maximum number of outstanding bus cycles. Instead it
provides theEB_ARdyinput signal. This signal is driven by
external logic and controls the generation of addresses 
the bus.

In the  core, the address is driven whenever it becomes
available, regardless of the state ofEB_ARdy. However, the
core always continues to drive the address until the cloc
afterEB_ARdy is sampled asserted. For example, at the
rising edge of the clock 2 inFigure 8, theEB_ARdysignal
is sampled low, indicating that external logic is not ready t
accept the new address. However, the 4Kc core still driv
EB_A[35:2] in this clock as shown. On the rising edge o

PM_DCacheMiss O This signal is asserted whenever there is a data-cache miss.

PM_DTLBHit O This signal is asserted whenever there is a hit in the data TLB.

PM_DTLBMiss O This signal is asserted whenever there is a miss in the data TLB.

PM_ICacheHit O This signal is asserted whenever there is an instruction-cache hit.

PM_ICacheMiss O This signal is asserted whenever there is an instruction-cache miss.

PM_InstComplete O This signal is asserted each time an instruction completes in the pipeline.

PM_ITLBHit O This signal is asserted whenever there is an instruction TLB hit.

PM_ITLBMiss O This signal is asserted whenever there is an instruction TLB miss.

PM_JTLBHit O This signal is asserted whenever there is a joint TLB hit.

PM_JTLBMiss O This signal is asserted whenever there is a joint TLB miss.

PM_WTBMerge O This signal is asserted whenever there is a successful merge in the write-through buffer.

PM_WTBNoMerge O This signal is asserted whenever a non-merging store is written to the write-through buffe

Scan Test Interface

These signals provide the interface for testing the core. The use and configuration of these pins are implementation-depend

ScanEnable I This signal should be asserted while scanning vectors into or out of the core. TheScanEnable
signal must be deasserted during normal operation and during capture clocks in test mode

ScanMode I This signal should be asserted during all scan testing both while scanning and during cap
clocks. TheScanMode signal must be deasserted during normal operation.

ScanIn<n:0> I This signal is input to the scan chain.

ScanOut<n:0> O This signal is output from the scan chain.

BistIn<n:0> I Input to the BIST controller.

BistOut<n:0> O Output from the BIST controller.

Table  12   4Kc Signal Descriptions

Signal Name Type Description
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clock 3, the 4Kc core samplesEB_ARdy asserted and
continues to drive the address until the rising edge of clock
4.

Figure 8   Single Read Transaction Timing Diagram

TheEB_Instr signal is only asserted during a single read
cycle if there is an instruction fetch from non-cacheable
memory space. TheEB_AValid signal is driven in each
clock thatEB_A[35:2] is valid on the bus. The 4Kc core
drivesEB_Write low to indicate a read transaction.

TheEB_RData[31:0] andEB_RdVal signals are first
sampled on the rising edge of clock 4, one clock after
EB_ARdy is sampled asserted. Data is sampled on every
clock thereafter untilEB_RdVal is sampled asserted.

If a bus error occurs during the data transaction, external
logic assertsEB_RBErr in the same clock asEB_RdVal.

Single Write

Figure 9 shows a typical write transaction. The 4Kc core
drives address and control information onto the
EB_A[35:2]andEB_BE[3:0]signals on the rising edge of
clock 2. As in the single read cycle, these signals remain
active until the clock edge after theEB_ARdy signal is
sampled asserted. The 4Kc core asserts theEB_Write
signal to indicate that a valid write cycle is on the bus and
EB_AValid to indicate that valid address is on the bus.

The 4Kc core drives write data ontoEB_WData[31:0] in
the same clock as the address and continues to drive data
until the clock edge after theEB_WDRdysignal is sampled
asserted. If a bus error occurs during a write operation,
external logic asserts theEB_WBErrsignal one clock after
assertingEB_WDRdy.

Figure 9   Single Write Transaction Timing Diagram

Burst Read

The 4Kc core is capable of generating burst transactions
the bus. A burst transaction is used to transfer multiple da
items in one transaction.

Figure 10   Burst Read Transaction Timing Diagram

Figure 10 shows an example of a burst read transaction.
Burst read transactions initiated by the 4Kc core always
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contain four data transfers in a sequence determined by the
critical word (the address that caused the miss) and
EB_SBlock. In addition, the data requested is always a 16-
byte aligned block.

The order of words within this 16-byte block varies
depending on which of the words in the block is being
requested by the execution unit and the ordering protocol
selected. The burst always starts with the word requested
by the execution unit and proceeds in either an ascending
or descending address order, wrapping when the block
boundary is reached.Table 13 andTable 14 show the
sequence of address bits 2 and 3.

The  core drives address and control information onto the
EB_A[35:2]andEB_BE[3:0]signals on the rising edge of
clock 2. As in the single read cycle, these signals remain
active until the clock edge after theEB_ARdy signal is
sampled asserted. The 4Kc core continues to drive
EB_AValid as long as a valid address is on the bus.

TheEB_Instr signal is asserted if the burst read is for an
instruction fetch. TheEB_Burstsignal is asserted while the
address is on the bus to indicate that the current address is
part of a burst transaction. The 4Kc core asserts the
EB_BFirst signal in the same clock as the first address is
driven and theEB_BLastsignal in the same clock as the last
address to indicate the start and end of a burst cycle.

The 4Kc core first samples theEB_RData[31:0] signals
two clocks afterEB_ARDy is sampled asserted. External

logic assertsEB_RdValto indicate that valid data is on the
bus. The 4Kc core latches data internally whenever
EB_RVal is sampled asserted.

Note that on the rising edge of clocks 3 and 6 inFigure 10,
theEB_RdVal signal is sampled deasserted, causing wa
states in the data return. There is also an address wait s
caused byEB_ARdybeing sampled deasserted on the risin
edge of clock 4. Note that the core holds address 3 on t
EB_A bus for an extra clock because of this wait state.
External logic asserts theEB_RBErr signal in the same
clock as data if a bus error occurs during that data trans

Burst Write

Burst write transactions are used to empty one of the wri
buffers. A burst write transaction is only performed if the
write buffer contains 16 bytes of data associated with th
same aligned memory block, otherwise individual write
transactions are performed.Figure 11 shows a timing
diagram of a burst write transaction. Unlike the read burs
a write burst always begins withEB_A[3:2] equal to 00b.

Figure 11   Burst Write Transaction Timing Diagram

The 4Kc core drives address and control information on
theEB_A[35:2]andEB_BE[3:0]signals on the rising edge
of clock 2. As in the single read cycle, these signals rema
active until the clock edge after theEB_ARdy signal is
sampled asserted. The 4Kc core continues to drive
EB_AValid as long as a valid address is on the bus.

Table 13    Sequential Ordering Protocols

Starting Address
EB_A[3:2]

Address Progression
of EB_A[3:2]

00 00, 01, 10, 11

01 01, 10, 11, 00

10 10, 11, 00, 01

11 11, 00, 01, 10

Table 14    Sub-Block Ordering Protocols

Starting Address
EB_A[3:2]

Address Progression
of EB_A[3:2]

00 00, 01, 10, 11

01 01, 00, 11, 10

10 10, 11, 00, 01

11 11, 10, 01, 00

EB_Clk

EB_A[35:2]

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

EB_BFirst

EB_ARdy

Adr1 Adr2 Adr3 Adr4

EB_BE[3:0]

Write
Wait

Data1 Data2 Data3 Data4

EB_BLast

EB_Burst

Write
Wait

Clock # 1 2 3 4 5 6 7 8

EB_Write

Driven by
system logic
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The 4Kc core asserts theEB_Write, EB_Burst, and
EB_AValid signals during the time the address is driven.
EB_Write indicates that a write operation is in progress.
The assertion ofEB_Burst indicates that the current
operation is a burst.EB_AValidindicates that valid address
is on the bus.

The 4Kc core asserts theEB_BFirst signal in the same
clock as address 1 is driven to indicate the start of a burst
cycle. In the clock that the last address is driven, the 4Kc
core assertsEB_BLast to indicate the end of the burst
transaction.

In Figure 11, the first data word (Data1) is driven in clocks
2 and 3 due to theEB_WDRdy signal being sampled
deasserted at the rising edge of clock 2, causing a wait state.
WhenEB_WDRdyis sampled asserted on the rising edge of
clock 3, the 4Kc core responds by driving the second word
(Data2).

External logic drives theEB_WBErrsignal one clock after
the corresponding assertion ofEB_WDRdy if a bus error
has occurred as shown by the arrows inFigure 11.
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