MIPS

TECHNOLOGIES

MIPS32 4Kc™ Processor Core Datasheet March 6, 2002

The MIPS32™ 4Kc™ core from MIPS® Technologies is a member of the MIPS32 4K™ processor core family. Itis a high-
performance, low-power, 32-bit MIPS RISC core designed for custom system-on-silicon applications. The core is designed
for semiconductor manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate their own
custom logic and peripherals with a high-performance RISC processor. It is highly portable across processes, and can be
easily integrated into full system-on-silicon designs, allowing developers to focus their attention on end-user products. The
4Kc core is ideally positioned to support new products for emerging segments of the digital consumer, network, systems,
and information management markets, enabling new tailored solutions for embedded applications.

The 4Kc core implements the MIPS32 Architecture and contains all MIPS 1™ instructions; special multiply-accumulate
(MAC), conditional move, prefetch, wait, and leading zero/one detect instructions; and the 32-bit privileged resource
architecture. The R4000®-style Memory Management Unit contains 3-entry instruction and data TLBs (ITLB/DTLB) and
a 16 dual-entry joint TLB (JTLB) with variable page sizes.

The synthesizable 4Kc core implements single cycle MAC instructions, which enable DSP algorithms to be performed
efficiently. The Multiply/Divide Unit (MDU) allows 32-bit x 16-bit MAC instructions to be issued every cycle. A 32-bit x
32-bit MAC instruction can be issued every 2 cycles.

Instruction and data caches are fully configurable from O - 16 Kbytes in size. In addition, each cache can be organized as
direct-mapped or 2-way, 3-way, or 4-way set associative. Load and fetch cache misses only block until the critical word

becomes available. The pipeline resumes execution while the remaining words are being written to the cache. Both caches
are virtually indexed and physically tagged to allow them to be accessed in the same clock that the address is translated.

An optional Enhanced JTAG (EJTAG) block allows for single-stepping of the processor as well as instruction and data
virtual address breakpoints.

Figure 1shows a block diagram of the 4Kc core. The core is dividedénuaredandoptional blocks as shown.

Processor Core
. EJTAG
Mul/Div Unit Instruction
Cache
i _
L
Execution — 0 @
> >) = om
Core MMU (e > D = - 2
= =
= @)
<
O
System Data
Coprocessor TLB Cache Power
Mgmt.
Fixed/Required Optional

Figure 1 4Kc Core Block Diagram

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07
Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Features — Support for software-controlled clock divider

» EJTAG Debug Support with single stepping, virtual

» 32-bit Address and Data Paths instruction and data address breakpoints

* MIPS32-Compatible Instruction Set

— Al MIPS Il Instructions

— Multiply-Accumulate and Multiply-Subtract Architecture Overview
Instructions (MADD, MADDU, MSUB, MSUBU)

— Targeted Multiply Instruction (MUL)

— Zero/One Detect Instructions (CLZ, CLO)

— Wait Instruction (WAIT)

— Conditional Move Instructions (MOVZ, MOVN)
— Prefetch Instruction (PREF)

» Programmable Cache Sizes

— Individually configurable instruction and data caches The required blocks are as follows:

— Sizes from 0 - 16KB « Execution Unit

— Direct Mapped, 2-, 3-, or 4-Way Set Associative . L .

— Loads block only until critical word is available * Multiply/Divide Unit (MDU)

— Write-through, no write-allocate » System Control Coprocessor (CPO0)
— 16-byte cache line size, word sectored
— \Virtually indexed, physically tagged

The 4Kc core contains both required and optional blocks.
Required blocks are the lightly shaded areas of the block
diagram inFigure 1land must be implemented to remain
MIPS-compliant. Optional blocks can be added to the 4Kc
core based on the needs of the implementation.

» Memory Management Unit (MMU)

— Cache line locking support » Transition Lookaside Buffer (TLB)
— Non-blocking prefetches » Cache Controllers
» Scratchpad RAM Support ¢ Bus Interface Unit (BIU)

— Can optionally replace 1 way of the I- and/or D-cache « power Management
with a fast scratchpad RAM

— 20 index address bits allow access of arrays up to 1MBOptional blocks include:

— Memory-mapped registers attached to the scratchpad

port can be used as a coprocessor interface * Instruction Cache
« R4000-style Privileged Resource Architecture « Data Cache
— Count/Compare registers for real-time timer interrupts * Scratchpad RAM
— land D watch registers for SW breakpoints + Enhanced JTAG (EJTAG) Controller
— Separate interrupt exception vector
» Programmable Memory Management Unit The section entitlet4Kc Core Required Logic Blocks" on
— 16 dual-entry R4000-style JTLB with variable page size page 3discuss<_as the required blocks. The section entitled
— 3entry ITLB "4Kc C_ore Optional Logic Blocks" on page d@iiscusses
— 3entry DTLB the optional blocks.

» Simple Bus Interface Unit (BIU)

— All l/Os fully registered
— Separate unidirectional 32-bit address and data buses

— Two 16-byte collapsing write buffers . L .
) . i The 4Kc core implements a 5-stage pipeline with
* Multiply/Divide Unit performance similar to the R3000pipeline. The pipeline
— Maximum issue rate of one 32x16 multiply per clock allows the processor to achieve high frequency while
— Maximum issue rate of one 32x32 multiply every other minimizing device complexity, reducing both cost and
clock power consumption.
— Early-initerative divide. Minimum 11 and maximum 34
clock latency (dividendrg) sign extension-dependent) The 4Kc core pipeline consists of five stages:

« Power Control « Instruction (I Stage)

— Minimum frequency: 0 MHz « Execution (E Stage)
— Power-down mode (triggered by WAIT instruction)

Pipeline Flow

* Memory (M Stage)

2 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

« Align (A Stage) .
» Writeback (W stage)

The 4Kc core implements a bypass mechanism that allows
the result of an operation to be forwarded directly to the
instruction that needs it without having to write the result |
to the register and then read it back.

Figure 2shows a timing diagram of the 4Kc core pipeline.

! | : ! |
| ! | E M [A [w |
| \ Bypass | \ :
l | | Bypass) | |
I-Cache |RegRd ALUOp | X ! |
I-TLB | Dec|D-Ac] _D-cache | Align | [Regw] |
! D-TLB| ! | |
| | | \ .
\ 1-A1 | 1-A2 \ | |
| | ~ : Bypass \ X :
: : [Mul-16x16, 32x16 | Acc | [Regw] | .
\ \ » ! Bypass | : '
| \ i L) N |
\ \ |Mu|—3l2x32/1 [Acc | |rRegwl :
\ 1)
| : | Div // | Acc | !
\ \ T 117 \ :

[Reaw]
|

Figure 2 4Kc Core Pipeline

| Stage: Instruction Fetch
L]

During the Instruction fetch stage:
* An instruction is fetched from instruction cache.

E Stage: Execution

The data cache fetch and the data virtual-to-physical
address translation are performed for load and store
instructions.

Data cache look-up is performed and a hit/miss
determination is made.

A 16x16 or 32x16 multiply calculation completes.

A 32x32 multiply operation stalls for one clock in the
M stage.

A divide operation stalls for a maximum of 34 clocks
in the M stage. Early-in sign extension detection on the
dividend will skip 7, 15, or 23 stall clocks.

A Stage: Align

During the Align stage:

A separate aligner aligns load data to its word
boundary.

A 16x16 or 32x16 multiply operation performs the
carry-propagate-add. The actual register writeback is
performed in the W stage.

A MUL operation makes the result available for
writeback. The actual register writeback is performed
in the W stage.

W Stage: Writeback

For register-to-register or load instructions, the
instruction result is written back to the register file
during the W stage.

4Kc Core Required Logic Blocks

During the Execution stage:
» Operands are fetched from register file.

The 4Kc core consists of the following required logic

« The arithmetic logic unit (ALU) begins the arithmetic blocks as shown iftigure 1 These logic blocks are defined
or logical operation for register-to-register instructions. in the following subsections:
+ Execution Unit

Multiply/Divide Unit (MDU)
System Control Coprocessor (CPO0)

* The ALU calculates the data virtual address for load
and store instructions. .

* The ALU determines whether the branch condition is
true and calculates the virtual branch target address for,

; . Memory Management Unit (MMU)
branch instructions.

» Transition Lookaside Buffer (TLB)

* Instruction logic selects an instruction address.
» Cache Controller

» All multiply and divide operations begin in this stage.
» Bus Interface Control (BIU)

M Stage: Memory Fetch * Power Management

During the memory fetch stage:
e The arithmetic ALU operation completes.

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 3

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Execution Unit The MDU supports execution of one 16x16 or 32x16
multiply operation every clock cycle; 32x32 multiply

The 4Kc core execution unit implements a load/store operations can be issued every other clock cycle.

architecture with single-cycle ALU operations (logical, Appropriate interlocks are implemented to stall the

shift, add, subtract) and an autonomous multiply/divide issuance of back-to-back 32x32 multiply operations. The

unit. The 4Kc core contains thirty-two 32-bit general- multiply operand size is automatically determined by logic

purpose registers used for integer operations and addres$uilt into the MDU.

calculation. The register file consists of two read ports and

one write port and is fully bypassed to minimize operation Divide operations are implemented with a simple 1 bit per

latency in the pipeline. clock iterative algorithm. An early-in detection checks the
sign extension of the dividends) operand. If rs is 8 bits
The execution unit includes: wide, 23 iterations are skipped. For a 16-bit-wide rs, 15

iterations are skipped, and for a 24-bit-wide rs, 7 iterations

» 32-bit adder used for calculating the data address
! 5 Hating are skipped. Any attempt to issue a subsequent MDU

* Address unit for calculating the next instruction instruction while a divide is still active causes an IU
address pipeline stall until the divide operation is completed.

» Logic for branch determination and branch target
address calculation Table 1lists the repeat rate (peak issue rate of cycles until

the operation can be reissued) and latency (hnumber of

cycles until a result is available) for the 4Kc core multiply

» Bypass multiplexers used to avoid stalls when and divide instructions. The approximate latency and
executing instructions streams where data producing repeat rates are listed in terms of pipeline clocks. For a
instructions are followed closely by consumers of their more detailed discussion of latencies and repeat rates, refer
results to Chapter 2 of th#IPS32 4K™ Processor Core Family

Software User's Manual

» Load aligner

e Leading Zero/One detect unit for implementing the

CLZ and CLO instructions Table 1 4Kc Core Integer Multiply/Divide Unit Latencies
 Arithmetic Logic Unit (ALU) for performing bitwise and Repeat Rates

logical operations

* Shifter & Store Aligner Opeode Opg{jgd Lateney R;p;?

(mul rt)

(div rs)
Multiply/Divide Unit (MDU) ;

MULT/MULTU, 16 bits 1 1

The 4_Kc core containg a multiply/divi_de unit (MDU) that mgggmggg& 32 bits 2 2
contains a separate pipeline for multiply and divide
operations. This pipeline operates in parallel with the MUL 16 bits 2 1
integer unit (IU) pipeline and does not stall when the 1U 32 bits 3 >

pipeline stalls. This setup allows long-running MDU
operations, such as a divide, to be partially masked by DIV/DIVU 8 hits 12 11
system stalls and/or other integer unit instructions.

16 bits 19 18
The MDU consists of a 32x16 booth recoded multiplier, 24 bits 26 o5
result/accumulation registers (HI and LO), a divide state
machine, and the necessary multiplexers and control logig. 32 bits 33 32

The first number shown (‘32’ of 32x16) representsrthe
operand. The second number (‘16’ of 32x16) represents th'he MIPS architecture defines that the result of a multiply
rt operand. The 4Kc core only checks the value of the latteror divide operation be placed in the HI and LO registers.
(rt) operand to determine how many times the operation Using the Move-From-HI (MFHI) and Move-From-LO
must pass through the multiplier. The 16x16 and 32x16 (MFLO) instructions, these values can be transferred to the
operations pass through the multiplier once. A 32x32 general-purpose register file.

operation passes through the multiplier twice.

4 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

As an enhancement to the MIPS Il ISA, the 4Kc core Table 2 Coprocessor 0 Registers in Numerical Order
implements an additional multiply instruction, MUL, - - -
which specifies that multiply results be placed in the Reg'sbter Register Function
primary register file instead of the HI/LO register pair. By | """ Name
avoiding the explicit MFLO instruction, required when 8 BadVAdd? | Reports the address for the most
using the LO register, and by supporting multiple recent address-related exception|
destination registers, the throughput of multiply-intensive 2
operations is increased. 9 Coun Processor cycle count.
10 EntryHtt High-order portion of the TLB
Two other instructions, multiply-add (MADD) and entry.
multiply-subtract (MSUB), are used to perform the : :
multiply-accumulate and multiply-subtract operations. The| 11 Comparé | Timer interrupt control.
MADD instruction multiplies two numbers and then adds 12 Statud Processor status and control.
the product to the current contents of the HI and LO
registers. Similarly, the MSUB instruction multiplies two 13 Causé Cause of last general exception.
operands and then subtracts the product from the HI and .
. . 14 EPC Program counter at last exception.
LO registers. The MADD and MSUB operations are g P
commonly used in DSP algorithms. 15 PRId Processor identification and
revision.
System Control Coprocessor (CPO) 16 Config Configuration register.
)]) . 16 Configl Configuration register 1.
Inthe MIPS architecture, CPO is responsible for the virtual .
to-physical address translation and cache protocols, the 17 LLAddr Load linked address.
exceptll.on control sy;tem, the processor’s diagnostics 18 WatchL@ | Low-order watchpoint address.
capability, the operating modes (kernel, user, and debug)
and interrupts enabled or disabled. Configuration 19 WatchH? High-order watchpoint address.
information such as cache size and set associativity is 20-22 | Reserved Reserved
available by accessing the CPO registers, listadlte 2 i '
. . . 23 Debuﬁ Debug control and exception
Table 2 Coprocessor 0 Registers in Numerical Order status.
Register Register Function 24 DEPC Program counter at last debug
Number Name exception.
0 Indext Index into the TLB array. 25-27 Reserved Reserved.
1 Random Randomly generated index into the 28 TagLo/ Low-order portion of cache tag
TLB array. Datalo interface.
2 EntryLoOl Randomly generated index into the 29 Reserved Reserved.
TLB array.
30 ErrorEPG Program counter at last error.
3 EntryLoll Low-order portion of the TLB
entry for odd-numbered virtual 31 DeSavé Debug handler scratchpad register.
pages. 1. Registers used in memory management.
4 Contex? Pointer to page table entry in 2. Registers used in exception processing.
memory. 3. Registers used during debug.
5 PageMas:k Control for variable page sizes in
TLB entries. Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a
6 Wired* Controls the number of fixed variety of sources, including boundary cases in data,
(“wired”) TLB entries. external events, or program errdfable 3shows the
7 Reserved Reserved exception types in order of priority.

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

D

Table 3 4Kc Core Exception Types
Exception Description

Reset Assertion dbl_ColdResetignal.

Soft Reset Assertion @I_Resesignal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by th
assertion of the externBU_DINT
input, or by setting the EjtagBrk bit in
the ECR register.

NMI Assertion ofEB_NMIsignal.

Machine Check

TLB write that conflicts with an
existing entry.

Interrupt

Assertion of unmasked hardware or
software interrupt signal.

Deferred Watch

Deferred Watch (unmasked by K|D)
>|(K|DM) transition).

>

DIB EJTAG debug hardware instruction
break matched.

WATCH A reference to an address in one of th
watch registers (fetch).

AdEL Fetch address alignment error.
Fetch reference to protected address.

TLBL Fetch TLB miss.

TLBL Fetch TLB hit to page with V=0.

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of
SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

RI Execution of a Reserved Instruction.

CpuU Execution of a coprocessor instructig
for a coprocessor that is not enabled

Ov Execution of an arithmetic instruction
that overflowed.

Tr Execution of a trap (when trap
condition is true).

DDBL / DDBS EJTAG Data Address Break (address

only) or EJTAG Data Value Break on
Store (address+value).

Table 3 4Kc Core Exception Types (Continued)

Exception Description

WATCH A reference to an address in one of the
watch registers (data).

AdEL Load address alignment error.
Load reference to protected address

AdES Store address alignment error.
Store to protected address.

TLBL Load TLB miss.

TLBL Load TLB hit to page with V=0.

TLBS Store TLB miss.

TLBS Store TLB hit to page with V=0.

TLB Mod Store to TLB page with D=0.

DBE Load or store bus error.

DDBL EJTAG data hardware breakpoint
matched in load data compare.

Modes of Operation

The 4Kc core supports three modes of operation: user
mode, kernel mode, and debug mode. User mode is most
often used for applications programs. Kernel mode is
typically used for handling exceptions and operating
system kernel functions, including CPO management and I/
O device accesses. An additional Debug mode is used
during system bring-up and software development. Refer to
the EJTAG section for more information on debug mode.

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

When a data address is calculated, the virtual address is

OXFFFFFFFF
Memory Mapped compared to both the 3-entry DTLB and the JTLB. If the
OXEF400000 address is notfound in the DTLB, butis found in the JTLB,
OXFF3FFFFF Kkseas that address is immediately written to the DTLB. If the
0xFF200000 Memory/EJTAGl seg
0 address is not found in the JTLB, a TLB refill exception is
XF1FFFFFF
Memory Mapped taken.
0XE0000000
OXDFFFFFFF [| Virtual address space | yoonn F|gure 4show_s how the ITLB, DTLB, and JTLB are
Mapped, 512 MB implemented in the 4Kc core.
0xC0000000 Instruction
OXBFFFFFFF | Kernel virtual address space Virtual Address Cache
Unmapped, 512 MB kseg1 Tag ?AM
0xA0000000 Uncached Instruction
Address ITLB Comparator
OXOFFFFFFF | el virtual address space Calculator Instruction
Unmapped, 512 MB kseg0 IVA Entry Hit/Miss
0x80000000
OX7FFFFFFF DVA JTLB
Entry Data
l Hit/Miss
Data
Address DTLB | | Comparator
Calculator T
User virtual address space kuseg Virtual Address ggﬁ]e
Mapped, 2048 MB RAM
Figure 4 Address Translation During a Cache Access
Translation Lookaside Buffer (TLB)
0x00000000
1. This space is mapped to memory in user of kernel mode, The TLB consists of three address translation buffers:

and by the EJTAG module in debug mode.
» 16 dual-entry fully associative Joint TLB (JTLB)

» 3-entry fully associative Instruction TLB (ITLB)
» 3-entry fully associative Data TLB (DTLB)

Figure 3 4Kc Core Virtual Address Map

Memory Management Unit (MMU)

_ , Joint TLB (JTLB)
The 4Kc core contains a fully functional MMU that
interfaces between the execution unit and the cache
controller. Although the 4Kc core implements a 32-bit
architecture, the MMU is modeled after that found in the
64-bit R4000 family.

The 4Kc core implements a 16-dual-entry, fully associative
JTLB that maps 32 virtual pages to their corresponding

physical addresses. The JTLB is organized as 16 pairs of
even and odd entries containing pages that range in size

i i ' from 4 Kbytes to 16 Mbytes into the 4-Gbyte physical
The TLB consists of tv'vo'addre'ss translation buffers: a 16z 44ress space. The purpose of the TLB is to translate
dual-entry, fully associative Joint TLB (JTLB) and two 3-

1o) virtual addresses and their corresponding ASIDs into a
gr_'l_tE/é)fu”y associative Instruction/Data TLBs (ITLB/ physical memory address. The translation is performed by

comparing the upper bits of the virtual address (along with
the ASID) against each of the entries intdwgportion of

When an instruction address is calculated, the virtual the joint TLB structure.

address is compared to the contents of the 3-entry ITLB. If
the address is not found in the ITLB, the JTLB is accessed.—rhe JTLB is organized in page pairs to minimize the

If the entry is found in the JTLB, that entry is then written ,erall size. Eaclag entry corresponds to 2 data entries:

into the.ITLB. If t'he gddress is not found in the JTLB, a 5 even page entry and an odd page entry. The highest order
TLB refill exception is taken. virtual address bit not participating in the tag comparison is

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 7

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

used to determine which of the data entries is used. Sincdhe DTLB is managed by hardware and is transparent to
page size can vary on a page-pair basis, the determinaticsoftware. The larger JTLB is used as a backing store for the
of which address bits participate in the comparison and DTLB. The JTLB is looked up in parallel with the DTLB
which bit is used to make the even-odd determination is to minimize the DTLB miss penalty. If the JTLB

decided dynamically during the TLB look-up. translation is successful, the translation information is
copied into the DTLB for future use. There is a one cycle

Instruction TLB (ITLB) DTLB miss penalty.

The ITLB is a small 3-entry, fully associative TLB Virtual-to-Physical Address Translation

dedicated to performing translations for the instruction

stream. The ITLB only maps 4-Kbyte pages/subpages. Convertingavirtual address to a physical address begins by
comparing the virtual address from the processor with the

The ITLB is managed by hardware and is transparent to virtual addresses in the TLB; there is a match when the

software. The larger JTLB is used as a backing store for the/i"tual page number (VPN) of the address is the same as the

ITLB. If a fetch address cannot be translated by the ITLB, VPN field of the entry, and either:

the JTLB is used to attempt to translate it in the followinge The Global G) bit of the TLB entry is set, or

clock cycle. If successful, the translation information is

copied into the ITLB for future use. There is a two cycle

ITLB miss penalty.

e The ASID field of the virtual address is the same as the
ASID field of the TLB entry.

This match is referred to as a TLBt. If there is no match,

Data TLB (DTLB) a TLB missexception is taken by the processor and
) o software is allowed to refill the TLB from a page table of
The DTLB is a small 3-entry, fully associative TLB virtual/physical addresses in memory.
dedicated to performing translations for loads and stores.
The DTLB also only maps 4-Kbyte pages/subpages. Figure 5shows a flow diagram of the address translation
process.

Virtual Address with 1M (22°) 4-Kbyte pages

39 3231 20 bits = 1M pages 12 11 0
ASID | VPN Offset
8 20 12
AN J
Ny, . Y
Virtual-to-physical Offset passed unchanged to
translation in TLB physical memory
Bit 31 of the virtual TLB] _
address selects user and 32-bit Physical Address
kernel address spaces 31 9
| PFN | Offset I
Virtual-to-physical I Offset passed unchanged
translation in TLB to physica| memory
v-JTLB
A
\Yl ™
I'L\
39 3231 24 23 0
ASID VPN Offset
8 8 24

8 bits = 256 pages
Virtual Address with 256 (28)16-Mbyte pages

Figure 5 32-bit Virtual Address Translation

8 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

The top portion ofrigure 5shows a virtual address for a 4- Table 4 Mask and Page Size Values (Continued)
Kbyte page size. The width of ti#fsetin Figure 5is

defined by the page size. The remaining 20 bits of the Pagemask[24:13] Page Size Eve"sloldd Bank
address represent the virtual page number (VPN), and elect Bit
index the 1M-entry page table. 000000111111 256KB VAddr[18]
The bottom portion ofigure 5shows the virtual address 000011111111 imB VAddr{20]
for a 16-Mbyte page size. The remaining 8 bits of the 001111111111 AMB VAddr[22]
address represent the VPN, and index the 256-entry pag

table. 111111111111 16MB VAddr[24]

In this figure, the virtual address is extended with an 8-bitTLB Tag and Data Formats
address space identifier (ASID), which reduces the
frequency of TLB flushing during a context switch. This 8- Figure 6shows the format of a TLBagentry. The entry is
bit ASID contains the number assigned to that process andlivided into the follow fields:
is stored in the CPENtryHi register. « Global process indicator
Hits, Misses, and Multiple Matches * Address space identifier
* Virtual page number
Each JTLB entry contains a tag portion and a data portion., C d K
If a match is found, the upper bits of the virtual address are ompressed page mas
replaced W'.th the page frame number (PFN). s_tored n theSetting the global process indicator (G bit) indicates that
corresponding entry in the data array of the joint TLB . .

. X : i . the entry is global to all processes and/or threads in the
(JTLB). The granularity of JTLB mappings is defined in . . o .

) system. In this case, the 8-bit ASID value is ignored since

terms of TLBpages The 4Kc core’s JTLB supports pages the entry is not relative to a specific thread or process
of different sizes ranging from 4 KB to 16 MB in powers of y P P '

4. The address space identifier (ASID) helps to reduce the

frequency of TLB flushing on a context switch. The
existence of the ASID allows multiple processes to existin
both the TLB and instruction caches. The current ASID
value is stored in thEntryHi register and is compared to
the ASID value of each entrlyigure 6andTable 5show

the TLB tag entry format.

If no match occurs (TLB miss), an exception is taken and
software refills the TLB from the page table resident in

memory. Software can write over a selected TLB entry or
use a hardware mechanism to write into a random entry.

The 4Kc core implements a TLB write compare
mechanism to ensure that multiple TLB matches do not
occur. On the TLB write operation, the write value is G| ASID[7:0] | VPN2[31:25] VPN2[24:13] |CMASK[5:0]
compared with all other entries in the TLB. If a match 1 8 7 12 6
occurs, the 4Kc core takes a machine check exception, sets
the TS bit in the CP8tatusregister, and aborts the write

Figure 6 TLB Tag Entry Format

operation. Table 5 TLB Tag Entry Fields

Table 4shows the address bits used for even/odd bank Field Name Description

selection depending on page size and the relationship - — -
between the legal values in the mask register and the G Global Bit. When set, indicates that this

entryis global to all processes and/or threads

selected page size.
Pag and thus disables inclusion of the ASID ir|

Table 4 Mask and Page Size Values the comparison.
Pagemask[24:13] Page Size Even/Odd Bank ASID[7:0] Address Space ldentifier. Identifies with
Select Bit which process or thread this TLB entry is
associated.

000000000000 4KB VAddr[12]
000000000011 16KB VAddr[14]
000000001111 64KB VAddr[16]

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 9

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Table 5

TLB Tag Entry Fields (Continued)

Table 6 TLB Data Array Entry Fields (Continued)

appropriate VPN2 bits from being involve
comparison. It is also used to determine

)

which address bit is used to make the even-

odd page determination.

Figure 7andTable 6show the TLB data array entry format.

PFN[31:12]

C[2:0] D |V

20

3 1 1

Figure 7 TLB Data Array Entry Format

Table 6 TLB Data Array Entry Fields

per

ts

Field Name Description
PFN[31:12] Physical Frame Number. Defines the up
bits of the physical address. For page siz
larger than 4KB, only a subset of these bi
is actually used.
C[2:0] Cacheability. Contains an encoded valu

of the cacheability attributes and
determines whether the page should be|
placed in the cache or not. The field is
encoded as follows:

CS[2:0] Coherency Attribute

000* Maps to entry 011b.

001* Maps to entry 011b.

010 Uncached

011 Cacheable, noncoherent,
write through, no write
allocate

100* Maps to entry 011b.

101* Maps to entry 011.b

110* Maps to entry 011b.

111% MMAana +A Antns N1 NKL

*Values 2 and 3 are the required MIPS3
mappings for uncached and cacheable
references; other values may have differe

nt

meanings in other MIPS32 processors.

Field Name Description Field Name Description

VPN2[31:25], | Virtual Page Number divided by 2. This field D “Dirty” or write-enable bit. Indicates that

VPN2[24:13] | contains the upper bits of the virtual page the page has been written and/or is
number. Because it represents a pair of TUB writable. If this bit is set, stores to the page
pages, it is divided by 2. Bits 31:25 are are permitted. If the bit is cleared, stores {o
always included in the TLB lookup the page cause a TLB Modified exceptign.
comparison. Bits 24:13 are included — -
depending on the page size. \Y Valid bit. Indicates that the TLB entry, ang

thus the virtual page mapping, are valid. |f

CMASK]5:0] | Compressed page mask value. This field is a this bit is set, accesses to the page are
compressed version of the page mask. It permitted. If the bit is cleared, accesses o
defines the page size by masking the the page cause a TLB Invalid exception

Page Sizes and Replacement Algorithm

To assist in controlling both the amount of mapped space
and the replacement characteristics of various memory
regions, the 4Kc core provides two mechanisms. First, the
page size can be configured, on a per-entry basis, to map a
page size of 4 Kbytes to 16 Mbytes (in multiples of 4). The
CPOPageMaskegister is loaded with the mapping page
size, which is then entered into the TLB when a new entry
is written. Thus, operating systems can provide special
purpose maps. For example, a typical frame buffer can be
memory mapped with only one TLB entry.

The second mechanism controls the replacement algorithm
when a TLB miss occurs. To select a TLB entry to be
written with a new mapping, the 4Kc core provides a
random replacement algorithm. However, the processor
also provides a mechanism where a programmable number
of mappings can be locked into the TLB via W&ed

register, thus avoiding random replacement.

Cache Controllers

The 4Kc core instruction and data cache controllers support
caches of various sizes, organizations, and set-associativity.
For example, the data cache can be 2 Kbytes in size and 2-
way set associative, while the instruction cache can be 8
Kbytes in size and 4-way set associative. Each cache can
each be accessed in a single processor cycle. In addition,
each cache has its own 32-bit data path and both caches can
be accessed in the same pipeline clock cycle. Refer to the
section entitled4Kc Core Optional Logic Blocks" on page

12 for more information on instruction and data cache
organization.

The cache controllers also have built-in support for
replacing one way of the cache with a scratchpad RAM.

10

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

See the section entitledKc Core Optional Logic Blocks" In No Mergemode, writes to a different word within the
on page 12or more information on scratchpad RAMSs. same line are accumulated in the buffer. Writes to the same
word cause the previous word to be driven onto the bus.

Bus Interface (BIU
() In Full Mergemode, all combinations of writes to the same

line are collected in the buffer. Any pattern of byte enables

The Bus Interface Unit (BIU) controls the external : i
is possible.

interface signals. Additionally, it contains the
implementation of the 32-byte collapsing write buffer. The
purpose of this buffer is to store and combine write SimpleBE Mode

transactions before issuing them at the external interface.

Since the 4Kc core caches follow a write-through cache To aid in attaching the 4Kc core to existing busses, there is
policy, the write buffer significantly reduces the number of @ mode that only generates “simple” byte enables. Only
writes transactions on the external interface and reduces theyte enables representing naturally aligned byte, half, and

amount of stalling in the core due to issuance of multiple word transactions will be generated. Legal byte enable
writes in a short period of time. patterns are shown in Table 7. Writes with illegal byte

enable patterns will be broken into two separate write
The write buffer is organized as two 16-byte buffers. Eachtransactions. This splitting is independent of the merge
buffer contains data from a single 16-byte aligned block of pattern control in the write buffer. The only case where a
memory. One buffer contains the data currently being ~ read can generate illegal byte enables is on an uncached tri-
transferred on the external interface, while the other bufferbyte load (LWL/LWR). These reads will be converted into
contains accumulating data from the core. Data from the & word read on the bus.
accumulation buffer is transferred to the external interface

buffer under one of these conditions: Table 7 Valid SimpleBE Byte Enable Patterns
» When a store is attempted from the core to a different EB_BE[3:0]

16-byte block than is currently being accumulated 5001
* SYNC Instruction
 Store to an invalid merge pattern 0010
« Any load or store to uncached memory 0100
* Aload to the line being merged 1000

0011

Note that if the data in the external interface buffer has not
been written out to memory, the core is stalled until the 1100
memory write completes. After completion of the memory
write, accumulated buffer data can be written to the
external interface buffer.

1111

Merge Pattern Control
The 4Kc core implements two 16-byte collapsing write 4Kc Core Reset
buffers that allow byte, halfword, tri-byte, or word writes
from the core to be accumulated in the buffer into a 16-byte
value before bursting the data out onto the bus in word
format. Note that writes to uncached areas are never
merged.

The 4Kc core has two types of reset input signBksseand
ColdReset

The ColdResesignal must be asserted on either a power-
on reset or a cold reset. In a typical application, a power-on
reset occurs when the machine is first turned on. A cold

The 4Kc core provides two options for merge pattern .
P P gep reset (also called a hard reset) typically occurs when the

control: A .
machine is already on and the system is rebooted. A cold
* No merge reset completely initializes the internal state machines of
« Full merge the 4Kc core without saving any state information. The
ResetindColdResesignals work in conjunction with one
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 11

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

another to determine the type of reset operation {sdxe SI_ERL, orEJ_DebugMoutputs. The external agent can
8). look at these signals and determine whether to leave the

low power state to service the exception.
Table 8 4Kc Reset Types

The following 4 power-down signals are part of the system
interface and change state as the corresponding bits in the
0 0 Normal Operation, no reset. CPO registers are set or cleared:

» TheSI_RPsignal represents the state of the RP bit (27)
in the CPO Status register.

» TheSI_EXLsignal represents the state of the EXL bit
(1) in the CPO Status register.

Reset ColdReset Action

1 0 Warm or Soft reset.

X 1 Cold or Hard reset.

TheResesignal is asserted for a warm reset. A warm reset . .
restarts theg4Kc core and preserves more of the processor's The_SI_ERLS|gnaI repreS(_ants the state of the ERL bit
internal state than a cold reset. Resetignal can be (2) in the CPO Status register.

asserted synchronously or asynchronously during a cold « The EJ_DebugMsignal represents the state of the DM
reset, or synchronously to initiate a warm reset. The bit (30) in the CPO Debug register.

assertion oResetauses a soft reset exception within the

4Kc core. In debug mode, EJTAG can request that the sofjstryction-Controlled Power Management

reset function be masked. It is system dependent whether

this functionality is supported. In normal mode, the soft The second mechanism for invoking power-down mode is

reset cannot be masked. through execution of the WAIT instruction. When the
WAIT instruction is executed, the internal clock is
suspended. However, the internal timer and some of the

Power Management input pins §1_Int[5:0], SI_NM|, SI_Resetand
S|_ColdResgftcontinue to run. Once the CPU is in

The 4Kc core offers a number of power management ?nstruction—controlled power management mode, any '

features, including low-power design, active power m'Ferrupt, NMI, or reset condition causes the CPU to exit

management, and power-down modes of operation. The this mode and resume normal operation.

4Kc core is a static design that supports slowing or halting . o
the clocks, which reduces system power consumption 1 he 4Kc core asserts ttg8_SLEERSignal, which is partof -
during idle periods. the system interface bus, whenever the WAIT instruction is

executed. The assertion ®F_SLEEHndicates that the

The 4Kc core provides two mechanisms for system-level €10k has stopped and the 4Kc core is waiting for an
low power support: Interrupt.

» Register-controlled power management
* Instruction-controlled power management

4Kc Core Optional Logic Blocks

Register-Controlled Power Management The 4Kc core consists of the following optional logic

. . . blocks as shown in the block diagranfigure 1
The RP bit in the CP0 Status register provides a software

mechanism for placing the system into a low power state.
The state of the RP bit is available externally via®#ieRP |nstruction Cache
signal. The external agent then decides whether to place the

device in low power mode, such as by reducing the systemrhe instruction cache is an optional on-chip memory block

clock frequency. of up to 16 Kbytes. Because the instruction cache is
virtually indexed, the virtual-to-physical address

Three additional bits, Statgg| , Statugg, and Debugly translation occurs in parallel with the cache access rather

support the power management function by allowing the than having to wait for the physical address translation. The

user to change the power state if an exception or error tag holds 22 bits of physical address, 4 valid bits, a lock bit,
occurs while the 4Kc core is in a low power state. and the fill replacement bit.

Depending on what type of exception is taken, one of these
three bits will be asserted and reflected orsthé&XL,

12 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

The instruction cache block also contains and manages th
instruction line fill buffer. Besides accumulating data to be
written to the cache, instruction fetches that reference dat

e
Table 9 4Kc Core Instruction and Data Cache Attributes

1

in the line fill buffer are serviced either by a bypass of that Parameter instruction Pata
data, or data coming from the external interface. The Size 0 - 16 Kbytes 0 - 16 Kbytes
mstru_ctlon cache control logic controls the bypass Organization 1- 4 way set 1- 4 way set
function. o 2
associative associative
The core supports instruction-cache locking. Cache Line Size 16 bytes 16 bytes
locking allows critical code or data segments to be lockeg - - -
into the cache on a “per-line” basis, enabling the system | Read Unit 32 bits 32 bits
programmer to maximize the efficiency of the system Write Policy na write-through
cache. without write-
allocate
The cache-locking function is always available on all - - -
instruction-cache entries. Entries can then be marked as {\r/';z]f;fg’;" after | miss word miss word
locked or unlocked on a per entry basis using the CACHE
instruction. Cache Locking per line per line
Data Cache

Cache Protocols

The data cache is an optional on-chip memory block of UpThe 4Kc core supports the following cache protocols:

to 16 Kbytes. This virtually indexed, physically tagged
cache is protected. Because the data cache is virtually

indexed, the virtual-to-physical address translation occurs
in parallel with the cache access. The tag holds 22 bits of

physical address, 4 valid bits, a lock bit, and the fill
replacement bit.

In addition to instruction-cache locking, the 4Kc core also

supports a data-cache locking mechanism identical to the
instruction cache. Critical data segments are locked into the

cache on a “per-line” basis. The locked contents can be
updated on a store hit, but cannot be selected for
replacement on a cache miss.

The cache-locking function is always available on all data
cache entries. Entries can then be marked as locked or
unlocked on a per-entry basis using the CACHE
instruction.

Cache Memory Configuration

The 4Kc core incorporates on-chip instruction and data
caches that can each be accessed in a single processor

cycle. Each cache has its own 32-bit data path and can b

accessed in the same pipeline clock cy@hhle 9lists the
4Kc core instruction and data cache attributes.

» Uncached:Addresses in a memory area indicated as
uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without
changing cache contents.

Write-through: Loads and instruction fetches first
search the cache, reading main memory only if the
desired data does not reside in the cache. On data store
operations, the cache is first searched to see if the
target address is cache resident. If it is resident, the
cache contents are updated, and main memory is also
written. If the cache look-up misses, only main

memory is written.

Scratchpad RAM

The 4Kc core also supports replacing up to one way of each
cache with a scratchpad RAM. The scratchpad RAM is
user-defined and can consist of a variety of devices. The
main requirement is that it must be accessible with timing
similar to a regular cache RAM. This means that an index
will be driven one cycle, a tag will be driven the following
clock, and the scratchpad must return a hit signal and the
fata in the second clock. The scratchpad can thus easily
contain a large RAM/ROM or memory-mapped registers.

The core’s interface to a scratchpad RAM is slightly
different than to a regular cache RAM. Additional index
bits allow access to a larger array, 1MB of scratchpad RAM

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

13

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

versus 4KB for a cache way. These bits come from the To exit debug mode, a Debug Exception Return (DERET)
virtual address, so on a 4Kc core care must be taken to instruction is executed. When this instruction is executed,
avoid virtual aliasing.The core does not automatically refill the system exits debug mode, allowing normal execution of
the scratchpad way and will not select it for replacement onapplication and system code to resume.

cache misses. Additionally, stores that hit in the scratchpad

will not generate write-throughs to main memory. EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the EJTAG specification. These stop the normal
, , operation of the CPU and force the system into debug
The 4Kc core provides for an optional Enhanced JTAG i q4e. There are two types of simple hardware breakpoints

(EJTAG) interface for use in the software debug of implemented in the 4Kc core: Instruction breakpoints and
application and kernel code. In addition to standard user Data breakpoints.

mode and kernel modes of operation, the 4Kc core provides
a Debug mode that is entered after a debug exception
(derived from a hardware breakpoint, single-step
exception, etc.) is taken and continues until a debug
exception return (DERET) instruction is executed. During
this time, the processor executes the debug exception « One data and two instruction breakpoints
handler routine.

EJTAG Debug Support

The 4Kc core can be configured with the following
breakpoint options:

» No data or instruction breakpoints

» Two data and four instruction breakpoints

Refer to the section callédKc Core Signal Descriptions"

. . 7) Instruction breaks occur on instruction fetch operations,
on page 19or a list of signals EJTAG interface signals. b

and the break is set on the virtual address on the bus
between the CPU and the instruction cache. Instruction
rlSreaks can also be made on the ASID value used by the
MMU. Finally, a mask can be applied to the virtual address
to set breakpoints on a range of instructions.

The EJTAG interface operates through the Test Access Po
(TAP), a serial communication port used for transferring
test data in and out of the 4Kc core. In addition to the
standard JTAG instructions, special instructions defined in
the EJTAG specification define what registers are selecte

(bata breakpoints occur on load/store transactions.
and how they are used.

Breakpoints are set on virtual address and ASID values,
similar to the Instruction breakpoint. Data breakpoints can
Debug Registers be set on aload, a store, or both. Data breakpoints can also
be set based on the value of the load/store operation.

Three debug registers (DEBUG, DEPC, and DESAVE) Finally, masks can be applied to both the virtual address
have been added to the MIPS Coprocessor 0 (CPO) registe{nd the load/store value.

set. The DEBUG register shows the cause of the debug
exception and is used for the setting up of single-step
operations. The DEPC, or Debug Exception Program
Counter, register holds the address on which the debug
exception was taken. This is used to resume program
execution after the debug operation finishes. Finally, the The 4Kc core instruction set complies with the MIPS32
DESAVE, or Debug Exception Save, register enables the instruction set architectur@able 10provides a summary
saving of general-purpose registers used during executioff instructions implemented by the 4Kc core.

of the debug exception handler.

4Kc Core Instructions

Table 10 4Kc Core Instruction Set

Instruction Description Function
ADD Integer Add Rd = Rs + Rt
ADDI Integer Add Immediate Rt = Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt=Rs+ Immed
ADDU Unsigned Integer Add Rd=Rs+ (Rt
14 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Table 10 4Kc Core Instruction Set (Continued)

Instruction

Description

Function

AND

Logical AND

Rd =Rs & Rt

ANDI

Logical AND Immediate

Rt=Rs & (0 15 || Immed)

BEQ

Branch On Equal

if Rs == Rt
PC += (int)offset

BEQL

Branch On Equal Likely

if Rs == Rt
PC += (int)offset
else
Ignore Next Instruction

BGEZ

Branch on Greater Than or Equal To Zero

if IRS[31]
PC += (int)offset

BGEZAL

Branch on Greater Than or Equal To Zero Ar
Link

dGPR[31]=PC +8
if IRs[31]
PC += (int)offset

BGEZALL

Branch on Greater Than or Equal To Zero An
Link Likely

dGPR[31]=PC +8
if IRs[31]
PC += (int)offset
else
Ignore Next Instruction

BGEZL

Branch on Greater Than or Equal To Zero
Likely

if IRs[31]
PC += (int)offset
else
Ignore Next Instruction

BGTZ

Branch on Greater Than Zero

if IRs[31] && Rs =0
PC += (int)offset

BGTZL

Branch on Greater Than Zero Likely

if IRs[31] && Rs =0
PC += (int)offset

else
Ignore Next Instruction

BLEZ

Branch on Less Than or Equal to Zero

if Rs[31] || Rs ==
PC += (int)offset

BLEZL

Branch on Less Than or Equal to Zero Likel

if Rs[31] || Rs==0
PC += (int)offset
else
Ignore Next Instruction

BLTZ

Branch on Less Than Zero

if Rs[31]
PC += (int)offset

BLTZAL

Branch on Less Than Zero And Link

GPR[31]=PC+38
if Rs[31]
PC += (int)offset

BLTZALL

Branch on Less Than Zero And Link Likely

GPR[31]=PC +8
if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BLTZL

Branch on Less Than Zero Likely

if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

15

Table 10 4Kc Core Instruction Set (Continued)

Instruction Description Function
BNE Branch on Not Equal if Rs 1= Rt
PC += (int)offset
BNEL Branch on Not Equal Likely if Rs I= Rt
PC += (int)offset
else
Ignore Next Instruction
BREAK Breakpoint Break Exception
CACHE Cache Operation See Software User's Manual
COPO Coprocessor 0 Operation See Software User's Manual
CLO Count Leading Ones Rd = NumLeadingOnes(Rs)
CLzZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)
DERET Return from Debug Exception PC = DEPC
Exit Debug Mode
DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt
DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt
ERET Return from Exception if SR[2]
PC = ErrorEPC
else
PC = EPC
SR[1]=0
SR[2]=0
LL=0
J Unconditional Jump PC = PC[31:28] || offset<<2
JAL Jump and Link GPR[31]=PC+8
PC = PCJ[31:28] || offset<<2
JALR Jump and Link Register Rd=PC+8
PC =Rs
JR Jump Register PC =Rs
LB Load Byte Rt = (byte)Mem[Rs+offset]
LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]
LH Load Halfword Rt = (half)Mem[Rs+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]
LL Load Linked Word Rt = Mem[Rs+offset]
LL=1
LLAdr = Rs + offset
LUI Load Upper Immediate Rt = immediate << 16
Lw Load Word Rt = Mem[Rs+offset]
LWL Load Word Left See Software User’'s Manual

16

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Table 10 4Kc Core Instruction Set (Continued)

Instruction Description Function
LWR Load Word Right See Software User's Manual
MADD Multiply-Add HI | LO += (int)Rs * (int)Rt
MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt
MFCO Move From Coprocessor 0 Rt = CPRJ[O, n, sel] = Rt
MFEHI Move From HI Rd =HI
MFLO Move From LO Rd =LO
MOVN Move Conditional on Not Zero if Rt ~ #0then
Rd =Rs
MOvVZ Move Conditional on Zero if Rt = 0 then
Rd = Rs
MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt
MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt
MTCO Move To Coprocessor 0 CPR[0, n, SEL] =Rt
MTHI Move To HI HI =Rs
MTLO Move To LO LO=Rs
MUL Multiply with register write HI | LO =Unpredictable
Rd = ((int)Rs *
(inhRY 31,0
MULT Integer Multiply HI | LO = (in)Rs * (int)Rd
MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd
NOR Logical NOR Rd = ~(Rs | Rt)
OR Logical OR Rd =Rs | Rt
ORI Logical OR Immediate Rt =Rs | Immed
PREF Prefetch Load Specified Line into Cache
SB Store Byte (byte)Mem[Rs+offset] = Rt
SC Store Conditional Word ifLL=1
mem[Rs+offset] = Rt
Rt=LL
SDBBP Software Debug Break Point Trap to SW Debug Handler
SH Store Half (halffMem[Rs+offset] = Rt
SLL Shift Left Logical Rd =Rt<<sa
SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]
SLT Set on Less Than if (int)Rs < (int)Rt
Rd=1
else
Rd=0

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc.

All right reserved.

17

Table 10 4Kc Core Instruction Set (Continued)

Instruction Description Function
SLTI Set on Less Than Immediate if (int)Rs < (int)immed
Rt=1
else
Rt=0
SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)immed
Rt=1
else
Rt=0
SLTU Set on Less Than Unsigned if (uns)Rs < (uns)immed
Rd=1
else
Rd=0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]
SSNOP Superscalar Inhibit No Operation NOP
SuUB Integer Subtract Rt = (int)Rs - (int)Rd
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
sSwW Store Word Mem[Rs+offset] = Rt
SWL Store Word Left See Software User’'s Manual
SWR Store Word Right See Software User's Manual
SYNC Synchronize See Software User's Manual
SYSCALL System Call SystemCallException
TEQ Trap if Equal if Rs == Rt
TrapException
TEQI Trap if Equal Immediate if Rs == (int)lmmed
TrapException
TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException
TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)immed
TrapException
TGEIU Trap if Greater Than or Equal Immediate if (uns)Rs >= (uns)immed
Unsigned TrapException
TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException
TLBWI Write Indexed TLB Entry See Software Users Manual
TLBWR Write Random TLB Entry See Software Users Manual
TLBP Probe TLB for Matching Entry See Software Users Manual

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Table 10 4Kc Core Instruction Set (Continued)

Instruction Description Function

TLBR Read Index for TLB Entry See Software Users Manual

TLT Trap if Less Than if (int)Rs < (int)Rt
TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)immed
TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)immed
TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException

TNE Trap if Not Equal if Rs I= Rt
TrapException

TNEI Trap if Not Equal Immediate if Rs = (int)immed
TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

XOR Exclusive OR Rd =Rs "Rt

XORI Exclusive OR Immediate Rt = Rs ~ (uns)immed

4Kc Core Signal Descriptions

in Table 11below.

This section describes the signal interface of the 4Kc

microprocessor core.

Table 11 4Kc Core Signal Direction Key

The pin direction key for the signal descriptions is shown

Description

I Input to the 4Kc core sampled on the rising edge of the appropriate CLK signal.

Output of the 4Kc core, unless otherwise noted, driven at the rising edge of the appropriate CLK

signal.

@]
A Asynchronous inputs that are synchronized by the core.
S

Static input to the 4Kc core. These signals are normally tied to either power or ground and shquld not
change state whil8l_ColdReses deasserted.

The 4Kc core signals are listedTable 12below. Note that

EJ_TRST_Nare active-high signal&J_DINTand

the signals are grouped by logical function, not by expectedSI_NMI go through edge-detection logic so that only one
physical location. All signals, with the exception of exception is taken each time they are asserted.

Table 12 4Kc Signal Descriptions

Signal Name | Type | Description
System Interface
Clock Signals:
SI_CIkIn | Clock Input. All inputs and outputs, except a few of the EJTAG signals, are sampled and/or
asserted relative to the rising edge of this signal.
MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 19

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Table 12 4Kc Signal Descriptions

Signal Name Type Description

SI_ClkOut (0] Reference Clock for the External Bus Interface. This clock signal provides a reference for
deskewing any clock insertion delay created by the internal clock buffering in the core.

Reset Signals:

SI_ColdReset A Hard/Cold Reset Signal. Causes a Reset Exception in the core.

SI_NMI A Non-Maskable Interrupt. An edge detect is used on this signal. When this signal is sampled
asserted (high) one clock after being sampled deasserted, an NMI is posted to the corg.

SI_Reset A Soft/Warm Reset Signal. Causes a SoftReset Exception in the core.

Power Management Signals:

SI_ERL o This signal represents the state of the ERL bit (2) in the CPO Status register and indicates the
error level. The core asse®_ERLwhenever a Reset, Soft Reset, or NMI exception is taken.

SI_EXL o This signal represents the state of the EXL bit (1) in the CPO Status register and indicates the
exception level. The core asseBis EXLwhenever any exception other than a Reset, Soff
Reset, NMI, or Debug exception is taken.

SI_RP O This signal represents the state of the RP bit (27) in the CPO Status register. Software can write
this bit to indicate that the device can enter a reduced power mode.

SI_SLEEP (0] This signal is asserted by the core whenever the WAIT instruction is executed. The assertion of
this signal indicates that the clock has stopped and that the core is waiting for an interfupt.

Interrupt Signals:

SI_Int[5:0] A Active-high Interrupt Pins. These signals are driven by external logic and, when asserted,
indicate the corresponding interrupt exception to the core. These signals go through
synchronization logic and can be asserted asynchronouSly @kin

SI_Timerint o This signal is asserted whenever the Count and Compare registers match and is deagserted
when the Compare register is written. In order to have timer interrupts, this signal needq to be
brought back into the 4K core on one of th&8b Intinterrupt pins. Traditionally, this has beep
accomplished via muxingl_TimerlIntwith SI_Int[5]. ExposingSI_TimerIntas an output
allows more flexibility for the system designer. Timer interrupts can be muxed or ORed|into

one of the interrupts, as desired in a particular system. In a complex system, it could eyen be
fed into a priority encoder to allo®i_Int[5:0] to map up to 63 interrupt sources.

Configuration Inputs:

SI_Endian S Indicates the base endianess of the core.

EB_Endian Base Endian Mode
0 Little Endian
1 Big Endian

20 MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Table 12 4Kc Signal Descriptions

Signal Name Type Description
SI_MergeMode[1:0] S The state of these signals determines the merge mode for the 16-byte collapsing write buffer.
Encoding Merge Mode

00, No Merge
01, Reserved
10, Full Merge
11, Reserved

S|_SimpleBE[1:0] S The state of these signals can constrain the core to only generate certain byte enablesjon EC™

interface transactions. This eases connection to some existing bus standards.

SI_SimpleBE[1:0] Byte Enable Mode
00, All BEs allowed
0L, Naturally aligned bytes, half-
words, and words only
10, Reserved
11, Reserved
External Bus Interface
EB_ARdy Indicates whether the target is ready for a new address. The core will not complete the gddress

phase of a new bus transaction until the clock cycle BBerARdyis sampled asserted.

EB_Avalid @) When asserted, indicates that the values on the address bus and access types lines afe valid,
signifying the beginning of a new bus transacti®B. AvValidmust always be valid.

EB_Instr o When asserted, indicates that the transaction is an instruction fetch versus a data refgrence.
EB_lInstris only valid wherEB_AValidis asserted.

EB_Write (@) When asserted, indicates that the current transaction is a write. This signal is only valid when
EB_AValidis asserted.

EB_Burst 0] When asserted, indicates that the current transaction is part of a cache fill or a write burgt. Note
that there is redundant information containe&B Burst EB_BFirst EB_BLastand
EB_BLenThis is done to simplify the system design—the information can be used in whatever
form is easiest.

EB_BFirst @) When asserted, indicates the beginning of the BEilBsBFirstis always valid.
EB_BLast (0] When asserted, indicates the end of the lEiBsBLasts always valid.
EB_BLen<1:0> (0] Indicates the length of the burst. This signal is only valid &BeAValidis asserted.
EB_BLength<1:0> Burst Length
0 reserved
1 4
2 reserved
3 reserved
EB_SBlock Sl When sampled asserted, sub-block ordering is used. When sampled deasserted, seqiential

addressing is used.

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 21

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Table 12 4Kc Signal Descriptions

Signal Name

Type

Description

EB_BE<3:0>

Indicates which bytes of tBB_RDataor EB_WDatabuses are involved in the current
transaction. If aB_BEsignal is asserted, the associated byte is being read or wHiBeBE
lines are only valid whil&B_AValidis asserted.

Read Data Bits
Sampled

Write Data Bits
Driven Valid

EB_BE
Signal

EB_BE<0>

EB_RData<7:0>

EB_WbData<7:0>

EB_BE<1>

EB_RData<15:8>

EB_WData<15:8>

EB_BE<2>

EB_RData<23:16>

EB_WData<23:163

EB_BE<3> EB_RData<31:24>

EB_WnData<31:24>»

EB_A<35:2>

Address lines for external bus. Only valid whn AValidis assertedeEB_A[35:32] are tied
to O in this core.

EB_WData<31:0>

Output data for writes.

EB_RData<31:0>

Input Data for reads.

EB_RdVal

Indicates that the target is driving read dat&BnRDatadines.EB_RdValmust always be
valid. EB_RdValmay never be sampled asserted until the rising edge after the correspo
EB_ARdywas sampled asserted.

nding

EB_WDRdy

Indicates that the target of a write is ready. Ef&e WDatdines can change in the next cloc
cycle.EB_WDRdwill not be sampled until the rising edge where the corresponaBigARdy
is sampled asserted.

EB_RBErr

Bus error indicator for read transactioBB._RBEriis sampled on every rising clock edge unti

an active sampling dEB_RdValEB_RBErrsampled with assertdeB_RdVaindicates a bus
error during readEB_RBErrmust be deasserted in idle phases.

EB_WBEIrr

Bus error indicator for write transactioB88_WBErris sampled on the rising clock edge
following an active sample &B_WDRdAyEB_WBErrmust be deasserted in idle phases.

EB_EWBE

Indicates that any external write buffers are empty. The external write buffers must ded
EB_EWRBEN the cycle after the correspondiB_WDRdyis asserted and ke&B_EWBE
deasserted until the external write buffers are empty.

ssert

EB_WWBE

When asserted, indicates that the core is waiting for external write buffers to empty.

EJTAG Interface

TAP interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core doe
implement the TAP controller.

5 not

EJ_TRST_N | Active-low Test Reset Input (TRST*) for the EJTAG TAP. At power-up, the assertion of
EJ TRST_ Mauses the TAP controller to be reset.

EJ_TCK I Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS I Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TDI I Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO (0] Test Data Output (TDO) for the EJTAG TAP.

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Table 12 4Kc Signal Descriptions

te core

power

Signal Name Type Description
EJ_TDOzstate (0] Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state
0: The TDO output at chip level must be driven to the vali&loffDO
IEEE Standard 1149.1-1990 defines TDO as a 3-stated signal. To avoid having a 3-sta
output, the 4K core outputs this signal to drive an external 3-state buffer.

Debug Interrupt:

EJ_DINTsup S Value of DINTsup for the Implementation register. A 1 on this signal indicates that the EJTAG
probe can use the DINT signal to interrupt the processor.

EJ_DINT Debug exception request when this signal is asserted in a CPU clock period after being
deasserted in the previous CPU clock period. The request is cleared when debug modg is
entered. Requests when in debug mode are ignored.

Debug Mode Indication:

EJ_DebugM (0] Asserted when the core is in Debug Mode. This can be used to bring the core out of a low
mode. In systems with multiple processor cores, this signal can be used to synchronizg¢ the
cores when debugging.

Device ID bits:

These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not implemented,|these
inputs are not connected. These inputs are always available for soft core customers. On hard cores, the core “hardener” cdn set these
inputs to their own values.

EJ_ManuflD[10:0] S Value of the ManuflD[10:0] field in the Device ID register. As per IEEE 1149.1-1990 segtion
11.2, the manufacturer identity code shall be a compressed form of JEDEC standard
manufacturer’s identification code in the JEDEC Publications 106, which can be found [at:
http://www.jedec.org/

ManuflD[6:0] bits are derived from the last byte of the JEDEC code by discarding the gdarity
bit. ManuflD[10:7] bits provide a binary count of the number of bytes in the JEDEC code|that
contain the continuation character (Ox7F). Where the number of continuations characters
exceeds 15, these 4 bits contain the modulo-16 count of the number of continuation chafacters.

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0] S Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs:

These signals come from EJTAG control registers. They have no effect on the core, but can be used to give EJTAG debligging

software additional control over the system.

EJ_SRstE (0] Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft resets. If this signal
is deasserted, none, some, or all soft reset sources are masked.

EJ_PerRst (0] Peripheral Reset. EJTAG can assert this signal to request the reset of some or all of the
peripheral devices in the system.

EJ_PrRst (0] Processor Reset. EJTAG can assert this signal to request that the core be reset. This gan be fed
into theSI_Resesignal.

Performance Monitoring Interface

These signals can be used to implement performance counters, which can be used to monitor hardware/software performance.

PM_DCacheHit (0] This signal is asserted whenever there is a data cache hit.

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 23

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Table 12 4Kc Signal Descriptions

Signal Name Type Description
PM_DCacheMiss (0] This signal is asserted whenever there is a data-cache miss.
PM_DTLBHit (0] This signal is asserted whenever there is a hit in the data TLB.
PM_DTLBMiss @) This signal is asserted whenever there is a miss in the data TLB.
PM_ICacheHit (0] This signal is asserted whenever there is an instruction-cache hit.
PM_ICacheMiss (0] This signal is asserted whenever there is an instruction-cache miss.
PM_InstComplete (0] This signal is asserted each time an instruction completes in the pipeline.
PM_ITLBHit (0] This signal is asserted whenever there is an instruction TLB hit.
PM_ITLBMiss o This signal is asserted whenever there is an instruction TLB miss.
PM_JTLBHit @) This signal is asserted whenever there is a joint TLB hit.
PM_JTLBMiss o This signal is asserted whenever there is a joint TLB miss.
PM_WTBMerge (0] This signal is asserted whenever there is a successful merge in the write-through buffer.
PM_WTBNoMerge (0]

This signal is asserted whenever a non-merging store is written to the write-through bffer.

Scan Test Interface

These signals provide the interface for testing the core. The use and configuration of these pins are implementation-dependent.

ScanEnable | This signal should be asserted while scanning vectors into or out of the cd@@eaiiBeable
signal must be deasserted during normal operation and during capture clocks in test mode.
ScanMode | This signal should be asserted during all scan testing both while scanning and during|capture
clocks. TheScanModesignal must be deasserted during normal operation.
Scanln<n:0> I This signal is input to the scan chain.

ScanOut<n:0> O This signal is output from the scan chain.
Bistin<n:0> | Input to the BIST controller.
BistOut<n:0> (0] Output from the BIST controller.
4Kc Core Bus Transactions and byte enable information orfe®3_BE[3:0]. To

maximize performance, the EC interface does not define a

The 4Kc core implements the EC™ interface for its bus Maximum number of outstanding bus cycles. Instead it
transactions. This interface uses a pipelined, in-order ~ Provides th&B_ARdynput signal. This signal is driven by
protocol with independent address, read data, and write €Xternal logic and controls the generation of addresses on
data buses. The following subsections describe the four the bus.

basic bus transactions: single read, single write, burst read,

and burst write.

Single Read

In the core, the address is driven whenever it becomes
available, regardless of the statde® ARdyHowever, the
core always continues to drive the address until the clock
afterEB_ARdyis sampled asserted. For example, at the
rising edge of the clock 2 iRigure § theEB_ARdysignal

Figure 8shows the basic timing relationships of signals is sampled low, indicating that external logic is not ready to
during a simple read transaction. During a single read ~ accept the new address. However, the 4Kc core still drives
cycle, the 4Kc core drives the address difBo A[35:2] EB_A[35:2]in this clock as shown. On the rising edge of

24

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

clock 3, the 4Kc core sampl&®8_ARdyasserted and Clock #] 21 3 4 5 6 . s

continues to drive the address until the rising edge of clock
gedd 0= 1 1 O o 6 e I

4- Ly Address and Caontrol held Until clock after EB_ARdy sampled asserted

777> Addr
EB_ARdy ai \
Clock # 1 2

3
o [1L LML LML LML ssaesa X NI TTTTTTITT
., 777>\A g{/77_ iA\ddre s and Control held uhtil clock ajter EB_ARdy sampled asserted £5. wiie MZL/ //// /// /// /// ////
8 apssz) J7777X__ TITTITTTITTIITTIIT. e LI e X Ty

£5etea //11IX__ e // [TV esavaid |/

Data is Dyiven until ¢lock after EB_WDRa)

4 5 6 7 8

EB_Avalid] > Driven by system logi¢ EB_WDa[a[.?l:[ZZZ Valid /m //// //// ////
/ Driven by system logi
EB_RData[31:0] Vhiid B WDR /——\ ——)y system logic
[T /»/(E_\:?/W [T dy \\(
EB_RdVval y EB_WBET Va
EB_RBErr /_ _\

Figure 9 Single Write Transaction Timing Diagram

eswie ///], N\ 17T TTTTTT77
Figure 8 Single Read Transaction Timing Diagram Burst Read

TheEB_Instrsignal is only asserted during a single read The 4Kc core is capable of generating burst transactions on
Cyc|e if there is an instruction fetch from non-cacheable the bus. A burst transaction is used to transfer multlple data

memory space. THEB_AValidsignal is driven in each items in one transaction.
clock thatEB_A[35:2]is valid on the bus. The 4Kc core

drivesEB_Writelow to indicate a read transaction. Clock# Lpap s 4psp 8078

G I I I I
TheEB_RData[31:0]andEB_RdValsignals are first

Addr
sampled on the rising edge of clock 4, one clock after esny) XU | XDt/ ‘\V/ \
EB_ARdyis sampled asserted. Data is sampled on every es assz /777X a1 X adz A\ X X7 7T77777177777

clock thereafter untiEB_RdValis sampled asserted. \

EB instr [/]] valid \ // /// ////
If a bus error occurs dgring the data transaction, external £8 BEE0] 77777777
logic assert€B_RBErrin the same clock &B_RdVal

EB_Burst /
Single Write FB-BFet /N

EB_Blast
Figure 9shows a typical write transaction. The 4Kc core
drives address and control information onto the EB_AValid /
EB_A[35:2]andEB_BE[3:0]signals on the rising edge of

en by system logic

clock 2. As in the single read cycle, these signals remain - 4//I////. /7K X (7 =N /II11]]
active until the clock edge after te®_ARdysignal is EB_Raval e /TNl |
sampled asserted. The 4Kc core assertEBaNrite
signal to indicate that a valid write cycle is on the bus and #-F%" VAR/ARN \
EB_AValidto indicate that valid address is on the bus. ‘

- eswie ///] T

The 4Kc core drives write data orfE®_\WData[31:0]in
the same clock as the address and continues to drive data Figure 10 Burst Read Transaction Timing Diagram
until the clock edge after tHeB_ WDRdysignal is sampled

asserted. If a bus error occurs during a write operation, Figure 10shows an example of a burst read transaction.
external logic asserts tHeB_WBETrrsignal one clock after Burst read transactions initiated by the 4Kc core always
assertingeB_WDRdy

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07 25

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

contain four data transfers in a sequence determined by thiogic assert€B_RdValo indicate that valid data is on the

critical word (the address that caused the miss) and

bus. The 4Kc core latches data internally whenever

EB_SBlockIn addition, the data requested is always a 16EB_RValis sampled asserted.

byte aligned block.

The order of words within this 16-byte block varies
depending on which of the words in the block is being

Note that on the rising edge of clocks 3 and &-igure 10
theEB_RdValignal is sampled deasserted, causing wait
states in the data return. There is also an address wait state

requested by the execution unit and the ordering protocolcaused b¥eB_ARdypeing sampled deasserted on the rising
selected. The burst always starts with the word requestededge of clock 4. Note that the core holds address 3 on the
by the execution unit and proceeds in either an ascendindEB_Abus for an extra clock because of this wait state.

or descending address order, wrapping when the block
boundary is reachedable 13andTable 14show the
sequence of address bits 2 and 3.

Table 13 Sequential Ordering Protocols

Starting Address Address Progression
EB_A[3:2] of EB_A[3:2]

00 00, 01, 10, 11

01 01, 10, 11, 00

10 10, 11, 00, 01

11 11, 00, 01, 10

Table 14 Sub-Block Ordering Protocols
Starting Address Address Progression
EB_A[3:2] of EB_A[3:2]
00 00, 01, 10, 11
01 01, 00, 11, 10
10 10, 11, 00, 01
11 11, 10, 01, 00

The core drives address and control information onto the

EB_A[35:2]andEB_BE[3:0]signals on the rising edge of
clock 2. As in the single read cycle, these signals remain
active until the clock edge after te®8_ARdysignal is
sampled asserted. The 4Kc core continues to drive
EB_AValidas long as a valid address is on the bus.

TheEB_Instrsignal is asserted if the burst read is for an
instruction fetch. Th&B_Burstsignal is asserted while the

External logic asserts tieB_RBErrsignal in the same
clock as data if a bus error occurs during that data transfer.

Burst Write

Burst write transactions are used to empty one of the write
buffers. A burst write transaction is only performed if the
write buffer contains 16 bytes of data associated with the
same aligned memory block, otherwise individual write
transactions are performdeigure 11shows a timing
diagram of a burst write transaction. Unlike the read burst,
a write burst always begins wieB_A[3:2] equal to 00b.

Clock # 1 2 3 4 5 6 7 8

S 1 I A I I O
oy /T RULIIIITIIIIT
ee w552 777N X e W N LTI LTI
ew ses) 777777 2T
e 777777 DRI
oo |/ \

—\ \ st
conms \ /

£8_ Woatafs1:gf /] D;al ;(he j)l(f’a‘“ %&/// /1]
ee.wor QY77 T U I
ea e Yan N IWAR /AR /4R

address is on the bus to indicate that the current address is Figure 11 Burst Write Transaction Timing Diagram

part of a burst transaction. The 4Kc core asserts the
EB_BFirstsignal in the same clock as the first address is
driven and th&B_BLassignal in the same clock as the last
address to indicate the start and end of a burst cycle.

The 4Kc core first samples tB8_RData[31:0]signals
two clocks afteEB_ARDyis sampled asserted. External

The 4Kc core drives address and control information onto
theEB_A[35:2]andEB_BE[3:0]signals on the rising edge
of clock 2. As in the single read cycle, these signals remain
active until the clock edge after te®_ARdysignal is
sampled asserted. The 4Kc core continues to drive
EB_AValidas long as a valid address is on the bus.

26

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

The 4Kc core asserts tB#8_Write EB_Burst and
EB_AValidsignals during the time the address is driven.
EB_Writeindicates that a write operation is in progress.
The assertion dEB_Burstindicates that the current
operation is a bursEB_AValidindicates that valid address
is on the bus.

The 4Kc core asserts tB8_BFirstsignal in the same

clock as address 1 is driven to indicate the start of a burst
cycle. In the clock that the last address is driven, the 4Kc
core assertEB_BLastto indicate the end of the burst
transaction.

In Figure 11 the first data word (Datal) is driven in clocks

2 and 3 due to thEB_WDRdysignal being sampled
deasserted at the rising edge of clock 2, causing a wait state.
WhenEB_WDRdys sampled asserted on the rising edge of
clock 3, the 4Kc core responds by driving the second word
(Data2).

External logic drives th&B_WBErrsignal one clock after
the corresponding assertiontEeB_WDRdyif a bus error
has occurred as shown by the arrowBigure 11

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

Copyright © 1999-2002 MIPS Technologies, Inc. All rights reserved.
Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies™). Any
copying, reproducing, modifying, or use of this information (in whole or in part) which is not expressly permitted
in writing by MIPS Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this
information is protected under unfair competition and copyright laws. Violations thereof may result in criminal
penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information
contained in this document to improve function, design or otherwise. MIPS Technologies does not assume any
liability arising out of the application or use of this information, or of any error of omission in such information.
Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties
of merchantability or fitness for a particular purpose, are excluded. Any license under patent rights or any other
intellectual property rights owned by MIPS Technologies or third parties shall be conveyed by MIPS Technologies
or any contractually-authorized third party in a separate license agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in
violation of any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer
software, commercial computer software documentation or other commercial items. If the user of this information,
or any related documentation of any kind, including related technical data or manuals, is an agency, department, or
other entity of the United States government (“Government”), the use, duplication, reproduction, release,
modification, disclosure, or transfer of this information, or any related documentation of any kind, is restricted in
accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition
Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions
covering this information from MIPS Technologies or any contractually-authorized third party.

MIPS®, R300%, R400®, R500%° and R10008 are among the registered trademarks of MIPS Technologies, Inc.
in the United States and certain other countries, and MIPS16™, MIPS16e™ ,MIPS32™, MIPS64™, MIPS-3D™,
MIPS-based™, MIPS I™, MIPS II™, MIPS [II™, MIPS IV™, MIPS V™, MDMX™, SmartMIPS™, 4K™,

4Kec™, 4Km™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KEp™, 4KS™, 4KSc™, 5K™ 5Kc™, 5Kf™ 20K™,
20Kc™, R20K™ R4300™, ATLAS™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, SEAD™, SEAD-2™,
SOC-it™ and YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Document Number: MD00039
01.03-2B

MIPS32 4Kc™ Processor Core Datasheet, Revision 01.07

Copyright © 1999-2002 MIPS Technologies Inc. All right reserved.

	Features
	Architecture Overview
	Pipeline Flow
	4Kc Core Required Logic Blocks
	Execution Unit
	Multiply/Divide Unit (MDU)
	System Control Coprocessor (CP0)
	Modes of Operation
	Memory Management Unit (MMU)
	Translation Lookaside Buffer (TLB)
	Joint TLB (JTLB)
	Instruction TLB (ITLB)
	Data TLB (DTLB)

	Cache Controllers
	Bus Interface (BIU)
	Merge Pattern Control
	SimpleBE Mode

	4Kc Core Reset

	Power Management
	Register-Controlled Power Management
	Instruction-Controlled Power Management

	4Kc Core Optional Logic Blocks
	Instruction Cache
	Data Cache
	Cache Memory Configuration
	Cache Protocols
	Scratchpad RAM
	EJTAG Debug Support
	Debug Registers
	EJTAG Hardware Breakpoints

	4Kc Core Instructions
	4Kc Core Signal Descriptions
	4Kc Core Bus Transactions
	Single Read
	Single Write
	Burst Read
	Burst Write

