ARM946E-S

(Rev 1)

Technical Reference Manual

ARM

Copyright © 2001 ARM Limited. All rights reserved.
ARM DDI 0201A

ARMO946E-S (Rev 1)

Technical Reference Manual
Copyright © 2001 ARM Limited. All rights reserved.
Release Information

Change history

Date Issue Change

16th February 2001 A First release

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited, except
as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the
trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
al warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

Thisdocument isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omissionin
such information, or any incorrect use of the product.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.
Product Status

Theinformation in this document is final (information on a developed product).
Web Address

http://www.arm.com

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Contents

ARM946E-S (Rev 1)Technical Reference Manual

Chapter 1

Chapter 2

Chapter 3

Preface
AbOUL thiS dOCUMENEviiiiiiiiic e Xii
FUher readingooooiiiiiiie e XV
[T=T=To | o= Lol QPRSP XVi
Introduction
1.1 AboUt the ARMOZBE-S (REV 1)vcvveeeeeeeeeeeeeeeeeeeeeee et 1-2
1.2 Microprocessor bloCk diagramccccvieiiiiiiiie e 1-3

Programmer’s Model

2.1 About the ARM946E-S (Rev 1) programmer’s modelcccccoecvvvieeninnnenn. 2-2
2.2 About the ARM9E-S programmer’s modelccouieeiiiiiiiiiieeniiie e 2-3
2.3 CP15 register Map SUMMATYooieeiiiiiiieeeaaiiieiee e aeieeeee s e eeeeeee s enneeeaaeaan 2-4
Caches

3.1 Cache arChitECIUEooouiiiii e 3-2
3.2 1= Vo] = PR PPRRR 3-6
3.3 DCACKNE .. ettt 3-8
3.4 CaChe IOCKAOWN ...t 3-12

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. iii

Contents

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Protection Unit

41 About the protection UNItoocuuiiiiiiiie e 4-2
4.2 [T o g o] YA £=To [T] o LS PSSP 4-3
4.3 (@)Y/C14 FoT o] o] aTo IR =To (0] 4L USSR 4-6

Tightly-coupled Memory Interface

5.1 ARMO946E-S (Rev 1) TCM interface descriptioncccccoevvvveeeeiiiiiiieeeenns
5.2 UsiNg CP15 CONIOl FEQISTEN ...veeeiiiiiiieeeciiiie et et saaee e
5.3 Enabling the instruction tightly-coupled memory during soft reset
54 DTCIM ACCESSES ..oevveueuiiiieieeeeeeeeiiii s e e e e e e eeeeeeaaeaesaseeeeeeaeeeeeesansaaeeeaaeeennees
55 O 1Y = (o o ST

Bus Interface Unit and Write Buffer

6.1 About the BIU and Write DUFErcceeiiiiiiiiieeeeceee e 6-2
6.2 AHB bus Master iINtEIfACEcovvuviiiiiiii et eaens 6-3
6.3 Noncached Thumb instruction fetChesccccceeeeiiiiiiiiiiice e, 6-9

6.4 AHB ClOCKING ...ccovviiiieeiciieiiee e
6.5 The write buffer

Coprocessor Interface

7.1 About the COProcesSOr INTEIACEcccuvvieeiiiiiiiee e 7-2
7.2 [10) 7-4
7.3 MCR/MRC .. e e e e e e e e e e e e e e e e s e e s earararararees 7-8
7.4 INterloCked MCR ... e e e e e e 7-10
7.5 CDP

7.6 Privileged iNSIrUCLIONSccuviiiii i 7-13
7.7 Busy-waiting and iNtEITUPLSoiiiiviiiieiiiiiiee e 7-14

Debug Support

8.1 About the debug iNterfaceccccveeiiiiiiiie e
8.2 DEDUG SYSLEMS .ttt e e bt e e e e e neeeae s
8.3 The JTAG state machine

8.4 Scan chainsccccoociieenninen.

8.5 Debug access to the caches

8.6 Debug interface Signalscccccoiiiiiiiii i
8.7 ARMO9E-S core CloCK dOMAINSveeiiiiiiiiiiee e
8.8 Determining the core and system state

8.9 Overview of EmbeddedICE-RToooiiiiiiiiiii e
8.10 Disabling EmbeddedICE-RTccoo i
8.11 The debug communications channel

8.12 Real-time debUQcceveiiii e

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Chapter 9

Chapter 10

Appendix A

Appendix B

Contents

ETM Interface
9.1 AbOULt the ETM INTEITACE ..vveeiiiieeeeeeeeeceee et 9-2
9.2 Enabling the ETM INterface ... 9-4

Test Support

10.1 About the ARM946E-S (Rev 1) test methodologycccceeeeiiiiiiieeennns 10-2
10.2 Scan insertion and ATPG ...ooooiiiiiiiiiee e 10-3
10.3 BIST Of MEMOIY @ITAYSvvvieeiiiiiiieie e ettt e e a e e 10-5

AC Parameters
Al TimMING diaQramscooiiiiiiie et e e anaes
A2 AC timing parameter definitions

Signal Descriptions

B.1 Signal properties and requirements

B.2 Clock interface signals

B.3 TCM interface signals

B.4 AHB SIGNAIS ... e e

B.5 Coprocessor interface SigNalsccoiiiiiiee e
B.6 Debug signals
B.7 JTAG signals

B.8 Miscellaneous SIGNAIScoooiiiiiiiie e
B.9 ETM interface SignalSooooo i
B.10 INTEST Wrapper SIgNAISccoiiiueiieeiiiiiiee et ee et e e eetieeea e

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. v

Contents

Vi Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

List of Tables

ARM946E-S (Rev 1)Technical Reference Manual

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 2-12

Table 2-13
Table 2-14
Table 2-15
Table 2-16
Table 2-17
Table 2-18
Table 2-19
Table 2-20
Table 2-21

Location of block descriptionscccceeeviiiiiiiiescee e
CP15 regiSter MAP ..oicciiciiiiee et e e e eirer et e e straaeee s
CP15 terms and abbreviationsc.ccccceviiiiiiee i
Register 0, ID €Oooeevviuiiieeeeiiiiiieeenne
Cache type register format
Cache size encodingcccoeeevcvvvieeeeennnns
Cache associativity encodingccccvveeviiiiiiieeeisiiier e
Tightly-coupled memory size registercccovveeeeiviiieeeee i,
Memory size fieldccccoeeiieieiiiiiineen.

Register 1, control register
Programming instruction and data cachable bits
Programming data bufferable bitsccccciiiiiii s
Programming instruction and data

access permission hits (extended)ccccooviiiieeeiiciiee . 2-17
Access permission encoding (extended)ccccceeviiiiiieeeninnen. 2-18
Instruction and data access permission bits (standard) 2-18
Access permission encoding (standard)cccccoeiiiiiiieeniiieenn. 2-19
Accessing protection region/base size registerscccocuueee. 2-20

Protection region/base size register format
Area Size eNCOAING ..vvviiiiiiiieee it e e
Cache OPEratioNSccccuviiiee i e
Index fields for supported cache sizes
Lockdown register formatceeeieiiiiiiiiee e

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. vii

Table 2-22
Table 2-23
Table 2-24
Table 2-25
Table 2-26
Table 2-27
Table 2-28
Table 2-29
Table 2-30
Table 2-31
Table 3-1
Table 3-2
Table 3-3
Table 4-1
Table 4-2
Table 6-1
Table 6-2
Table 7-1
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6

Table 8-7
Table 8-8
Table 10-1
Table 10-2
Table A-1
Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6
Table B-7
Table B-8
Table B-9

TCM region/base size register formatccccooviiiieiiiiiinnene 2-26
Tightly-coupled memory area size encodingccccceevevvvveeeeennne 2-27
Register 15, BIST iNStrUCLONSccoovvvieiieiiiiiiee e 2-29
Register 15, implementation-specific BIST instructions 2-29
RAM BIST control register bit definitionsc.cccooceeiiiien. 2-30

Test state register bit asSignMeNtscccceiiiiiiiiiiiieeeee
Additional OPErationsccueiiiiiiiiiiee e
Index fields for supported cache sizes
Trace CONMrOl FEQISIET ..viiiiiiiiiiie et
Trace control register bit assignments
TAG and index fields for supported cache sizesccccceeeennee 34
Meaning of Cd bit values

Calculating index addresses
Protection register formatccccocceiii e
Region size encoding
Supported burst types ...
Data write modes
Handshake encoding
PUBIIC INSLIUCHIONS ...
ARMO946E-S (Rev 1) scan chain allocationscccccccvvveeennn. 8-13
Scan chain 1 bitsccccevviiiiiiiiiie

Scan chain 15 addressing mode bit order

Mapping of scan chain 15 address field to CP15 registers 8-15
Status bit mapping of scan chain 15 address field

10 CPL5 rEQISIEIS ooieiiiiiee et ee e 8-17
Correlation between status bits and cache operations 8-18
Coprocessor 14 regiSter MaPcvvveeeiivereeeiiiiiieeeeessieeeeeeesins 8-31
Instruction BIST address and general registersc.cccceuveee... 10-7
Data BIST address and general registerscccccovviiieeeeeiininene. 10-7

Timing parameter definitions
Clock interface signals

TCM interface SigNalsccccuvieieiiiiiieee e
AHB SIGNAISovviiiieiice e
Coprocessor interface signals
Debug signals
JTAG signals
Miscellaneous signals
ETM interface Signalsccoocvvveiiiiiiiiecce e
INTEST Wrapper SignalScccvveveeiiiiieiieeicsiiieeee e ssiveee e

viii Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

List of Figures

ARM946E-S (Rev 1)Technical Reference Manual

Figure P-1
Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 4-1
Figure 4-2
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8

Figure 6-1

Key to timing diagram conventionsccccccovvvieeeeiiiciieenee e,
ARMO946E-S block diagramccccceeviiiiiieei i
CP15 MRC and MCR bit patternccceeoiiiiereeiniiieee e
Index and segment format
ICache address format
Process ID format
Index/segment fOrmatcccoeeiviiiiee i
Data format TAG read/write Operationscccccceeeviviveereesiinnns
Example 8KB CacChecccccveeeiiciiiiee e

Access address for a 4KB cache
Register 7, Rd formatc.ccooeee.
ARMO46E-S protection UNItc.coeeiiiiiiieee e
Overlapping MemOry rE€QIONScccvvvieiieeiiiiiiieeeeectrieaeeeserreeeeeean
TCM read CYCIEcvvviiiiiiiieccee e

Data write followed by data read of DTCM

Simultaneous instruction fetch and data read of ITCM 5-10
Data Write followed by Data Read of ITCMccccoeiiiiieiinninnes 5-11
Data Write followed by Instruction Fetch of ITCMc.cccceeee 5-12
Data Read followed by Instruction Fetch

Simultaneous Instruction fetch and data writecceeenne 5-14
Data write followed by simultaneous instruction fetch

b= 1[0 o F= 1 = W (- Vo OO
Linefetch transfer

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. ix

Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 9-1
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure A-11

Back-to-back linefetches ...,
Nonsequential uncached aCCeSSESccovvuvriiieeiiiiiiieee e
Data burst followed by instruction fetch .
Crossing a 1KB boundaryccccceeviiiiiieiiiiiiiiie e
Uncached LDC SEQUENCEooeiiiiiiiieeeeaiiieeaaeaiieeea e einenea e e e
AHB clock relationships ...
ARMO946E-S (Rev 1) CLK to AHB HCLK samplingcc......... 6-12
Coprocessor CIOCKINGuuuiieiiiiiiiie et
LDC/STC cyCle tIMING ..vveeveeiiiiiiiie i et e e evaaae e
MCR/MRC transfer timing with busy-waitcccoceeeiiiiieneenn.
Interlocked MCR/MRC timing with busy-wait
Late cancelled CDP

Privileged instructions
Busy-waiting and interrupts
Clock synchronizationcccvveeeeiiiiiiie e
Typical debug systemcceeee..

ARMOE-S block diagram

Test access port (TAP) controller state transitions
TAG address fOrmatoocceeeiiiiiiiieee e
Cache index register formatcccoeeeiiiieeie e
Breakpoint timingcccviieiiiiiiiiec e
Watchpoint entry with data processing instruction
Watchpoint entry with branchccccoiiiiii e

The ARM9E-S, TAP controller, and EmbeddedICE-RT 8-28
Debug comms channel status register
ARMO946E-S (Rev 1) ETM interface

Clock, reset, and AHB enable timingccccvveeiiiiiiiee e,
AHB bus request and grant related timingccccceeeeiviiiiieeennns A-3
AHB bus master timingcccccceeriienieeniiieen.

Coprocessor interface timing
Debug interface timingc.........
JTAG interface timingooooiviiiiiiieiie e
DBGSDOUT to DBGTDO tiMiNg ...ccoecvvvveeiiiiiieeeccciiie e e eiiinie e
Exception and configuration timing
INTEST wrapper timingccccceeeeeiniieeeee e,
TCM interface timingccccceeou.
ETM interface timingccoooieeiiiiiiiiiie e

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Preface

This preface introduces the ARM946E-S (Rev 1) processor and its reference
documentation. It contains the following sections:

. About this document on page xii
. Further reading on page xv
. Feedback on page xvi.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

Xi

Preface

About this document

Intended audience

Using this manual

This document is a reference manual for the ARM946E-S (Rev 1) macrocell.

This document has been written for hardware and software engineers who want to
design or develop products based upon the ARM946E-S (Rev 1) processor. It assumes
no prior knowledge of ARM products.

This document is organized into the following chapters:

Chapter 1 Introduction
This chapter provides an introduction to the ARM946E-S macrocell.

Chapter 2 Programmer’s Model
This chapter describes the programmer’s model of the ARM946E-S and
includes a summary of the ARM946E-S coprocessor registers.

Chapter 3 Caches
This chapter describes the ARM946E-S cache implementation.

Chapter 4 Protection Unit
This chapter describes the ARM946E-S memory protection unit.

Chapter 5 Tightly-coupled Memory I nterface
This chapter describes the requirements and operation of the
tightly-coupled SRAM.

Chapter 6 Bus Interface Unit and Write Buffer
This chapter describes the operation of the Bus Interface Unit and write
buffer.

Chapter 7 Coprocessor | nterface
This chapter describes the coprocessor interface and the operation of
€COMMON COProcessor instructions.

Chapter 8 Debug Support

This chapter describes the debug support for the ARM946E-S macrocel |
and the EmbeddedI CE-RT logic.

Xii

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Preface

Chapter 9 ETM Interface
This chapter describes the ETM interface, including details of how to
enable the interface.

Chapter 10 Test Support
This chapter describes the test methodology used for the ARM946E-S
synthesized logic and tightly-coupled SRAM.

Appendix A AC Parameters
This appendix describes the timing parameters applicable to the
ARM946E-S macrocell.

Appendix B Signal Descriptions
This appendix describes the signals used in the ARM946E-S macrocell.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal nameswithintext, and interface
elements such as menu names. Can also be used for emphasisin
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that can be entered at the keyboard, such as
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for acommand or option. The
underlined text can be entered instead of the full command or
option name.

typewriter italic Denotesargumentsto commandsor functionswherethe argument
isto be replaced by a specific value.

typewriter bold Denotes language keywords when used outside exampl e code.

Timing diagram conventions

This manual contains a number of timing diagrams. The key shown in Figure P-1 on
page xiv explains the components used in these diagrams. Any variations are clearly
labeled when they occur. Therefore, no additional meaning must be attached unless
specifically stated.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. Xiii

Preface

Clock

HIGH to LOW
Transient

HIGH/LOW to HIGH
Bus stable

Bus to high impedance
Bus change

High impedance to stable bus

Valid (correct) sampling point

ANNTH

Figure P-1 Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect

normal operation.

Xiv

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

Further reading

ARM publications

Other publications

Preface

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not
answered by this document, please contact info@arm. com or visit our web site at
http://www.arm.com.

This document containsinformation that is specific to the ARM946E-S (Rev 1) core
processor. You can refer to the following documents for other relevant information:

. ARM Architecture Reference Manual (ARM DDI 0100)
. ARMOE-S Technical Reference Manual (ARM DDI 0165)
. AMBA Specification (Rev 2.0) (ARM IHI 0011).

This section lists relevant documents published by third parties:

. |EEE Std. 1149.1-1990, Standard Test Access Port and Boundary-Scan
Architecture.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. XV

Preface

Feedback

ARM Limited welcomes feedback both on the ARM946E-S (Rev 1) processor, and on
the documentation.

Feedback on the ARM946E-S macrocell

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments

Feedback on the document

If you have any comments about this document, please send email to errata@arm.com
giving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

XVi Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Chapter 1
Introduction

This chapter introduces the ARM946E-S (Rev 1) processor. It contains the following
sections:

. About the ARM946E-S (Rev 1) on page 1-2
. Microprocessor block diagram on page 1-3.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 1-1

Introduction

1.1 About the ARM946E-S (Rev 1)

The ARM946E-S (Rev 1) processor is a synthesizable macrocell combining an ARM
processor corewith aconfigurable memory system. Itisamember of the ARM9 Thumb
family of high-performance, 32-bit system-on-chip processor solutions.

The ARM946E-S (Rev 1) processor has tightly-coupled SRAM memory, and
instruction and data caches, and istargeted at awide range of embedded applications
where high-performance, low system cost, small die size, and low power are all
important.

The ARM946E-S (Rev 1) processor macrocell isaHarvard architecture cached
processor that provides a complete high-performance processor subsystem, including:
. An ARMOE-S RISC integer CPU core featuring:

— ARMVSTE 32-bit instruction set with improved ARM/Thumb code
interworking and enhanced multiplier designed for improved DSP
performance

— ARM debug architecture with additional support for real-time debug. This
allows critical exception handlers to execute while debugging the system.

. Support for external Tightly-Coupled Memory (TCM). A TCM interfaceis
provided for each of the external instruction and datamemory blocks. The size of
both the Instruction and Data TCM blocks are implementor-specific and can
range from 4KB to 1MB.

. Instruction and data caches. The design can be easily modified to allow any
combination of caches from 4KB to 1IMB.

. A protection unit that allowsthe memory to be protected in asimple manner, ideal
for embedded control applications.

. An AMBA AHB businterface. The ARM946E-S (Rev 1) processor interfacesto
the rest of the system are through use of unified address and data buses. This
interface is compatible with the AMBA AHB bus standard.

. Support for external coprocessors allowing floating point or other application
specific hardware acceleration to be added. For coprocessor support, the
instruction and data buses are exported along with simple handshaking signals.

. Support for the use of a scan test methodology for the standard cell logic and
Built-1n-Self-Test (BIST) for the tightly-coupled SRAM and caches.

. An interface to an external Embedded Trace Macrocell (ETM) to support
real-time tracing of instructions and data.

Providing this compl ete high-frequency subsystem freesthe system-on-a-chip designer
to concentrate on design issues unique to their system. The synthesizable nature of the
device eases integration into ASIC technologies.

1-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

1.2 Microprocessor block diagram

The ARM946E-S (Rev 1) block diagram is shown in Figure 1-1.

Introduction

Instruction Data
memory memory
AHB peripherals Coprocessors
AHB System control External
= bus interface unit Tightly-coupled memory interface coprocessor coprocessor
and write buffer (CP15) interface
Addr Dout Addr Din
| I A I Tt I [}
I
= v |-
| |
1A DA
WDATA
ARMOE-S I
—:D INSTR RDATA I I
ETM —
— interface ETM
U e o
System '\r/loet}g(]:(t)ig/n Instruction Data
controller p : cache cache
unit
17 |
Instruction Data
cache cache
control control

Figure 1-1 ARM946E-S block diagram

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

1-3

Introduction

Theblocks shownin Figure 1-1 on page 1-3, with the exception of Instruction and Data
Tightly-coupled memories (TCMs), which are external to the A946E-S (Rev 1), are
described in the locations listed in Table 1-1.

Table 1-1 Location of block descriptions

Block Location of description

ARMOE-S (Rev 1) ARMOE-S (Rev 1) Technical Reference
Manual

AHB bus interface unit and write buffer Chapter 6 Bus Interface Unit and Write
Buffer

Tightly-coupled Memory interface Chapter 5 Tightly-coupled Memory Interface

System control coprocessor (CP15) Chapter 2 Programmer’s Model

External coprocessor interface Chapter 7 Coprocessor Interface

ETM interface Chapter 9 ETM Interface

System controller Chapter 2 Programmer’s Model

Memory protection unit Chapter 4 Protection Unit

Instruction cache Chapter 3 Caches

Data cache Chapter 3 Caches

Instruction cache control Chapter 2 Programmer’s Model and
Chapter 3 Caches

Data cache control Chapter 2 Programmer’s Model and
Chapter 3 Caches

1-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Chapter 2

Programmer’s Model

This chapter describesthe programmer’s model for the ARM946E-S (Rev 1) macrocell.
It contains the following sections:;

. About the ARM946E-S (Rev 1) programmer’s model on page 2-2
. About the ARM9E-S programmer’s model on page 2-3
. CP15 register map summary on page 2-4.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 2-1

Programmer’s Model

2.1

About the ARM946E-S (Rev 1) programmer’s model

The programmer’s model for the ARM946E-S (Rev 1) macrocell primarily consists of
the ARM9E-S core programmer’ smodel (see About the ARM9E-Sprogrammer’smodel
on page 2-3). Additions to this model are required to control the operation of the
ARMO946E-S (Rev 1) internal coprocessors, and any coprocessor connected to the
external coprocessor interface.

There are two internal coprocessors within the ARM946E-S (Rev 1):

. CP14 within the ARM9E-S core allows software access to the debug
communications channel

. CP15 allows configuration of the caches, TCM, protection unit, write buffer, and
other ARM946E-S (Rev 1) system options such as big or little-endian operation.

The registers defined in CP14 are accessible with MCR and MRC instructions, and are
described in The debug communications channel on page 8-31.

The registers defined in CP15 are accessible with MCR and MRC instructions, and are
described in CP15 register map summary on page 2-4. These instructions permit
conditional access using the optional { cond} field.

Registers and operations provided by any coprocessors attached to the external
coprocessor interface are accessible with appropriate coprocessor instructions.

2-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

2.2 About the ARM9E-S programmer’s model

The ARM9E-S processor core implementsthe ARMVS5TE architecture, which includes
the 32-bit ARM instruction set and the 16-bit Thumb instruction set. For a description
of both instruction sets, see the ARM Architecture Reference Manual. Contact ARM for
complete descriptions of both instruction sets.

221 Data Abort model

The ARM9E-Simplementsthe base restored Data Abort model, which differsfrom the
base updated Data Abort model implemented by ARM7TDMI.

The difference in the Data Abort model affects only a very small section of operating
system code, the Data Abort handler. It does not affect user code. With the base restored
Data Abort model, when a Data Abort exception occurs during the execution of a
memory access instruction, the base register is always restored by the processor
hardware to the value the register contains before the instruction is executed. This
removes the requirement for the Data Abort handler to unwind any base register update
that might have been specified by the aborted instruction.

The base restored Data Abort model significantly simplifies the Data Abort handler
software.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 2-3

Programmer’s Model

2.3 CP15 register map summary

The ARM946E-S (Rev 1) macrocel | incorporates CP15 for system control. CP15 allows
configuration of the caches, tightly-coupled SRAM, and protection unit. It also allows
configuration of the ARM946E-S (Rev 1) system optionsincluding big or little-endian
operation.

This section contains the following:

Accessing CP15 registers on page 2-6

Register O, ID code register on page 2-7

Register 0, Cache type register on page 2-8

Register 0, Tightly-coupled memory size register on page 2-10
Register 1, Control register on page 2-12

Register 2, Cache configuration registers on page 2-15
Register 3, Write buffer control register on page 2-16

Register 5, Access permission registers on page 2-17

Register 6, Protection region/base size registers on page 2-19
Register 7, Cache operations register on page 2-22

Register 9, Cache |ockdown registers on page 2-25

Register 9, Tightly-coupled memory region registers on page 2-26.
Register 13, Trace processidentifier register on page 2-28
Register 15, RAM and TAG BI ST test registers on page 2-29
Register 15, Test state register on page 2-31

Register 15, Cache debug index register on page 2-32
Register 15: Trace Control Register on page 2-34

The register map for CP15 is shown in Table 2-1 on page 2-5.

2-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

Table 2-1 CP15 register map

Register Read Write

0 ID code? Unpredictable

0 Cachetype@ Unpredictable

0 Tightly-coupled memory size? Unpredictable

1 Control Control

2 Cache configuration b Cache configuration P

3 Write buffer control Write buffer control

4 Unpredictable Unpredictable

5 Access permission P Access permission P

6 Protection region base and size @ Protection region base and size 2
7 Unpredictable Cache operations

8 Unpredictable Unpredictable

9 Cache lockdown P Cache lockdown P

9 Tightly-coupled memory region b Tightly-coupled memory region b
10 Unpredictable Unpredictable

11 Unpredictable Unpredictable

12 Unpredictable Unpredictable

13 Trace Process ID Trace Process ID

14 Unpredictable Unpredictable

15 RAM and TAG BIST test @ RAM and TAG BIST test 2
15 Test state @ Test state @

15 Cache debug index 2 Cache debug index 2

15 Trace control Trace control

a. Register location provides access to more than one register. The register accessed dependson
the value of the opcode_2 or CRm field. See the register description for details.
b. Separate registers for instruction and data. See the register description for details.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

Programmer’s Model

2.3.1 Accessing CP15 registers
Table 2-2 on page 2-6 shows the terms and abbreviations used in this section.

Table 2-2 CP15 terms and abbreviations

Term Abbreviation Description

Unpredictable UNP For reads, the data returned when reading from this
location is unpredictable. It can have any value.
For writes, writing to this location causes unpredictable
behavior, or an unpredictable change in device
configuration.

Undefined UND An instruction that accesses CP15 in the manner
indicated takes the undefined instruction trap.

Should bezero SBZ When writing to thislocation, al bitsof thisfield should
be 0.

Shouldbeone SBO When writing to thislocation, al bitsof thisfield should
be 1.

In all cases, reading from, or writing any data values to any CP15 registers, including
those fields specified as unpredictabl e or should be zero, does not cause any permanent
damage.

All CP15register bitsthat are defined and contai n state, except V-Bit and theinstruction
RAM (ITCM) enablein register 1, are set to zero by HRESETn. V-hit takes the value
of the VINITHI macrocell input pin, and the ITCM enable, the value of the INITRAM
input when HRESETn is asserted.

that takes the value of macrocell input VINITHI when HRESETn is asserted.

ITCM and DTCM sizesin register 9 reflect the physical ITCM and DTCM sizes, as
applied to input pins I TCM Size[3:0] and DT CM Size[3:0] respectively.

CP15 registers can only be accessed with MRC and MCR instructionsin a privileged mode.
Theinstruction bit pattern of the MCR and MRC instructions is shown in Figure 2-1 on

page 2-7.

2-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

31 28 27 2423 212019 16 15 12 11 8 7 543 0
111](1]0 101711 1
~ | / N /
Cond opcode_1 CRn Rd opcode_2 CRm
L

Figure 2-1 CP15 MRC and MCR bit pattern
The assembler for these instructionsis;
MCR/MRC{cond} p15,opcode_1,Rd,CRn,CRm,opcode_2

Instructions CDP, LDC, and STC, along with unprivileged MRC and MCR instructions to CP15,
cause the undefined instruction trap to be taken. The CRn field of MRC and MCR instructions
specifies the coprocessor register to access. The CRm field and opcode_2 field specify a
particular action when addressing registers.

Attempting to read from a nonreadabl e register, or writing to a nonwritable register
causes unpredictable results.

The opcode_1, opcode_2, and CRm fields should be zero, except when the values specified
are used to select the desired operations, in all instructions that access CP15. Using
other values results in unpredictable behavior.

2.3.2 Register 0, ID code register

Thisisaread-only register that returns a 32-bit device ID code. The ID code register is
accessed by reading CP15 register O with the opcode_2 field set to any value other than
1 or 2. For example:

MRC p15, @, Rd, c@, c@, {0,3-7}; returns ID register

The contents of the ID code are shown in Table 2-3.

Table 2-3 Register 0, ID code

Register bits Function Value
31:24 Implementor 0x41
23:20 Reserved (variant) 0x00

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-7

Programmer’s Model

Table 2-3 Register 0, ID code (continued)

Register bits Function Value
19:16 Architecture version ARM5TE 0x05
15:4 Part number 0x946
3.0 Version (implementation-specific) Revision

2.3.3 Register 0, Cache type register

Thisis aread-only register that contains information about the size and architecture of
the Instruction Cache (ICache) and Data Cache (DCache), allowing operating systems
to establish how to perform operations such as cache cleaning and lockdown. Future
ARM cached processors will contain this register, allowing RTOS vendors to produce
future-proof versions of their operating systems.

The cache type register is accessed by reading CP15 register O with the opcode_2 field
set to 1. For example:

MCR p15,0,Rd,c0,c0,1; returns cache details

The format of the register is shown in Table 2-4.

Table 2-4 Cache type register format

Register bits Function Value

31:29 Reserved 000

28:25 Cachetype 0111

24 Harvard/Unified 1 (defines Harvard cache)
23:22 Reserved 00

21:18 DCachesize Implementation-specific
17:15 DCache associativity Implementation-specific
14 DCache base size I mplementation-specific
13:12 DCache words per line 10 (defines 8 words per line)
11:10 Reserved 00

9:6 ICache size I mplementati on-specific

2-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

Table 2-4 Cache type register format (continued)

Register bits Function Value

5:3 | Cache associativity Implementation-specific

2 |Cache base size Implementation-specific

1.0 | Cache words per line 10 (defines 8 words per line)

Bits[28:25] indicate which major cache class the implementation falls into. 0x7 means
that the cache provides:

. cache-clean-step operation
. cache-flush-step operation
. lock-down facilities.

Bits[21:18] givethe datacache size. Bits[9:6] givetheinstruction cachesize. Table 2-5
lists the meaning of values used for cache size encoding.

Table 2-5 Cache size encoding

Bits [21:18] and

bits[9:6] Cache size
b0000 OKB
b0011 4KB
b0100 8KB
b0101 16KB
b0110 32KB
b0111 64KB
b1000 128KB
b1001 256KB
b1010 512KB
b1011 iMB

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-9

Programmer’s Model

Bits[17:15] give the data cache associativity. Bits [5:3] give the instruction cache
associativity. Table 2-6 lists the meaning of values used for cache associativity
encoding.

Table 2-6 Cache associativity encoding

Bits [17:15] and .
Associativity

bits [5:3]
000 Direct mapped
010 4

The cache associativity fields in the cache type register are implementation-specific
(implementor-defined). Therefore, if the implementation has an instruction or data
cache, the associativity for that cache is set to 010 to indicate a four-way set associative
cache. If either cacheisnot included in aspecific implementation, then the associativity
field for that cache is set to 000 to indicate that the cache is absent.

The cache base size and cache size fields are generated within the cache blocksto avoid
having to resynthesize the design for different cache sizes:

. bit 14 gives the data cache base size
. bit 2 gives the instruction cache base size.

The base size bits are implementati on-specific. If theimplementation has an instruction
or data cache, the base size bit for that cache is set to O, indicating that the cache type
parameters are valid. If either cacheis not included for a specific implementation, the
relevant base sizeis set to 1, indicating that the cache is absent.

2.3.4 Register 0, Tightly-coupled memory size register

Thisis aread-only register that returns the size of the tightly-coupled instruction and
data RAMs integrated with the ARM946E-S (Rev 1) macrocell.

The tightly-coupled memory size register is accessed by reading CP15 register O with
the opcode_2 field set to 2. For example:

MRC p15, @, Rd, c@, c@, 2; returns tightly-coupled memory size register

2-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

The register contains information about the size of the tightly-coupled memories. The
format of the register is shown in Table 2-7.

Table 2-7 Tightly-coupled memory size register

Register bit Meaning Value

31:22 Reserved b0000000000

21:18 DataRAM size I mplementation-specific
17:15 Reserved b000

14 Data RAM absent Implementation-specific
13:10 Reserved b0000

9:6 Instruction RAM size Implementation-specific
5:3 Reserved b000

2 Instruction RAM absent Implementation-specific
1.0 Reserved b00

The memory size parameters are implementation-specific. The values used are
generated within the memory blocks. This allows the memory size to be changed
without having to re-synthesize the full design. Bits[21:18] define the data RAM size.
Bits[9:6] define the instruction RAM size. Table 2-8 shows the memory size field
definitions for instruction and data RAM memory sizes.

Table 2-8 Memory size field

Bits [21:8] and bits Tightly-coupled

[9:6] RAM size
b0000 OKB
b0011 4KB
b0100 8KB
b0101 16KB
b0110 32KB
b0111 64KB
b1000 128KB

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

2-11

Programmer’s Model

Table 2-8 Memory size field (continued)

Bits [21:8] and bits Tightly-coupled

[9:6] RAM size
b1001 256KB
b1010 512KB
b1011 iMB

If the tightly-coupled memory is absent, then the relevant RAM absent bit (bit 14 or bit
2) in the tightly-coupled memory register should be one. If tightly-coupled memory is
present within the design, the relevant RAM absent bit should be zero.

2.3.5 Register 1, Control register

Thisregister containsthe control bitsof the ARM946E-S (Rev 1). All reserved bits must
either be written with zero or one, asindicated, or written using read-modify-write. The
reserved bits have an unpredictable value when read. To read and write this register:

MRC p15, @, Rd, cl, c@, 0; read control register
MCR p15, @, Rd, cl, c@, 0; write control register

Table 2-9 lists the functions controlled by register 1.

Table 2-9 Register 1, control register

Register bit Function

31:20 Reserved (SBZ)

19 ITCM load mode

18 ITCM enable

17 DTCM load mode

16 DTCM enable

15 Configure disable loading TBIT
14 Round-robin replacement

13 Alternate vector select V-BIT
12 |Cache enable

11:8 Reserved (SBZ)

2-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

Table 2-9 Register 1, control register (continued)

Register bit Function

7 Big-endian

6:3 Reserved (SBO)

2 DCache enable

1 Reserved (SBZ)

0 Protection unit enable

The bitsin the control register have the following functions.

Bit 19, Instruction RAM load mode
This bit controls the operation of the instruction RAM load mode.

You can use theinstruction RAM load mode for initializing the instruction RAM. The
instruction RAM load mode allowsyouto load datainto ARM registersfrom either data
cache or main memory, and then write to the same address but within the
tightly-coupled instruction RAM. This allows you to copy boot code from memory
located at address 0x0 into the instruction RAM which, when enabled, also exists at
address 0x0. The operation of the load mode is described in ITCM load mode on

page 5-3.
At reset this bit is cleared.

Bit 18, Instruction RAM enable

This bit controls operation of the tightly-coupled instruction RAM. When the
instruction RAM is enabled, all instruction and data accesses to the instruction RAM
address range access the instruction RAM.

At reset this bit this bit takes the value of the input pin INITRAM.

Bit 17, Data RAM load mode

This bit controls the operation of the data RAM load mode.You can use the data RAM
load mode for initializing the data RAM. The data RAM load mode allows you to load
datainto ARM registers from either data cache or main memory, and then write to the
same address but within the tightly-coupled data RAM. The operation of the load mode
isdescribed in DTCM load mode on page 5-5.

At reset this bit is cleared.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 2-13

Programmer’s Model

Bit 16, Data RAM enable

This bit controls operation of the tightly-coupled data RAM. When the data RAM is
enabled, it takes precedence over the data cache and AHB for data accesses.

At reset this bit is cleared.

Bit 15, Configure disable loading TBIT

This bit controls the behavior of load PC instructions. When LOW the
ARMV5TE-specific behavior is enabled, and bit O of the |loaded data is used to control
the entry into Thumb state when the PC (r15) is the destination register. When HIGH,
this ARMV5TE behavior is disabled.

At reset this bit is cleared.

Bit 14, Round-robin replacement
This bit control s the cache replacement algorithm.

When HIGH, round-robin replacement is used. When LOW, a pseudo-random
replacement algorithm is used.

At reset this bit is cleared.

Bit 13, Alternate vectors select
This bit controls the base address used for the exception vectors.

When LOW, the base address for the exception vectorsis 0x00000000. When HIGH, the
base address is 0xFFFF0000.

Note

Thisbit isinitialized either HIGH or LOW during system reset, depending on the value
of theinput pin, VINITHI. This allows you to define the exception vector location
during reset to suit the boot mechanism of the application. You can then reprogram this
bit as required following system reset.

Bit 12, ICache enable

Controls the behavior of the |Cache. To use the instruction cache, both the protection
unit enable bit (bit 0) and the |Cache enable bit must be HIGH. This can be done with
asingle write to register 1.

At reset this bit is cleared.

2-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

Bit 7, Endian

Selects the endian configuration of the ARM946E-S (Rev 1). When this bit is HIGH,
big-endian configuration isselected. When L OW, little-endian configurationis selected.

At reset thisbit is cleared.

Bit 2, DCache enable
This bit controls the behavior of the DCache.

To use the data cache, both the protection unit enable bit (bit 0) and the DCache enable
bit must be HIGH. This can be done with asingle write to register 1.

At reset this bit is cleared.

Bit 0, Protection unit enable
This bit controls the operation of the ARM946E-S (Rev 1) protection unit.

At reset thishitis cleared. This disables the protection unit, and as aresult disables the
instruction and data caches and the write buffer.

At |east one protection region (see Register 6, Protection region/base size registers on
page 2-19 and Chapter 4 Protection Unit) must be programmed before the protection
unit is enabled.

2.3.6 Register 2, Cache configuration registers

These registers contain the cachabl e attributes for the eight areas of memory. Individual
control is provided for the | and D caches. If the opcode_2 field = 0, then the data cache
bits are programmed. If the opcode_2 field = 1, then the instruction cache bits are
programmed. To read and write these registers:

MRC p15, @, Rd, c2, c@, 0; read data cachable bits
MRC p15, @, Rd, c2, c@, 1; read instruction cachable bits
MCR p15, @, Rd, c2, c@, 0; write data cachable bits
MCR p15, @, Rd, c2, c@, 1; write instruction cachable bits

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-15

Programmer’s Model

The format for the cachable bitsin data and instruction areas is the same, and is given
in Table 2-10.

Table 2-10 Programming instruction and data cachable bits

Register bit Function

7 Cachable bit (C_7) for area7
6 Cachable bit (C_6) for area 6
5 Cachable bit (C_5) for area5
4 Cachable bit (C_4) for area4
3 Cachable bit (C_3) for area3
2 Cachable bit (C_2) for area2
1 Cachable bit (C_1) for areal
0 Cachable bit (C_0) for area0

2.3.7 Register 3, Write buffer control register

Thisregister contains the write buffer control (bufferable) attribute for the eight areas
of memory.

Note
This register only appliesto data accesses.

To read and write the write buffer control register:

MCR p15, @, Rd, c3, c@, 0; write data bufferable bits
MRC p15, @, Rd, c3, c@, 0; read data bufferable bits

The format for the bufferable bitsin the data areasis given in Table 2-11.

Table 2-11 Programming data bufferable bits

Register bit Function

7 Bufferable bit (B_7) for dataarea 7
6 Bufferable bit (B_6) for data area 6
5 Bufferable bit (B_5) for dataarea 5

2-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

Table 2-11 Programming data bufferable bits (continued)

Register bit Function

4 Bufferable bit (B_4) for dataarea 4
3 Bufferable bit (B_3) for dataarea 3
2 Bufferable bit (B_2) for dataarea 2
1 Bufferable bit (B_1) for dataarea 1
0 Bufferable bit (B_0) for dataarea 0

2.3.8 Register 5, Access permission registers

There arefour access permission registers. These contain the access permission bitsfor
theinstruction and data protection regions. The opcode_2 field of the MCR/MRC instruction
determines whether the standard or extended registers are accessed, and if the
instruction or data access permissions are accessed. To read and write the extended
registers:

MRC p15, @, Rd, c5, cO,
MRC p15, @, Rd, c5, cO,
MCR p15, @, Rd, c5, cO,
MCR p15, @, Rd, c5, c0,

; read data access permission bits
; read instruction access permission bits
; write data access permission bits

; write instruction access permission bits

w N W N

The format for the access permission bitsin instruction and data areasis the same, and
isgivenin Table 2-12.

Table 2-12 Programming instruction and data access permission bits (extended)

Register bit Function

31:28 Ap7[3:0] bitsfor area 7
27:24 Ap6[3:0] bitsfor area 6
23:20 Ap5[3:0] bitsfor area5
19:16 Ap4[3:0] bitsfor area 4
15:12 Ap3[3:0] bitsfor area 3
11:8 Ap2[3:0] bitsfor area 2
74 Apl[3:0] bitsfor area 1
3.0 Ap0[3:0] bitsfor area 0

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-17

Programmer’s Model

The values of the IApn[3:0] and DApn[3:0] bits define the access permission for each

area of memory, n. The encoding is shown in Table 2-13.

Table 2-13 Access permission encoding (extended)

Access permission

I/DApnN[3:0]

Privileged User
0000 No access No access
0001 Read/write access No access
0010 Read/write access Read-only
0011 Read/write access Read/write access
0100 UNP UNP
0101 Read-only No access
0110 Read-only Read-only
0111 UNP UNP
Ixxx UNP UNP

The following instructions are supported for backwards compatibility with existing
ARM processors with memory protection, and access the standard registers:

MRC p15, @, Rd, c5, c0, 0
MRC p15, @, Rd, c5, c0, 1
MCR p15, @, Rd, c5, <@, 0;
MCR p15, @, Rd, c5, c0, 1

; read data access permission bits

; read instruction access permission bits
; write data access permission bits

; write instruction access permission bits

The data format for these registers is shown in Table 2-14.

Table 2-14 Instruction and data access permission bits (standard)

Register bit

Function

15:14

Ap7[1:0] bitsfor area 7

13:12

Ap6[1:0] bitsfor area 6

11:10

Ap5[1:0] bitsfor area5

9:8

Ap4[1:0] bitsfor area 4

7:6

Ap3[1:0] bitsfor area 3

2-18

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

Programmer’s Model

Table 2-14 Instruction and data access permission bits (standard) (continued)

Register bit Function

54 Ap2[1:0] bitsfor area 2
3.2 Ap1[1:0] bitsfor area 1
1.0 ApO[1:0] bitsfor area 0

The values of the IApn[1:0] and DApn[1:0] bits define the access permission for each
area of memory, n. The encoding is shown in Table 2-15.

Table 2-15 Access permission encoding (standard)

Access permission

I/DApnN[1:0]
Privileged User
00 No access No access
01 Read/write access No access
10 Read/write access Read-only
11 Read/write access Read/write access
Note

On reset, the values of 1Apn and DApn bits are undefined. However, because on reset
the protection unit is disabled, thisis as though all areas are set to privileged mode
read/write access, User read/write access. Therefore, you must program the access
permission registers before you enable the protection unit.

If the access permissions are initially programmed using the extended access
permissions (see Table 2-13 on page 2-18), and then reprogrammed using the standard
access permissions (see Table 2-15 on page 2-19), the access permissions applied are as
if Apn[3:2] are programmed to 00 in Table 2-13 on page 2-18.

2.3.9 Register 6, Protection region/base size registers

These registers define the protection region base address/size registers. You can define
eight programmabl e regions using these registers. The values are ignored when the
protection unit isdisabled, and on reset only the region enable bit for each regionisreset
to 0. All other bits are undefined. You must program at least one memory region before
you enable the protection unit.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 2-19

Programmer’s Model

Theinstructions used to access the eight protection region/base size registers are listed
in Table 2-16.

Table 2-16 Accessing protection region/base size registers

Protection region/

ARM instruction . .
base size register

MCR/MRC p15, @, Rd, c6, c7, 0 Memory region 7
MCR/MRC p15, @, Rd, c6, c6, 0 Memory region 6
MCR/MRC p15, @, Rd, c6, c5, @ Memory region 5
MCR/MRC p15, @, Rd, c6, c4, @ Memory region 4
MCR/MRC p15, @, Rd, c6, c3, @ Memory region 3
MCR/MRC p15, @, Rd, c6, c2, 0 Memory region 2
MCR/MRC p15, @, Rd, c6, cl1, 0 Memory region 1
MCR/MRC p15, @, Rd, c6, c0, 0 Memory region O

Each protection region/base size register has the format shown in Table 2-17.

Table 2-17 Protection region/base size register format

Register bit Function

31:12 Region base

51 Areasize

0 1 = Region enable
0 = Region disable
Reset to 0.

You must align the region base to an area size boundary, where the area size is defined
in its respective protection region register. The behavior is unpredictable if thisis not
done.

2-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

Area sizes are encoded as shown in Table 2-18.

Table 2-18 Area size encoding

Bit encoding Areasize
00000 to 01010 Reserved (UNP)
01011 4KB
01100 8KB
01101 16KB
01110 32KB
01111 64KB
10000 128KB
10001 256K B
10010 512KB
10011 iMB
10100 2MB
10101 4MB
10110 8MB
10111 16MB
11000 32MB
11001 64MB
11010 128MB
11011 256MB
11100 512MB
11101 1GB
11110 2GB
11111 4GB

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 2-21

Programmer’s Model

Example base setting

An 8KB sizeregion aligned to an 8KB boundary at 0x0000 2000 (covering the address
range 0x0000 2000 to 0x0000 3FFF) is programmed as 0x0000 2019.

The following instruction is supported for backward compatibility with other ARM
Processors using a memory protection unit:

MRC p15, @, Rd, c6, CRm, 1; returns protection region register
This instruction allows the protection region registers to be read.

Writes to the protection region/base size registers with opcode 2 set to 1 are
unpredictable.

2.3.10 Register 7, Cache operations register

You can use awrite to this register to perform the following operations:
. flush ICache and DCache

. prefetch an ICache line

. wait for interrupt

. drain the write buffer

. clean and flush the DCache.

The ARM946E-S (Rev 1) macrocell uses asubset of the ARM architecture v4 functions
(defined in the ARM Architecture Reference Manual). The available operations are
summarized in Table 2-19.

Table 2-19 Cache operations

ARM instruction Function Data
MCR pl15, @, Rd, c7, c5, @ Flush ICache SBZa
MCR p15, @, Rd, c7, c5, 1 Flush ICache single entry Address
MCR pl15, @, Rd, c7, c13, 1 Prefetch ICacheline Address
MCR p15, 0, Rd, c7, c6, 0 Flush DCache SBza
MCR p15, @, Rd, c7, c6, 1 Flush DCache single entry Address
MCR p15, @, Rd, c7, clo, 1 Clean DCache entry Address

2-22

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

Table 2-19 Cache operations (continued)

ARM instruction Function Data

MCR p15, 0, Rd, c7, cl4, 1 Clean and flush DCacheentry ~ Address

MCR p15, @, Rd, c7, clo, 2 Clean DCache entry I ndex/segment
MCR p15, @, Rd, c7, cl4, 2 Clean and flush DCacheentry Index/segment

a. Thevaluetransferred in Rd should be zero.

The data format for index/segment operationsis shown in Figure 2-2 on page 2-23.

313029

N+1N

Should be zero

Index

SBzZ

|
Segment

Figure 2-2 Index and segment format

The size of the index varies depending on the implemented cache size. Table 2-20 on
page 2-23 shows how the index size changes for the cache sizes supported by the
ARMO946E-S (Rev 1) macrocell.

Table 2-20 Index fields for supported cache sizes

Cache size Index
4KB Addr[9:5]
8KB Addr[10:5]
16KB Addr[11:5]
32KB Addr[12:5]
64KB Addr[13:5]
128KB Addr[14:5]
256K B Addr[15:5]
512KB Addr[16:5]
1MB Addr[17:5]

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved.

2-23

Programmer’s Model

For the I Cache prefetch operation, the data format is shown in Figure 2-3.

31 5 4 0

Address SBZ

Figure 2-3 ICache address format

Cache clean and flush operations

Cache clean and flush operations can occur during instruction and data linefetches. In
such circumstances the linefetch compl etes before the clean or flush operation is
executed.

Drain write buffer

This operation stalls instruction execution until the write buffer is emptied. Thisis
useful in real-time applications where the processor must be sure that awriteto a
peripheral has completed before program execution continues. An example iswhere a
peripheral in abufferable region is the source of an interrupt. When the interrupt has
been serviced, the request must be removed before interrupts can be re-enabled. Thisis
ensured if adrain write buffer operation separates the store to the peripheral and the
enableinterrupt functions.

The drain write buffer operation isinvoked by awrite to register 7 using the following
ARM instruction:

MCR p15, @, Rd, c7, c10, 4; drain write buffer

This stalls the processor core until any outstanding accesses in the write buffer are
completed, that is, until all dataiswritten to external memory.

Wait for interrupt

This operation allows the ARM946E-S (Rev 1) to enter alow-power standby mode.
When you invoke the operation, the CL KEN signal to the processor coreisnegated and
the cache and tightly-coupled memories are placed in alow-power state until either an
interrupt or adebug request occurs. Thisfunctionisinvoked by awritetoregister 7. The
following ARM instruction causes this to occur:

MCR p15, @, Rd, c7, c@, 4; wait for interrupt

2-24

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

Thisisthe preferred encoding for new software. For compatibility with existing
software, ARM946E-S (Rev 1) also supports the following ARM instruction that has
the same affect:

MCR p15, @, Rd, c15, c8, 2; wait for interrupt

Thisstallsthe processor from the timethat thisinstruction isexecuted until either nFI Q,
nlRQ or EDBGRQ are asserted. Also, if the debugger sets the debug request bit in the
EmbeddedI CE-RT logic control register then this causesthe wait for interrupt condition
to terminate.

In the case of nFIQ and nlRQ, the processor core iswoken up regardless of whether
the interrupts are enabled or disabled (that is, independent of the | and F bitsin the
processor CPSR). The debug related waking only occursif DBGEN isHIGH, that is,
only when debug is enabled.

If interrupts are enabled, the ARM9E-S core is guaranteed to take the interrupt before
executing theinstruction after the wait for interrupt. If debug request is used to wake up
the system, the processor enters debug state before executing any more instructions.

Thewrite buffer continuesto drain until empty while the wait for interrupt operation is
executing.
2.3.11 Register 9, Cache lockdown registers

These registers allow you to lock down regions of the cache. To read and write these
registers:

MCR p15, @, Rd, c9, c@, 0; write data lockdown control
MRC p15, @, Rd, c9, c@, 0; read data Tockdown control
MCR p15, @, Rd, c9, c@, 1; write instruction lockdown control
MRC p15, @, Rd, c9, c@, 1; read instruction lockdown control

The format of the register, Rd, transferred during this operation is shown in Table 2-21.

Table 2-21 Lockdown register format

Register bit Function

31 Load bit

30:2 UNP/SBZ

1.0 Cache segment

Lockdown is described in Cache lockdown on page 3-12.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-25

Programmer’s Model

2.3.12 Register 9, Tightly-coupled memory region registers
These registers enable you to modify the visible size of the tightly-coupled memories.

You can either increase or decrease the size of the tightly-coupled memories from the
physical sizes described in register 0 (see Register 0, Tightly-coupled memory size
register on page 2-10). Increasing the visible size of the tightly-coupled memories
above the physical size alows aliasing within the tightly-coupled memory space. This
featureis useful for debugging multitasking systems.

There isamemory region register for each of the tightly-coupled memories:

MRC p15, @, Rd, 9, cl, 0; read data tightly-coupled memory

MCR p15, @, Rd, c9, cl, 0; write data tightly-coupled memory

MRC p15, @, Rd, c9, cl, 1; read instruction tightly-coupled memory
MCR p15, @, Rd, <9, cl, 1; write instruction tightly-coupled memory

Each tightly-coupled memory region register has the format shown in Table 2-22.

Table 2-22 TCM region/base size register format

Register bit Function
31:12 Region base
5:1 Areasize

Minimum size = 4KB
Maximum size = 4GB
(See Table 2-23 on page 2-27).

0 SBz

For agiven number of aliases for the physical memory size (set in Register 0), the area
sizeis calculated in the following way:

Number of required aliases = x (where x is a power of 2)
N = Tlogox (or 2N = x)
Area size = Physical size + N

2-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

The encodings for the supported tightly-coupled memory area sizes are shown in

Table 2-23.

Table 2-23 Tightly-coupled memory area size encoding

Tightly-coupled

Bit encoding memory area size
b00011 4KB
b00100 8KB
b00101 16KB
b00110 32KB
b00111 64KB
b01000 128KB
b01001 256K B
b01010 512KB
b01011 imB
b01100 2mMB
b01101 4MB
b01110 8MB
b01111 16MB
b10000 32MB
b10001 64MB
b10010 128MB
b10011 256MB
b10100 512mMB
b10101 icB
b10110 2GB
b10111 4GB

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

2-27

Programmer’s Model

You must align the region base to an area size boundary, where the area size is defined
in its respective protection region register. The behavior is unpredictable if thisis not
done.

The instruction tightly-coupled memory base addressis fixed at 0x00000. For the
instruction tightly-coupled memory, the region base returns the value 0x00000 when
read.

When writing to the instruction tightly-coupled memory, you must set the region base
to 0x00000. Writes with the region base set to any other value are unpredictable.

At reset, the region base for both the instruction and data tightly-coupled memory
region registers are cleared to 0x00000.

At reset, the area size for the instruction and data tightly-coupled memory region
registers takes the value defined in the tightly-coupled memory size register (see
Register 0, Tightly-coupled memory size register on page 2-10).

You must program the data tightly-coupled memory region registers before you set the
data RAM enable hit (bit 16) in register 1 (see Register 1, Control register on

page 2-12). If thisis not done, the data tightly-coupled memory resides at the same
location resulting in unpredictable behavior.

Note

If the data tightly-coupled memory is located at the same address as the instruction
tightly-coupled memory, then the instruction memory takes precedence for data
accesses. If the data tightly-coupled memory islocated at the same address as the
instruction tightly-coupled memory, and the instruction RAM isin load mode, data
accesses read from the data RAM and write to the instruction RAM.

2.3.13 Register 13, Trace process identifier register

Thisregister enables you to identify the currently executing process in multi-tasking
environments using the real-time trace tools.

The contents of this register are replicated on the ETM PROCI D pins of the
ARMO946E-S (Rev 1) macrocell.

The following ARM instructions are used for accessing the Process ID register:

MRC p15, @, Rd, c13, c@, 1; read process ID register
MCR p15, @, Rd, c13, c@, 1; write process ID register

To support software written for other ARM processors, the following instructions are
also supported:

2-28

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

MRC p15, @, Rd, c13, cl, 1; read process ID register
MCR p15, @, Rd, c13, cl, 1; write process ID register

Programmer’s Model

The format of the register, Rd, transferred during these operationsis shown in

Figure 2-4.

31

Trace process identifier

2.3.14 Register 15, RAM and TAG BIST test registers

Figure 2-4 Process ID format

Register 15 gives you accessto the test featuresincluded within the ARM946E-S (Rev

1) macrocell.

Theregister map for CP15 register 15 BIST-related instructionsis shown in Table 2-24.

Table 2-24 Register 15, BIST instructions

Register

Read

Write

TAG BIST control register

MRC p15, 0, Rd, c15, co, 1

MCR pl15, 0, Rd, c15, c0, 1

RAM BIST control register

MRC p15, 1, Rd, c15, c0, 1

MCR p15, 1, Rd, c15, c0, 1

Cache RAM BIST control register

MRC p15, 2, Rd, c15, c0, 1

MCR p15, 2, Rd, cl5, c0, 1

Table 2-25 lists CP15 register 15 implementation-specific BIST instructions.

Table 2-25 Register 15, implementation-specific BIST instructions

Register Read Write

Instruction TAG BIST address register MRC p15, @, Rd, c15, c@, MCR p15, 0, Rd, c15, c0, 2

Instruction TAG BIST general register MRC p15, @, Rd, c15, c@, MCR p15, 0, Rd, c15, c0, 3

Data TAG BIST address register MRC p15, @, Rd, c15, c@, MCR pl15, @, Rd, c15, c0, 6

Data TAG BIST general register MRC p15, @, Rd, cl5, co, MCR p15, @, Rd, cl5, co, 7

Instruction RAM BIST address register MRC p15, 1, Rd, c15, c@, MCR p15, 1, Rd, c15, c@, 2
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-29

Programmer’s Model

Table 2-25 Register 15, implementation-specific BIST instructions (continued)

Register Read Write

Instruction RAM BIST general register MRC p15, 1, Rd, c15, c@, 3 MCR p15, 1, Rd, c15, c0, 3
Data RAM BIST address register MRC p15, 1, Rd, c15, c@, 6 MCR p15, 1, Rd, c15, 0, 6
Data RAM BIST general register MRC p15, 1, Rd, c15, c@0, 7 MCR pl5, 1, Rd, c15, c@, 7

Instruction cache RAM BIST addressregister ~ MRC p15, 2, Rd,

cl5, 0, 2 MCR pl15, 2, Rd, cl15, co, 2

Instruction cache RAM BIST general register ~ MRC p15, 2, Rd,

cl5, c0, 3 MCR pl5, 2, Rd, cl15, c0, 3

Data cache RAM BIST address register MRC p15, 2, Rd,

cl5, c0, 6 MCR pl5, 2, Rd, cl5, c@, 6

Data cache RAM BIST generd register MRC p15, 2, Rd,

cl5, c0, 7 MCR pl5, 2, Rd, cl15, co, 7

Note

ARM Ltd. recommends that you do not write application code that relies on the
presence of the BIST address and general registers. ARM Ltd. does not guarantee to
support these registers in future versions of the ARM946E-S macrocell.

The format of CP15 register 15 is shown in Table 2-26.

Table 2-26 RAM BIST control register bit definitions

Register bit Meaning when written

Meaning when read

0 DataBIST run strobe Data BIST running flag

1 Data BIST pause Data BIST pause

2 Data BIST enable Data BIST enable

3 Reserved (SBZ) Data BIST fail flag

4 Reserved (SBZ) DataBIST complete flag
15:5 DataBIST size DataBIST size

16 Instruction BIST run strobe Instruction BIST running flag
17 Instruction BIST pause Instruction BIST pause

18 Instruction BIST enable Instruction BIST enable

2-30

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

Table 2-26 RAM BIST control register bit definitions

Register bit

Meaning when written

Meaning when read

19

Reserved (SBZ) Instruction

BIST fail flag

20

Reserved (SBZ) Instruction

BIST complete flag

3121

Instruction BIST size

Instruction BIST size

—— Note

The pause and size bits of this register are not supported in all implementations.

2.3.15 Register 15, Test state register

Register 15 gives you accessto the test featuresincluded within the ARM946E-S (Rev
1) macrocell, depending on the state of the MRC, MCR, opcode, and CRm fields. See
Accessing CP15 registerson page 2-6. Memory BIST testsareinitiated by writestothis
register. BIST results and status are evaluated by reading this register. The formats of
the TAG BIST control register, RAM BIST control register, and Cache RAM Control
register are the same. The register is accessed by:

MCR p15, @, Rd, c15, c@, 0; write test state register
MRC p15, @, Rd, c15, c@, 0; read test state register

The bit assignments of the test state access register are shown in Table 2-27.

Table 2-27 Test state register bit assignments

Bit Function

31:13 Unpredictable

12 Disable DCache streaming
11 Disable | Cache streaming
10 Disable DCache linefill

9 Disable |Cache linéfill
8.0 Reserved

Reading thetest stateregister returnsbits[12:0] in theleast significant bits. The 19 most
significant bits are unpredictable. Writing the test state register updates only bits[12:9].

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-31

Programmer’s Model

In debug you must be abl e to execute code without causing linefillsto update the caches,
primarily to load new code into memory. This means that STRs, if they hit the cache,
must update the memory and the cache, and that for LDRs or instruction prefetches that
miss, alinefill isnot performed. When set, bits[10:9] prevent the respective cache from
performing alinefill on a cache miss. The memory mapping, as seen by the ARM9E-S
or by the programmer, is unchanged. Thisimproves the performance of single-stepping
when in debug.

When set, bits [12:11] prevent the respective cache from streaming datato the
ARMO9E-S while the linefill is performed to the cache. The lin€fill still occurs, but the
prefetched instruction or load datais returned to the core at the end of alinefill.

2.3.16 Register 15, Cache debug index register

Register 15 gives you access to the test features included within the ARM946E-S (Rev
1), depending on the state of the MRC and M CR opcode and CRm fields. See Accessing
CP15 registers on page 2-6.

Additional instructions and operations are required to support debug operations within
the cache. Instructions for the additional operations are listed in Table 2-28 on
page 2-32.

Table 2-28 Additional operations

Function Data Instruction

Write CP15 cache debug index Index/ MCR p15, 3, Rd, cl5, co, 0
register segment

Read CP15 cache debug index Index/ MRC p15, 3, Rd, c15, c0, 0
register segment

Instruction TAG write Data MCR p15, 3, Rd, c15, c1, @
Instruction TAG read Data MRC p15, 3, Rd, c15, c1, @
Data TAG write Data MCR p15, 3, Rd, c15, c2, @
Data TAG read Data MRC p15, 3, Rd, c15, c2, @
Instruction cache write Data MCR p15, 3, Rd, c15, c3, 0
Instruction cache read Data MRC p15, 3, Rd, c15, c3, 0
Data cache write Data MCR p15, 3, Rd, c15, c4, 0
Data cacheread Data MRC p15, 3, Rd, c15, c4, @

2-32

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

With the cache debug index register (CP15 r15), you can access any location within the
instruction or data cache. You must program this register before using any of the TAG
or cache read/write operations. The cache debug index register provides an index into

the cache memories.

The format of the index/segment datais shown in Figure 2-5.

313029 N+1 N 5 4 210
Should be zero Index Word |gp7
address
|
Segment

Figure 2-5 Index/segment format

The size of the index varies depending on the implemented cache size. Table 2-20 on
page 2-23 shows how the index address field size changesfor the cache sizes supported
by the ARM946E-S (Rev 1).

Note
For TAG operations, the word address field in the cache debug register isignored.

The dataformat for the TAG read/write operations is shown in Figure 2-6.

31 N+1 N 543210

Dirty
TAG address Index bits Set

Valid

Figure 2-6 Data format TAG read/write operations

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 2-33

Programmer’s Model

Thesize of theindex and address TAGs vary depending on the implemented cache size.
Table 2-29 shows how theindex and TAG addressfield sizes change for the cache sizes
supported by the ARM946E-S (Rev 1).

Table 2-29 Index fields for supported cache sizes

Cache size TAG Index
4KB Addr[31:10] Addr[9:5]
8KB Addr[31:11] Addr[10:5]
16KB Addr[31:12] Addr[11:5]
32KB Addr[31:13] Addr[12:5]
64KB Addr[31:14] Addr[13:5]
128KB Addr[31:15] Addr[14:5]
256K B Addr[31:16] Addr[15:5]
512KB Addr[31:17] Addr[16:5]
1MB Addr[31:18] Addr[17:5]

2.3.17 Register 15: Trace Control Register

Thisregister allows masking of interrupts during trace in the ARM946E-S (Rev 1). It
enables you to determine whether nIRQ or FIQ interrupts take priority over
FIFOFULL to prevent the core being stalled if an interrupt is received whilst
FIFOFULL isasserted. Access instructions for register 15 are shown in Table 2-30

Table 2-30 Trace control register

Register Read Write

Trace Control Register MRC p15, 1, Rd, c15, cl, @ MCR p15, 1, Rd, cl5, c1, @

2-34 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Programmer’s Model

The bit assigns for this register are shown in Table 2-31. If bit 1 is set, nIRQ interrupts
are masked during trace. If bit 2 is set, nFIQ interrupts are masked during trace. When
these bits are set to 0, FIFOFUL L does not stall the core during interrupts. Bits[2:1]
of thisregister arereset to 0.

Table 2-31 Trace control register bit assignments

Register bit Content

0 Reserved (Should be zero)

1 1 =Mask nlRQ interrupts during trace
0 = Do not mask nlRQ interrupts during trace

2 1 = Mask nFIQ interrupts during trace
0 = Do not mask nFIQ interrupts during trace

3 Reserved (Should be zero)

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 2-35

Programmer’s Model

2-36 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Chapter 3
Caches

To reduce the effective memory access time, the ARM946E-S (Rev 1) uses a cache

controller, an Instruction Cache (ICache), and a Data Cache (DCache). This chapter
describes the features and behavior of each of these blocks. It contains the following

sections:

. Cache architecture on page 3-2
. | Cache on page 3-6

. DCache on page 3-8

. Cache lockdown on page 3-12.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved.

3-1

Caches

3.1 Cache architecture
The ARM946E-S (Rev 1) macrocell incorporates |Cache and DCache. You can tailor
the size of these to suit individual applications. A range of different cache sizesis
supported:
. OKB
. 4KB
. 8KB
. 16KB
. 32KB
. 64KB
. 128KB
. 256KB
. 512KB
. 1MB.
You can select the |Cache and DCache sizes independently.
The ICache and DCache are formed from synchronous SRAM, and have similar
architectures. An example 8K cache is shown in Figure 3-1 on page 3-3.
3-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Addr
[31:11]
Addr

Addr
[31:0]

[10:5] /

Caches

4w,

Qr,
59w,
"y

3

Or,
v

R4

Sy N

v

Sy R

Set b &
il
SN

<%

»

»

Figure 3-1 Example 8KB cache

The ICache and DCache are four-way set associative, with a cache line length of 8
words (32 bytes). Each cache supports single-cycle read access.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-3

Caches

Each cache segment consists of a TAG RAM for storing the cache line address and a
data RAM for storing the instructions or data.

During a cache access, all TAG RAMs are accessed for the first nonsequential access,
and the TAG address compared with the access address. If amatch (or hit) occurs, the
data from the segment is selected for return to the ARM9E-S core. If none of the TAGs
match (amiss), then external memory must be accessed, unlessthe accessis a buffered
write when the write buffer is used.

If aread access from a cachable memory region misses, new dataisloaded into one of
the four segments. Thisis an allocate on read miss replacement policy. Selection of the
segment is performed by a segment counter that can be clocked in a pseudo-random
manner, or in a predictable manner based on the replacement algorithm selected.

Critical or frequently accessed instructions or data can be locked into the cache by
restricting the range of the replacement counter. You cannot replace locked lines. They
remain in the cache until they are unlocked or flushed.

The access address from the ARM9E-S core can be split into four distinct segments:
. byte address (Addr[1:0])

. word address (Addr[4:2])

. index (cacheline)

. address TAG.

Thesize of theindex and address TAGs vary depending on the implemented cache size.
Table 3-1 shows how the index and TAG sizes change for the cache sizes supported by
the ARM946E-S (Rev 1) macrocell.

Table 3-1 TAG and index fields for supported cache sizes

Cache size Index TAG

4KB Addr[9:5] Addr[31:10]
8KB Addr[10:5] Addr[31:11]
16KB Addr[11:5] Addr[31:12]
32KB Addr[12:5] Addr[31:13]
64KB Addr[13:5] Addr[31:14]
128KB Addr[14:5] Addr[31:15]

3-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Caches

Table 3-1 TAG and index fields for supported cache sizes (continued)

Cache size Index TAG

256K B Addr[15:5] Addr[31:16]
512KB Addr[16:5] Addr[31:17]
1IMB Addr[17:5] Addr[31:18]

For example, the access address is broken down as shown in Table 3-2 for a 4Kbyte
cache.

31 109 5 4 210

TAG Index Word | Byte

Figure 3-2 Access address for a 4KB cache
Three additional bits are associated with each TAG entry:

Valid bit Thisis set when the cache line has been written with valid data.
Only avalid line can return a hit during a cache lookup. On reset,
al thevalid bits are cleared.

Dirty bits These are associated with write operations in the DCache and are
used to indicate that a cache line contains data that differs from
data stored at the addressin external memory. One bit isallocated
for each half cacheline.

Data can only be marked as dirty if it residesin awrite back
protection region.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-5

Caches

3.2

3.2.1

3.2.2

ICache

The ARM946E-S (Rev 1) macrocell has a four-way set-associative |Cache. You can
choose the size of the |Cache from any of the supported cache sizes. The |Cache uses
the physical address generated by the processor core. It uses apolicy of allocate on
read-miss, and is always reloaded one cache line (eight words) at atime, through the
external interface.

Enabling and disabling the ICache

You can enable the | Cache by setting bit 12 of the CP15 control register. The cacheis
only enabled if the protection unit is already enabled, or if they are enabled
simultaneously. When the ICache is enabled, a cachable read-miss places linesin the
|Cache.

You can enable the | Cache and protection unit simultaneously with asingle writeto the
CP15 control register, although you must program at least one protection region before
you enable the protection unit. You can lock critical or frequently accessed instructions
into the ICache.

ICache operation

When enabled, the | Cache operation is additionally controlled by the Cachable
instruction (Ci) bit stored in the protection unit. This selectively enables or disables
caching for different memory regions. The Ci hit affects |Cache operation as follows:

Successful cache read
Datais returned to the core only if the Ci bitis 1.

Unsuccessful cacheread

If the Ci bit is 1, alinefetch of eight wordsis performed. The
linefetch starts with the requested address aligned to an
eight-word boundary (that is, the linefetch starts with word 0). If
the Ci hit is 0, asingle-word external accessis performed to fetch
the requested instruction. The cache is not updated.

You can disablethe | Cache by clearing bit 12 of the CP15 control register. This prevents
all ICache look-ups and linefills, and forces all instruction fetches to be performed as
single external accesses.

3-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Caches

3.2.3 ICache validity

The ARM946E-S (Rev 1) macrocell does not support external memory snooping.
Therefore if you write self-modifying code, the instructions in the | Cache can become
incoherent with external memory. Similarly, if you reprogram the protection regions,
code might exist in the cache that should be in a noncachable region. In either of these
cases you must flush the ICache.

You can flush the entire | Cache by softwarein one operation, or you can flushindividual
cache lines by writing to the CP15 cache operations register (register 7). The ICacheis
automatically flushed during reset. The | Cache never hasto be cleaned becauseitsonly
source of dataisfrom external memory. (The ARM9E-S processor only performsreads
from the | Cache, except during debug operations.)

Flushing the entire cache

As shown in Table 2-19 on page 2-22, you can flush the entire |Cache using an MCR
instruction. In this case, the contents of the ARM register transferred to CP15 must be
zero. You can use the following code segment to do this:

MOV ro, #0 ; Clear ro
MCR p15, @, r@, c7, c5, 0; Flush entire instruction cache

—— Note
The use of rOis arbitrary.

Flushing the entire cache also flushes any locked-down code. If you want to preserve
locked down code, you must flush lines individually, avoiding the locked down lines.

Flushing a single cache line

You can flush single cache lines. To do this, you must specify in Rd the address to be
flushed from the cache. You can use the following code segment to do this:

LDR r@, =FlushAddress; Load r@ with address FlushAddress
MCR p15, r@, c7, c5, 1; Flush single cache Tine

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 3-7

Caches

3.3

331

DCache

The ARM946E-S (Rev 1) macrocell has a four-way set-associative DCache. You can
choose the size of the DCache from any of the supported cache sizes. The DCache uses
the physical address generated by the processor core. It uses an allocate on read-miss
policy, and is aways reloaded one cache line (eight words) at atime, through the
external interface.

The DCache supports both Write Back (WB) and Write Through (WT) modes. For data
stores that hit in the DCache, in WB mode the cache line is updated and the dirty bit
associated with the half cacheline updated is set. Thisindicatesthat theinternal version
of the data differs from that in external memory. In WT mode, a store that hitsin the
DCache causes the cache line to be updated but not masked as dirty, asthe datastoreis
also written to the write buffer to keep the external memory consistent. In both WB and
WT modes, a store that missesin the cacheis sent to the write buffer. When alinefetch
causes a cache line to be evicted from the DCache, the dirty bit for each half of the
victim lineisread and, if the half-line contains valid and dirty data, it iswritten back to
the write buffer before the linefill replacesit.

The Cachable data (Cd) and Bufferable data (Bd) bits control the behavior of the
DCache. For this reason the protection unit must be enabled when the DCacheis
enabled.

Enabling and disabling the DCache

You can enable the DCache by setting bit 2 of the CP15 control register. The cacheis
only enabled if the protection unit is already enabled, or is enabled simultaneously.

You can enabl e the DCache and protection unit simultaneously with asinglewriteto the
CP15 control register, although you must program at least one protection region before
you enable the protection unit.

You can disable the DCache by clearing hit2 of the CP15 control register.
The DCacheis automatically disabled and flushed on reset.

When the DCache is disabled, cache searches are prevented. This marks all data
accesses as honcachable, forcing the ARM946E-S (Rev 1) macrocell to perform
external accesses. Thewrite buffer control isstill decoded from the Bd and Cd bits. The
Cd hit isforced to 0 (noncachable).

3-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Caches

3.3.2 Operation of the Bd and Cd bits

The Cd bit determines whether data being read must be placed in the DCache and used
for subsequent reads. Typically, main memory is marked as cachabl e to reduce memory
accesstime and therefore increase system performance. It isusual to mark input/output
space as noncachable. For example, if a processor is polling amemory-mapped register
ininput/output space, it isimportant that the processor isforced to read datadirect from
the peripheral, and not a copy of initial data held in the DCache.

The Bd and Cd bits affect writes that both hit and missin the DCache. If the Bd and Cd
bits are both 1, the area of memory is marked as write back, and stores that hit in the
DCache only update the cache, not external memory. If the Bd bit is 0 and the Cd hit is
1, the area of memory is marked as write through, and stores that hit in the DCache
update both the cache and external memory.

3.3.3 DCache operation

When the DCacheisenabled, it is searched when the processor performsaload or store.
If the cache hits on aload, datais returned to the cache if the Cd bit is 1. If the cache
read misses, the Cd hit is examined. The meaning of the values of the Cd bit are shown
in Table 3-2.

Table 3-2 Meaning of Cd bit values

Cd bit value Meaning

1 Cachable data area and protection unit enabled. A linefill of eight wordsis
performed and the data is written into a randomly chosen segment of the
DCache.

0 A single or multiple external accessis performed and the cache is not
updated.

Stores that hit in the cache update the cache line if the Cd bit is 1. Stores that missthe
cache use the Cd and Bd bits to determine whether the write is buffered. A write miss
is not loaded into the cache as aresult of that miss.

Load and store multiples are broken up on 4K B boundaries (the minimum protection
region size), allowing a protection check to be performed in case the Load Multiple
(LDM) or Store Multiple (STM) crosses into a region with different protection properties.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 3-9

Caches

3.34

3.3.5

DCache validity

The ARM946E-S (Rev 1) macrocell does not support memory tranglation so you can
always consider the datain the DCache as valid within the context of the ARM946E-S
(Rev 1) macrocell. However, if you use external memory tranglation, and the mappings
are changed, the DCache is no longer consistent with external memory, and you must
flushit.

The ARM946E-S (Rev 1) macrocell does not support external memory snooping. Any
shared data memory space therefore, must not be cachable. Additionaly, if you
reprogram the data protection regions, data already in the cache might now bein a
noncachabl e region, and you must flush it.

DCache clean and flush

The DCache has flexible cleaning and flushing utilities that allow the following
operations:

. You can invalidate the whole DCache (flush DCache) in one operation without
writing back dirty data.

. You can invalidate individual lines without writing back any dirty data (flush
DCache single entry).

. You can perform cleaning on aline-by-line basis. The datais only written back
through the write buffer when a dirty line is encountered, and the cleaned line
remainsin the cache (clean DCachesingleentry). You can clean cachelinesusing
either their index within the DCache, or their address within memory.

. You can clean and flush individual linesin one operation, using either their index
within the DCache, or their address within memory.

You perform the cleaning and flushing operations using CP15 register 7, in asimilar
way to the ICache.

The format of Rd transferred to CP15 for all register 7 operationsis shown in
Figure 3-3.

313029 N+1N 5 4 0

Should be zero Index SBZ

|
Segment

Figure 3-3 Register 7, Rd format

3-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Caches

Thevalue of N is dependent on the cache size, as shown in Table 3-3.

Table 3-3 Calculating index addresses

Cache size Value of N
4KB 9

8KB 10

16KB 11

32KB 12

64KB 13

128KB 14

256KB 15

512KB 16

1MB 17

Thevalue of N is derived from the following equation:

cache size

N =Iogz(

number of sets x line length in byt

Where the number of sets x the line length in bytesis 128.

Itisusual to clean the cache before flushing it, so that external memory is updated with
any dirty data. The following code segment shows how you can clean and flush the
entire cache (assuming a 4K byte DCache).

MOV rl, #0
outer_Toop
MOV ro, #0
inner_loop
ORR r2, rl, r@
MCR p15, @, r2, c7, cl4, 2
ADD ro, ro, #0x20
CMP r@, #0x400
BNE inner_Toop
ADD r1, rl, #0x40000000
CMP rl, #0x0
BNE outer_Toop

; Initialize segment counter

; Initialize line counter

Generate segment and line address
Clean and flush the line

Increment to next Tine

Complete all entries in one segment?
If not branch back to inner_loop
Increment segment counter

Complete all segments

If not branch back to outer_loop

End of routine

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 3-11

Caches

3.4 Cache lockdown
To provide predictable code behavior in embedded systems, a mechanism is provided
for locking codeinto the | Cache and DCacherespectively. For example, you can usethis
featureto hold high-priority interrupt routineswhere thereisahard real-time constraint,
or to hold the coefficients of a DSP filter routine in order to reduce external bus traffic.
You can lock down aregion of the | Cache or DCache by executing a short software
routine, taking note of these requirements:
. the program must be held in a noncachable area of memory
. the cache must be enabled and interrupts must be disabled
. software must ensure that the code or datato belocked downis not already in the
cache
. if the caches have been used after the last reset, the software must ensure that the
cachein question is cleaned, if appropriate, and then flushed.
You can carry out lockdown in the DCache using CP15 register 9. |Cache lockdown
uses both CP15 registers 7 and 9.
As described in Cache architecture on page 3-2, the ARM946E-S (Rev 1) ICache and
DCache each comprise four segments. You can perform lockdown with agranularity of
one segment. The smallest space that you can lock down is one segment (one quarter of
cache size). Lockdown starts at segment zero, and can continue until three of the four
segments are locked.
3.4.1 Locking down the caches
The procedures for locking down a segment in the | Cache and DCache are dightly
different. In both cases you must:
1. Put the cache into lockdown mode by programming register 9.
2. Forcealinfill.
3. Lock the corresponding data in the cache.
DCache lockdown
For the DCache, the procedure is as follows:
1. Writeto CP15 register 9, setting DL=1 (DL is bit 31, the load bit) and Dindex=0
(Dindex are bits 1:0, the cache segment hits).
3-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Caches

2. Initialize the pointer to the first of the words to be locked into the cache.

3. Execute an LDR from that location. Thisforcesalinefill from that |ocation and the
resulting eight words are captured in the cache.

4. Increment the pointer by 32 (number of bytesin acacheline).
5. Execute an LDR from that location. The resulting linefill is captured in the cache.

6. Repeat steps4 and 5 until all words are loaded in the cache, or one quarter of the
cache has been loaded.

7. Writeto CP15 register 9, setting DL=0 and Dindex=1.

If there is more data to lockdown, at the final step, the DL bit must be left HIGH and
the process repeated. The DL bit must only be set LOW when all the lockdown data has
been loaded. The Dindex bits must be set to the next available segment.

Note

Thewriteto CP15 register 9 must not be executed until the linefill has completed. This
isachieved by aligning the LDR to the last address of the line.

ICache lockdown
For the ICache, the procedureis as follows:

1. Writeto CP15 register 9, setting IL=1 (the load bit) and lindex=0 (the cache
segment hits).

Initialize the pointer to the first of the words to be locked into the cache.
Force alin€fill from that location by writing to CP15 register 7 (ICache prel oad).

Increment the pointer by 32 (number of bytesin a cacheline).

o A WD

Force alinefill from that location by writing to CP15 register 7. The resulting
linefill is captured in the ICache.

6. Repeat steps4 and 5 until all words are loaded in the cache, or one quarter of the
cache has been loaded.

7. Writeto CP15 register 9, setting IL=0 and lindex=1.

If there are moreinstructionsto lockdown, at thefinal step, thelL bit must beleft HIGH
and the process repeated. The IL bit must only be set LOW when al the lockdown
instructions have been loaded. The lindex bits must be set to the next avail able segment.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 3-13

Caches

Theonly significant difference between the sequence of operationsfor the DCache and
| Cacheisthat an MCR instruction must be used to force the linefill in the | Cache, instead
of an LDR. Therest of the sequence is the same as for DCache lockdown.

The MCR to perform the ICache fetch is a CP15 register 7 operation:

MCR p15, @, Rd, c7, c13, 1

Example ICache lockdown subroutine
A subroutine that you can use to lock down code in the ICacheiis:

; Subroutine Tock_i_cache
; rl contains the start address
; r2 contains the end address
; Assumes that r2 - rl fits within one cache set
; The subroutine performs a lockdown of instructions in the
instruction cache
It first reads the current lock_down index and then Tocks
down the number of sets required
Note - This subroutine must be located in a noncachable
region of memory
- Interrupts must be disabled
- Subroutine must be called using the BL instruction
- rl-r3 can be corrupted in line with ARM/Thumb
; Procedure Call Standards (ATPCS)
; - Returns final ICache Tockdown index in r@ if successful
; - Returns OxFFFFFFFF in r@ if an error occurred

Tock_I_cache

BIC rl, rl, #0x7f ;Align address to cache Tine

MRC p15, @, r3, c9, c0, 1 ;Get current ICache index

AND r3, r3, #0x3 ;Mask unwanted bits

CMP r3, #0x3 ;Check for available set

BEQ error ;If no sets available,
;generate an error

ORR r3, r3, #0x8000000 ;Set the Tockdown bit

MCR pl5, 0, r3, c9, c0, 1 ;Write Tockdown register

Tock_Toop

MCR p15, @, rl, c7, cl13, 1 ;Force an instruction fetch
;from address rl

ADD rl, rl, #0x20 ;Increment address by a
;cache line length

CMP r2, r1 ;Reached our end address yet?

BLT Tock_Toop ;If not, repeat Tloop

ADD r3, r3, #0x1 ;Increment ICache index

BIC r0, r3, #0x8000000 ;Clear Tockdown bit and

;Write index into ro@

3-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Caches

MCR p15, 0, r3, c9, c0, 1 ;Write lockdown register

MOV pc, 1r ;Return from subroutine
error

MVN ro@, #0 ;Move OXFFFFFFFF into ro

MOV pc, 1r ;Return from subroutine

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 3-15

Caches

3-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Chapter 4
Protection Unit

This chapter describes the ARM946E-S (Rev 1) protection unit. It contains the
following sections:

. About the protection unit on page 4-2
. Memory regions on page 4-3
. Overlapping regions on page 4-6.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved.

4-1

Protection Unit

4.1 About the protection unit

The protection unit alows you to partition memory and set individual protection
attributesfor each protection region. You can divide the address spaceinto eight regions
of variable size. Figure 4-1 on page 4-2 shows a simplified block diagram of the

protection unit.

Address comparators

hit

L

Address from ARM9E-S

Attribute registers

Priority
encoder

Abort Attributes

Figure 4-1 ARM946E-S protection unit

The protection unit is programmed using CP15 registers 1, 2, 3, 5, and 6 (see Accessing

CP15 registers on page 2-6).

4.1.1 Enabling the protection unit

Before the protection unit is enabled, you must program at least one valid protection
region. If you do not do this the ARM946E-S macroell can enter astate that is

recoverable only by reset.

Setting bit 0 of the CP15 register 1, the control register, enables the protection unit.

When the protection unit isdisabled, all instruction fetches are noncachable and all data
accesses are honcachable and nonbufferable.

4-2 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

Protection Unit

4.2 Memory regions

You can partition the address space into a maximum of eight regions. Each region is
specified by the following:

. region base address

. region size

. cache and write buffer configuration

. read and write access permissions.

The ARM architecture uses constants known as inline literalsto perform address
calculations. These constants are automatically generated by the assembler and
compiler and are stored inline with the instruction code. To ensure correct operation,
you must define an area of memory, from where codeisto be executed, that allows both
data and instruction accesses.

Thebase address and size properties are programmed using CP15 register 6. Theformat
for thisis shown in Table 4-1.

Table 4-1 Protection register format

Register bits Function

31:12 Region base address

11:6 Unused

51 Region size

0 Region enable
Reset to disable (0).

4.2.1 Region base address

The base address defines the start of the memory region. You must align thisto a
region-sized boundary. For example, if aregion size of 8KB is programmed for agiven
region, the base address must be a multiple of 8KB.

— Note
If the region is not aligned correctly, this results in unpredictable behavior.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 4-3

Protection Unit

4.2.2 Region size

Theregion sizeis specified as afive-bit value, encoding arange of values from 4K B to
4GB. The encoding is shown in Table 4-2.

Table 4-2 Region size encoding

Bit encoding Area size
00000 to 01010 Reserved
01011 4KB
01100 8KB
01101 16KB
01110 32KB
01111 64KB
10000 128KB
10001 256KB
10010 512KB
10011 iMB
10100 2MB
10101 4MB
10110 8MB
10111 16MB
11000 32MB
11001 64MB
11010 128MB
11011 256MB
11100 512MB
11101 1GB
11110 2GB
11111 4GB

4-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Protection Unit

—— Note

Any value less than b01011 programmed in CP15 register 6 bitg[5:1] resultsin
unpredictable behavior.

4.2.3 Partition attributes

Each region has a number of attributes associated with it. These control how amemory
access is performed when the processor core issues an address that falls within a given
region. The attributes are:

. cachable

. bufferable (for data regions only)

. read/write permissions.

You specify thisinformation by programming CP15 registers 2, 3, and 5 (see Chapter 2
Programmer’s Model). If an access failsits protection check (for example, if a User
mode application attempts to access a Privileged mode access only region), a memory
abort occurs. The processor enters the abort exception mode, branching to the Data
Abort or Prefetch Abort vector accordingly.

The cachable and bufferable bitsin CP15 registers 2 and 3 are used together to select
one of four cache and write buffer configurations. These are described in Chapter 6 Bus
Interface Unit and Write Buffer, and specifically in The write buffer on page 6-13.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 4-5

Protection Unit

4.3

43.1

Overlapping regions

Background

You can program the protection unit with two or more overlapping regions. When
overlapping regionsare programmed, afixed priority schemeisapplied to determinethe
overlapping region attribute that is applied to the memory access (attributes for region
7 take highest priority, those for region 0 take lowest priority). For example:

Region 2 Is programmed to be 4K B in size, starting from address 0x3000
with Dap[3:0] = 0010. (Privileged mode full access, User mode
read only.)

Region 1 Is programmed to be 16KB in size, starting from address 0x0000
with Dap[3:0] = 0001. (Privileged mode access only.)

When the processor performs a data write to address 0x3010 while in User mode, the
addressfallsinto both region 1 and region 2, as shown in Figure 4-2. Because thereisa
clash, the attributes associated with region 2 are applied. Because you are only allowed
to perform reads from thisregion, a Data Abort occurs.

0x4000 A
0x3010 ——» I Region 2

0x3000

Region 1

0x0000 v

Figure 4-2 Overlapping memory regions

regions

Overlapping regionsincrease the flexibility of how the eight regions can be mapped
onto physical memory devices in the system. You can also use the overlapping
properties to specify abackground region. For example, you might have a number of
physical memory areas sparsely distributed across the 4GB address space. If a
programming error occurs therefore, it might be possible for the processor to issue an
address that does not fall into any defined region.

4-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Protection Unit

If the address issued by the processor falls outside any of the defined regions, the
ARMO946E-S (Rev 1) protection unit is hard-wired to abort the access. You can override
this behavior by programming region 0 to be a 4GB background region. In thisway, if
the address does not fall into any of the other seven regions, the accessis controlled by
the attributes you have specified for region 0.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 4-7

Protection Unit

4-8

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

Chapter 5
Tightly-coupled Memory Interface

This chapter describes the Tightly-Coupled Memory (TCM) interface in the
ARMO946E-S (Rev 1) processor. It contains the following sections:

. ARM946E-S (Rev 1) TCM interface description on page 5-2

. Using CP15 control register on page 5-3.

. Enabling the instruction tightly-coupled memory during soft reset on page 5-7
. DTCM Accesses on page 5-8

. ITCM accesses on page 5-9

For details of the ARMOE-S interface signals referenced in this chapter, see the
ARMOE-S Technical Reference Manual.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-1

Tightly-coupled Memory Interface

5.1

ARMO946E-S (Rev 1) TCM interface description

Theinstruction and data Tightly- Coupled Memories (TCMs) are placed outside the
ARMO946E-S (Rev 1) boundary. This enables greater flexibility in the memory attached
to the ARM946E-S (Rev 1). The memories used must support single-cycle accesses
from the ARM946E-S (Rev 1).

The Instruction Tightly Coupled Memory (ITCM) and Data Tightly Coupled Memory

(DTCM) can both be of any size from 0 bytesto 1M B, although to ease implementation
the size must be an integer power of two. The miminum size for a TCM when present
is4KB. The ITCM and DTCM can have different sizes.

ARMO946E-S (Rev 1) supports synchronous TCM for the tightly-coupled RAM. The
memory cells must be capable of returning datato the ARM9E-S coreinasinglecycle.
This requirement appliesto both the ITCM and DTCM.

To enable the ITCM to be initialized, and for accessto literal tables during execution,
the datainterface of the ARM9E-S core processor must be able to access the ITCM.
This meansthat the ARM946E-S (Rev 1) processor must multiplex theinstruction and
dataaddresses before entering the ITCM. It also meansthat theinstruction dataisrouted
to both the instruction and data interfaces of the core. See ITCM accesses on page 5-9
for details of this data and address multiplexing.

Figure 5-1 on page 5-2 shows atypical ITCM read cycle. The enable signal, En, is
either ITCMEnN or DTCM En, depending on whether Instruction or Data memory is
being accessed. The TCM interface signals are described in TCM interface signals on

page B-4.

SRAM access time

>
<

CLK | | |
En _J \

ADRS[31:0] X Adaro X/

DO[31:0] ¥ pog X

Figure 5-1 TCM read cycle

The ITCM islocated at address 0x00000000 in the memory map. This simplifiesthe
implementation of the design by removing the requirement for complex address
comparators on both the instruction and data interfaces of the ARM9E-S core to
generate the chip select logic for the ITCM.

5-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Tightly-coupled Memory Interface

5.2 Using CP15 control register

When out of reset, the behavior of the tightly-coupled memory is controlled by the state
of CP15 control register.

5.2.1 Enabling the ITCM

You can enable the ITCM by setting bit 18 of the CP15 control register. You must use
read-modify-write to access this register to preserve the contents of the bits not being
modified. See Register 1, Control register on page 2-12 for details of how to read and
write the CP15 control register. When you have enabled the ITCM, all future ARM9E-S
instruction fetches and data accesses to the ITCM address space cause the ITCM to be
accessed.

Enabling the ITCM greatly increases the performance of the ARM946E-S (Rev 1)
processor because the majority of accessesto it can be performed with no stall cycles.
Accessing the AHB however, can cause several stall cycles for each access.

You must take care to ensure that the ITCM is appropriately initialized beforeit is
enabled and used to supply instructions to the ARM9E-S core. If the core triesto
execute instructions from uninitialized I TCM, the behavior is unpredictable.

5.2.2 Disabling the ITCM

You can disable the ITCM by clearing bit 18 of the CP15 control register. See Register
1, Control register on page 2-12 for details of how to read and write the CP15 control
register. When you have disabled the ITCM, all future ARMOE-S instruction fetches
access the AHB.

The contents of the memory are preserved when it is disabled. If it is re-enabled,
accesses to previoudly initialized memory locations return the preserved data.

5.2.3 ITCM load mode

You must initialize the ITCM with the required code image before execution from the
ITCM.

You can initialize the ITCM by writing to the memory from the AM9E-S core data
interface.

Thel TCM load mode alowsthisto be donein an efficient manner. Using theload mode
allowsyou to copy from an addressin the data cache or external memory into the same
address within the ITCM.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 5-3

Tightly-coupled Memory Interface

524

The ITCM load mode hit of CP15 Register 1 inhibits reads from the ITCM, forcing
reads from addresses that are within the ITCM address range to access either main
memory, the data cache. Writes to addresses that are within the ITCM range are not
affected by the Instruction Load Mode hit.

The procedure for initializing the ITCM using the load mode is as follows:
1. Enablethe | TCM and instruction load mode.

2 Load ARM registers from main memory, data cache, or data RAM.
3. Store ARM registersinto ITCM.
4

Increment address pointers and repeat |oad/store steps until the code image has
been copied.

A suggested assembler code sequence for this procedure is:

MOV RO, #0 ; Initialize pointer

LDR R1, =ImageTop ; Define end of code image

MRC p15, @, R2, cl, c@, @ ; Read Control Register

ORR R2, R2, #&C0000

MCR p15, @0, R2, cl, c@, @ ; Enable Instruction RAM and Load Mode
CopyLoop

LDMIA RO, {R2 - R9} ; Load 8 registers from main memory

STMIA RO!, {R2 - R9} ; Store 8 regs into instruction SRAM

CMP R1, RO ; Check if Tlimit reached

BGT CopyLoop ; Repeat if more to do

SWP and SWPB operationsto theinstruction tightly-coupled memory whileitisin load
mode have unpredictable results. The read accesses external memory or the data cache,
and the write updates the instruction tightly-coupled memory.

SWP and SWPB operations must not be performed to addresses in the instruction
tightly-coupled memory space whileit isin load mode.

Enabling the DTCM

You can enable the DTCM by setting bit 16 of the CP15 control register. See CP15
register map summary on page 2-4 for details of how to read and write this register.
When you have enabled the DTCM, see Register 9, Tightly-coupled memory region
registers on page 2-26, al future read and write accesses to the DTCM address space
cause the DTCM to be accessed.

5-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Tightly-coupled Memory Interface

5.2.5 Disabling the DTCM

You can disable the DTCM by clearing bit 16 of the CP15 control register. When you
have disabled the DTCM, see Register 9, Tightly-coupled memory region registers on
page 2-26, all future readsand writesto the DTCM address space accessthe AHB. Read
and write accesses to ITCM address space either use the ITCM or access the AHB
depending on whether ITCM is enabled or not.

5.2.6 DTCM load mode

You must initialize the DTCM with the required data image before use.

You can initialize the DTCM by writing to the memory from the AM9E-S core data
interface.

The DTCM load mode enables this to be done in an efficient manner. Using the load
mode enables you to copy from an address in the data cache or external memory into
the same address within the DTCM.

The DTCM load mode bit of CP15 Register 1 inhibits reads from the DTCM, forcing
reads from addresses that are within the DTCM address range to access either main
memory or the data cache. Writes to addresses that are within the DTCM range are not
affected by the data load mode bit.

The procedure for initializing the DTCM using the load mode is as follows:
1. Enablethe DTCM and dataload mode.

2 Load ARM registers from main memory or data cache.

3. Store ARM registersinto data RAM.
4

Increment address pointers and repeat |oad/store steps until the dataimage has
been copied.

A suggested assembler code sequence for this procedure is:

LDR RO, #ImageStart ; Initialize pointer

LDR R1, =ImageTop ; Define end of data space

MRC p15, @, R2, cl, c@, @ ; Read Control Register

ORR R2, R2, #&30000

MCR p15, @, R2, cl, c0, @ ; Enable Data RAM and Load Mode
CopyLoop

LDMIA RO, {R2 - R9}

STMIA RO!, {R2 - R9}

CMP R1, RO

BGT CopyLoop

Load 8 registers from main memory
Store 8 regs into instruction SRAM
Check if 1imit reached
Repeat if more to doS

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 5-5

Tightly-coupled Memory Interface

SWP and SWPB operationsto the datatightly-coupled memory whileitisinload mode have
unpredictable results. The read accesses external memory or the data cache, and the
write updates the data tightly-coupled memory.

SWP and SWPB operations must not be performed to addresses in the data tightly-coupled
memory space whileit isin load mode.

5-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Tightly-coupled Memory Interface

5.3 Enabling the instruction tightly-coupled memory during soft reset

Following a soft reset, you can use the ITCM for the reset vector. Thisis achieved by
the INITRAM pin. If asserted this pin enablesthe ITCM at reset. The address space
allocated for the ITCM defaultsto the physical size of the I TCM. To usethe reset vector
in the ITCM, the memory contents must be preserved during reset. The VINITHI pin
must be de-asserted so that the reset vector islocated at address 0x00000000.

The INITRAM pin does not affect the DTCM, which isdisabled at reset.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 5-7

Tightly-coupled Memory Interface

54 DTCM Accesses
Accesses to the DTCM do not incur stall cycles unless awritetothe DTCM is
completing. This accessis shown in Figure 5-2.
CLK | | |
DnMREQ T A []
ORW T T
DA 00 oo 0C o XX XX
CLKEn V V 1\ ﬂi ‘
RAM Addr XX oo T o XX
RAM DOut :X:X Do X:X D1
RAM Din XX 0 o0 XX XX
RAM WE g 1 |
Figure 5-2 Data write followed by dataread of DTCM
5-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Tightly-coupled Memory Interface

55 ITCM accesses

The ITCM provides deterministic behavior for time-critical operations, and is located
at address 0x00000000 within the processor memory map.

The ITCM isimplemented using single port synchronous compiled memory.
The protection unit does not have to be enabled for the ITCM to be used.

If the protection unit is enabled then the access permissions programmed into the
protection unit are applied to accesses to the ITCM.

The ITCM can be accessed for either instruction fetches or data accesses (read and
write) from the ARM946E-S (Rev 1) core processor.
551 Instruction Accesses to ITCM
Instruction accesses to the ITCM are single-cycle read accesses. No stall cyclesare
required for instruction accesses to the ITCM unless there is a data access compl eting.
5.5.2 Data Accesses to ITCM
Data accessesto the ITCM can either be reads or writes.
Data access to the ITCM can introduce stall cyclesto the ARM946E-S (Rev 1)
macrocell.
5.5.3 Stall cycles for ITCM accesses

Simultaneous instruction fetch and data reads of the ITCM incur asingle stall cycle.
Thisisbecausethe ITCM isasingle port memory, which can only return a single word
of memory per clock cycle. Thisis shown in Figure 5-3.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-9

Tightly-coupled Memory Interface

ClLK | |
INMREQ A\ i Vv

1A 00 T il

paMREQ |1\ i Vv

DnRW AN [

DA 000 T =k

CLKEN Vv W g
ramadar DOC_© DOC o0 TXX
RAMDOut Y™ o [o) [Y) ooy

Figure 5-3 Simultaneous instruction fetch and data read of ITCM

A datawrite to the ITCM followed by a dataread from the ITCM incurs asingle stall
cycle. Thisis because the memory requires that the write addressis pipelined to be
in-line with the write data. The read address cannot then be applied until the next cycle,

so requiring the stall. This sequence is shown in Figure 5-4.

5-10

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

CLK

INMREQ

1A

DnMREQ

DnRW

DA

CLKEN

RAM Addr

RAM DOut

RAM DIn

RAM WE

Tightly-coupled Memory Interface

<

<

|
v
A
AN
—

DO

= < =

-
o
V
XX

DO

()Y o

X:X Data 0

X

X:X Data 0

X

—

T

Figure 5-4 Data Write followed by Data Read of ITCM

Similarly, adatawrite operation followed by an instruction fetch incurs astall cycle, as
shown in Figure 5-5.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

5-11

Tightly-coupled Memory Interface

CLK
INMREQ
1A
DnMREQ
DnRW

DA
CLKEN
RAM Addr
RAM DOut
RAM Din

RAM WE

[

Figure 5-5 Data Write followed by Instruction Fetch of ITCM

A dataread followed by an instruction fetch also requires astall cycle. Thisstall is
incurred asaresult of the multiplexor switching being controlled by registered versions
of the ARM9E-S datamemory interface. The stall istherefore inserted for the dataread
cycle rather than the instruction read. The sequence is shown in Figure 5-6.

5-12

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

Tightly-coupled Memory Interface

CLK | | | |
INMREQ [/ N [J
IA XX X:X 10 X:X
DnMREQ T\ // V \ \
DORW] i

DA :X:X Do X:X X:X
CLKEN 1] T [V

RAM Addr :X:X X:X DO X:X 10 X:X

RAM DOut XX X:X X:X Data 0 X:X D(I0)
RAM DiIn :X:X X:X X:X X:X
RAM WE

Figure 5-6 Data Read followed by Instruction Fetch

Simultaneous instruction fetch and data write incurs asingle stall cycle due to the
pipelining of the data access to the data address. The sequence is shown in Figure 5-7.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 5-13

Tightly-coupled Memory Interface

CLK | | | |
INMREQ T\ [] XX
A 00 0
DMREQ T\ |7V O
DaRW- [T A XX
bA 0
CLKEN Ty N V
RAMAddr Y™ 0 Y oo [YX XX
RAM DOut [Y)) ooor) peta0 XX
RAM Din [y Y ata0 X XX
RAM WE T Q)

Figure 5-7 Simultaneous Instruction fetch and data write

A datawrite followed by asimultaneousinstruction fetch and data read incurs two stall
cycles. Thefirst stall is caused by the write still being active when the instruction fetch
begins. The second stall is caused by the two reads required. Thisis shown in

Figure 5-8.

5-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

CLK
INMREQ
IA
DnMREQ
DnRW

DA
CLKEN
RAM Addr
RAM DOut
RAM Din

RAM WE

Tightly-coupled Memory Interface

[l

3

[l

jﬁt§<

[l

DO

D1

DO

= = = < =

0o 0o o < o= o

Data 0

g

Figure 5-8 Data write followed by simultaneous instruction fetch and data read

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

5-15

Tightly-coupled Memory Interface

5-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Chapter 6
Bus Interface Unit and Write Buffer

This chapter describes the ARM946E-S (Rev 1) Bus Interface Unit (BIU) and write
buffer. It contains the following sections:

. About the BIU and write buffer on page 6-2

. AHB bus master interface on page 6-3

. Noncached Thumb instruction fetches on page 6-9
. AHB clocking on page 6-10

. The write buffer on page 6-13.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 6-1

Bus Interface Unit and Write Buffer

6.1

About the BIU and write buffer

The ARM946E-S (Rev 1) macrocell supports the Advanced Microprocessor Bus
Architecture (AMBA) Advanced High-performance Bus (AHB) interface. The AHB is
anew generation of AMBA interface that addresses the requirements of
high-performance synthesizabl e designs, including:

. single clock edge operation (rising edge)

. unidirectional (nontristate) buses

. burst transfers

. split transactions

. single-cycle bus master handover.

See the AMBA Rev 2.0 AHB Specification for full details of this bus architecture.

The ARM946E-S (Rev 1) BIU implements afully-compliant AHB bus master interface
and incorporates a write buffer to increase system performance. The BIU isthelink
between the ARM9E-S core with the caches and tightly-coupled SRAM and the
external AHB memory. The AHB memory must be accessed for cache linefills and for
initializing thetightly coupled memories, and to access code and datathat are not within
the cachable or tightly-coupled memory address regions.

When an AHB accessis performed, the BIU and system controller handshake to ensure
that the ARMOE-S core is stalled until the access has been performed. If you are using
thewrite buffer, you might be ableto allow the coreto continue program execution. The
BIU controls the write buffer and related stall behavior.

6-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Bus Interface Unit and Write Buffer

6.2 AHB bus master interface

The ARM946E-S (Rev 1) processor implements a fully compliant AHB bus master
interface as defined in the AMBA Rev 2.0 Specification. Seethisdocument for adetailed
description of the AHB protocol.

6.2.1 About the AHB

The AHB architecture is based on separate cycles for address and data (rather than
separate clock phases, asin ASB). The address and control for an access are broadcast
from therising edge of HCLK in the cycle before the data is expected to be read or
written. During this data cycle, the address and control for the next transfer are driven
out. Thisleadsto afully pipelined address architecture.

When an accessisin its data cycle, a slave can extend an access by driving the
HREADY signal LOW. This stretches the current data cycle, and therefore the
pipelined address and control for the next transfer is aso stretched. This providesa
system where all AHB masters and slaves sample HREADY on therising edge of
HCLK to determine whether an access has completed and a new address can be
sampled or driven out.

6.2.2 ARMO946E-S (Rev 1) transfer descriptions

The ARM946E-S (Rev 1) processor generates all four of the possible transfer types
defined in the AMBA Rev 2.0 Specification. These are:

IDLE HTRANS[1:0] = 00
BUSY HTRANS[1:0] = 01
NONSEQ HTRANS[1:0] = 10
SEQ HTRANS[1:0] = 11

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 6-3

Bus Interface Unit and Write Buffer

6.2.3 Burst sizes

The ARM946E-S (Rev 1) macrocell supports the burst types listed in Table 6-1.

Table 6-1 Supported burst types

Burst type HBURST Use
P encoding
SINGLE 000 Single writes (STR/STRH/STRB)
Uncached single reads
Uncached instruction fetches
INCR 001 Store multiple (ST™)
Uncached burst reads (LDM)
INCR4 011 Dirty half-cache line write back
INCRS8 101 Dirty cache line write back

Cache linefetches

Incrementing bursts have an address increment of four (that is, word increment).

6.2.4 Linefetch transfers

The ARM946E-S (Rev 1) macrocell is optimized to run with both the 1Cache and
DCache enabled. If amemory request (either instruction or data) to a cachable area
misses in the cache the ARM946E-S (Rev 1) macrocell performs a linefetch.

A linefetch transfer is shown in Figure 6-1 on page 6-5.

6-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Bus Interface Unit and Write Buffer

ek
HTRans ()} nsea () Nsea)X NsEQ SEQ SEQ SEQ SEQ SEQ SEQ SEQ
HaooR)Y A A A A+0x04){ ¥ A+0x08 | Y A+0xC)\ X A+0x10 | Y A+ox14){ X A+0x18 |\ Y A+0x1C
HBURST)\ INCR8
HBUSREQ |
HGRANT
HREADY |

Figure 6-1 Linefetch transfer

A linefetch is afixed length burst of eight words. The start address of alinefetch is
aligned to an eight-word boundary. The ARM946E-S (Rev 1) macrocell assertsthe bus
request HBUSREQ until the arbiter grantsthe AHB bus (HGRANT asserted). The bus
regquest is then negated. This allows optimum system performance as the arbiter can
accurately predict the end of the defined length burst.

6.2.5 Back to back linefetches

The ARM946E-S (Rev 1) macrocell supports streaming of data and instructions (core
execution is advanced during the linefetch). To allow for cache look-ups when crossing
acacheline boundary the ARM946E-S (Rev 1) macrocell must insert IDLE cyclesonto
the AHB bus. The effect of thisis shown in Figure 6-2 on page 6-6. It is assumed in
Figure 6-2 on page 6-6that HGRANT is asserted throughout, and that the HCLK
frequency isthe sasme as CLK.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 6-5

Bus Interface Unit and Write Buffer

CLK

HTRANS
HADDR
HBURST
HBUSREQ

HREADY

6.2.6

B

S U

XY sEa

\0(seQ

IDLE

IDLE IDLE NSEQ

SEQ

SEQ

SEQ

—)0(Avoxis

)\ avoxic

A+0x1C

A+0x1C A+0x1C B

B+0x4

B+0x8

B+0xC

INCR8

(X IncRs

—

Uncached transfers

Vo vV

Figure 6-2 Back-to-back linefetches

If amemory request is made to an uncachabl e region, or the ARM946E-S (Rev 1) cache
is not enabled, the memory requests are serviced by the AHB interface. Sequential
instruction fetches are treated as nonsequential reads.

Figure 6-3 shows uncached instruction fetches. Nonsequential uncached data

operations exhibit similar bus timings.

CLK

HTRANS

HADDR

HBURST

HBUSREQ

HGRANT

[\

[\

[\

AR W

)0 NsEQ

NSEQ

NSEQ

IDLE IDLE NSEQ

NSEQ

NSEQ

IDLE

0 A

N} sINGLE

SINGLE

Figure 6-3 Nonsequential uncached accesses

6-6

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

6.2.7 Burst accesses

Bus Interface Unit and Write Buffer

Uncached burst operations (STM/LDM) are performed asincrementing bursts of undefined
length on the AHB.

Figure 6-4 shows a data burst followed by an uncached instruction fetch.

ok [\ \ \ \ \ \ \
HTRANS NSEQ SEQ SEQ SEQ IDLE NSEQ IDLE
HADDR A A+4 A+8 A+C A B B

6.2.8 Bursts crossing 1KB boundary

Figure 6-4 Data burst followed by instruction fetch

The AHB specification requires that bursts must not continue across a 1KB boundary.
Linefetches and cache line write backs cannot cross a 1KB boundary because the start
addressis aligned to either afour or eight-word boundary, and the burst length is fixed.

Uncached data bursts can cross a 1KB boundary. An example of thisis shownin
Figure 6-5. The burst is restarted by inserting a nonsequential transfer as the boundary

is crossed.
ck _ [\ \ \ \ \ \ \
HTRANS NSEQ SEQ SEQ SEQ NSEQ SEQ IDLE
HADDR 0x3F0 0x3F4 0x3F8 0x3FC 0x400 0x404 0x404

Figure 6-5 Crossing a 1KB boundary

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

6-7

Bus Interface Unit and Write Buffer

6.2.9 Uncached LDC operations

Coprocessor loads of its registers from memory are shown in Figure 6-6. For signals
DnMREQ, DMORE, CLKEN and RDATA, refer to the ARM9E-S Technical
Reference Manual. The sequence assumes that the ARM946E-S macrocell already has
been granted bus ownership.

ST [) A I v I A A
DnMREQ I [I
DA I) Al L2 L » |
DMORE | |
HGRANT
HTRANS Jusea ff usy) sea ffeusy) sea ffeusy Jf seaa [IDLE
HADDR Lo JL A L S I
HBURST 1 INCR I
HWRITE I [I
HREADY N A N
HRDATA oo { Lo o2] | X
RDATA | Lo) 1oz I EE X
CLKEN I o4 4 LI 1

Figure 6-6 Uncached LDC sequence

6-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Bus Interface Unit and Write Buffer

6.3 Noncached Thumb instruction fetches

Thumb instruction fetches are performed as 32-bit accesses on the AHB interface. To
minimize busloading, AHB transfers are only performed for nonsequential addresses
and for sequential addresses that cross aword boundary. The word returned from main
memory is latched so that both halfwords are available for the processor core.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 6-9

Bus Interface Unit and Write Buffer

6.4

6.4.1

AHB clocking

The ARM946E-S (Rev 1) macrocell design usesasinglerising-edge clock CLK totime
al internal activity. In many systemsin which the ARM946E-S (Rev 1) macrocell is
embedded, you might prefer to runthe AHB at alower rate. To support thisrequirement,
the ARM946E-S (Rev 1) macrocell requires a clock enable, HCLKEN, to time AHB
transfers.

TheHCLKEN input isdriven HIGH around arising edge of the ARM946E-S (Rev 1)
macrocell CLK toindicatethat thisrising-edgeisaso arising-edge of HCLK so must
be synchronous to the ARM946E-S (Rev 1) macrocell CLK.

When the ARM9E-Sisrunning from tightly-coupled SRAM or performing writesusing
the write buffer, the ARM946E-S (Rev 1) macrocell HCLKEN and HREADY inputs
are not used to generate the SY SCLKEN core stall signal. The coreis only stalled by
SRAM stall cycles or if the write buffer overflows. This means that the ARM9E-Sis
executing instructions at the faster CLK rate and is effectively decoupled from the
HCLK domain AHB system.

If, however, you want to perform an AHB read access or unbuffered write, the coreis
stalled until the AHB transfer has completed. Asthe AHB system is being clocked by
the lower rate HCLK, HCLKEN is examined to detect when to drive out the AHB
address and control to start an AHB transfer. HCLKEN isthen required to detect the
following rising edges of HCLK so that the BIU knows the access has completed.

If the slave being accessed at the HCL K rate hasamulti-cycle response, the HREADY
input to the ARM946E-S (Rev 1) macrocell is driven LOW until the datais ready to be
returned. The BIU must therefore perform alogical AND on the HREADY response
with HCLKEN to detect that the AHB transfer has completed. When thisis the case,
the ARMOE-S core is enabled by reasserting SY SCLKEN.

Note

When an AHB access isrequired, the core is stalled until the next HCLKEN pulseis
received, before it can start the access, and then until the access has completed. This
stall before the start of the accessis a synchronization penalty and the worst case can be
expressedin CLK cyclesasthe HCLK to CLK ratio minus 1.

CLK to HCLK skew

The ARM946E-S (Rev 1) macrocell drives out the AHB address on the rising edge of
CLK whentheHCLKEN inputis TRUE. The AHB outputs therefore have output hold
and delay values relative to CLK . However, these outputs are used in the AHB system
where transfers are timed using HCL K. Similarly, inputs to the ARM946E-S (Rev 1)

macrocell aretimed relativeto HCL K but are sampled within the ARM946E-S (Rev 1)

6-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

from ARM946E-S

Bus Interface Unit and Write Buffer

macrocell with CLK. Thisleads to hold time issues, from CLK to HCLK on outputs,
and fromHCLK to CLK oninputs. In order to minimize this effect you must minimize
the skew between HCLK and CLK.

Figure 6-7 shows the AHB clock relationships.

cLK ‘ I B) [E R B
HCLKEN
HCLK Skew between CLK and HCLKQ
o
¢

AHB outputs

AHB inputs ‘X
to ARM946E-S

Figure 6-7 AHB clock relationships

Clock tree insertion at top level

Considering the skew issue in more detail, the ARM946E-S (Rev 1) macrocell requires
aclock tree to be inserted to alow an evenly distributed clock to be driven to al the
registersinthe design. Theregistersthat drive out AHB outputs and sample AHB inputs
are therefore timed off CLK at the bottom of the inserted clock tree and subject to the
clock tree insertion delay. To maximize performance, when the ARM946E-S (Rev 1)
macrocell isembedded in an AHB system, the clock generation|ogic to produce HCL K
must be constrained so that it matches the insertion delay of the clock tree within the
ARM946E-S (Rev 1) macrocell. You can achieve this using a clock tree insertion tool,
if the clock tree isinserted for the ARM946E-S (Rev 1) macrocell and the embedded
system at the same time (top level insertion).

Figure 6-8 on page 6-12 shows an example of an AHB slave connected to the
ARM946E-S (Rev 1) macrocell.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 6-11

Bus Interface Unit and Write Buffer

ARMO46E-S
CLK'

CLK | - }-F-D—D

Clock tree — 7y
Y
A HRDATA[31:0]
HCLKEN [— —\ AHB slave mux
- N AA
| HCLK

ﬁ_
HADDR([31:0] > ﬁl—AHB

slave

v

Figure 6-8 ARM946E-S (Rev 1) CLK to AHB HCLK sampling

In Figure 6-8, the slave peripheral has an input setup and hold, and an output hold and
valid timerelativeto HCLK. The ARM946E-S (Rev 1) macrocell has an input setup

and hold, and an output hold and valid timerelativeto CLK’, the clock at the bottom of
the clock tree. You can use clock tree insertion to position HCLK to match CLK’ for

optimal performance.

Hierarchical clock tree insertion

If you perform clock tree insertion on the ARM946E-S (Rev 1) macrocell beforeitis
embedded, you can add buffers on input data to match the clock tree so that the setup
and hold is relative to the top-level CLK. Thisis guaranteed to be safe at the expense
of extrabuffersin the datainput path.

The HCLK domain AHB peripherals must still meet the ARM946E-S (Rev 1) input
setup and hold requirements. As the ARM946E-S (Rev 1) inputs and outputs are now
relative to CLK, the outputs appear comparatively later by the value of the insertion
delay. This ultimately leadsto lower AHB performance.

6-12

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Bus Interface Unit and Write Buffer

6.5 The write buffer

The ARM946E-S (Rev 1) macrocell provides awrite buffer to improve system
performance. The write buffer hasa 16-entry FIFO. Each entry can be either address or
data. Thetype of entry isdetermined by the setting of an address/dataflag. Each address
entry is tagged with the size of transfer, as indicated by the ARM9E-S core (byte,
halfword, or word).

Write buffer behavior is controlled by the protection region attributes of the store being
performed and the DCache and protection unit enable status. This control isrepresented
by the data Cachable bit (Cd) and the write Buffer control bit (Bd) from the
protection unit. These control bits are generated as follows:

Cd bit Thisis generated from the cachable attribute of the protection region
AND the DCache enable AND the protection unit enable.

Bd bit Thisis generated from the bufferable attribute for the protection region
AND the protection unit enable.

All accesses are initially noncachable and nonbufferable until you have programmed
and enabl ed the protection unit. Therefore, you cannot use the write buffer while the
protection unit is disabled.

Onreset, all entriesin the write buffer are invalidated.

6.5.1 Write buffer operation

The write buffer is used when the DCache hits and/or misses, depending on the mode
of operation. Table 6-2 shows how the Cd and Bd bits control the behavior of the write

buffer.
Table 6-2 Data write modes
Cd Bd Access mode
0 0 NCNB (noncachable, nonbufferable)
0 1 NCB (noncachable, bufferable)
1 0 WT (write-through)
1 1 WB (write-back)
NCNB Data reads and writes are not cached, and can be externally

aborted. Writes are not buffered, so the processor is stalled until
the external accessis performed. NCNB reads bypass the write
buffer.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 6-13

Bus Interface Unit and Write Buffer

NCB Datareads and writes are not cached. Writes are buffered, and so
cannot be externally aborted. Reads can be externally aborted.
Reads cause the write buffer to drain. If the DCache hits for this
type of access, there has been a programming error. DCache hits
areignored and the DCache line is not updated for aread. Swap
instructions operation on datain an NCB region are made to
perform NCNB type accesses and are not buffered.

WT Searches the DCache for reads and writes. Reads that missin the
DCache cause alinefill. Reads that hit in the DCache do not
perform an external access. All writes are buffered, regardless of
whether they hit or missin the DCache. Writes that hit in the
DCache update the cache but do not mark the cache line as dirty,
because the writeis also sent to the write buffer. Writes cannot be
externally aborted. DCachelinefills cause thewrite buffer todrain
before the lin€fill starts.

WB Searches the DCache for reads and writes. Reads that missin the
DCache cause alinefill. Reads that hit in the DCache do not
perform an external access. Writes that missin the DCache are
buffered. Writesthat hit in the DCache update the cacheline, mark
it as dirty, and do not send the data to the write buffer. DCache
write-backs are buffered. Writes (write-miss and write-back)
cannot be externally aborted. DCache linefills cause the write
buffer to drain before the lin€fill starts.

6.5.2 Enabling and disabling the write buffer

You cannot directly enable or disable the write buffer. However, you can prevent the
write buffer being used by setting the properties of amemory region to be NCNB, or by
disabling the protection unit.

6.5.3 Self-modifying code

Instruction fetchesand NCNB reads bypassthe write buffer. If you write self-modifying
codeto abufferable or cachableregion, thenit isessential that you drain the write buffer
before fetching instructions from these addresses.

6-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Chapter 7
Coprocessor Interface

This chapter describes the ARM946E-S (Rev 1) pipelined coprocessor interface. It
contains the following sections:

. About the coprocessor interface on page 7-2
. LDC/STC on page 7-4

. MCR/MRC on page 7-8

. Interlocked MCR on page 7-10

. CDP on page 7-12

. Privileged instructions on page 7-13

. Busy-waiting and interrupts on page 7-14.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved.

7-1

Coprocessor Interface

7.1 About the coprocessor interface

ARM946E-S (Rev 1) macrocell fully supports the connection of on-chip coprocessors
through an external coprocessor interface. All types of coprocessor instructions are
supported. For adescription of all the interface signals referred to in this chapter, see
the ARMOE-S Technical Reference Manual.

Coprocessors determine the instructions they must execute using a pipeline follower in
the coprocessor. As each instruction arrives from memory it enters both the ARM
pipeline and the coprocessor pipeline. To avoid acritical path for the instruction being
registered by the coprocessor, the coprocessor pipeline operates one clock cycle behind
the ARM9E-S core pipeline. However, there is amechanism inside ARM946E-S (Rev
1) macrocell that stalls the ARM9E-S pipeline so the external coprocessor pipeline can
catch up with the processor pipeline. So, practically, consider that the two pipelinesare
synchronized. The ARM9E-S core informs the coprocessor when instructions move
from Decode into Execute, and whether the instruction has to be executed.

To enable coprocessors to continue executing coprocessor data operations while the
ARMOE-S core pipelineis stalled (for example, when waiting for a cache linefill to
occur), the coprocessor receivesthe clock CLK, and aclock enable signal CPCLKEN.

If CPCLKEN isLOW ontherising edge of CPCLK then the ARMO9E-S core pipeline
isstalled and the coprocessor pipeline must not advance. Figure 7-1 indicatesthetiming
for these signals and when the coprocessor pipeline must advance its state.

ew | L] L L L] L)

CPCLKEN \ /

oo [| V[

clock

Figure 7-1 Coprocessor clocking

Coproc clock showsthe result of ORing CLK with the inverse of CPCLKEN. Thisis
one technique for generating a clock that reflects the ARM9E-S core pipeline
advancing.

7-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Coprocessor Interface

7.1.1 Coprocessor instructions

There are three classes of coprocessor instructions:

LDC/STC Load from memory to coprocessor, or store from coprocessor to
memory.

MCR/MRC Register transfer between coprocessor and ARM processor core.

CppP Coprocessor data operation.

The following sections give examples of how a coprocessor must execute these
instruction classes:

LDC/STC on page 7-4

MCR/MRC on page 7-8

Interlocked MCR on page 7-10

CDP on page 7-12

Privileged instructions on page 7-13
Busy-waiting and interrupts on page 7-14.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 7-3

Coprocessor Interface

7.2 LDC/STC

The LDC and STC instructions are used respectively to transfer data to and from external
coprocessor registersand memory. For the ARM946E-S (Rev 1) macrocell, the memory
can be either internal memory (cache or tightly-coupled memory) or AHB depending

on the address range of the access and the protection unit settings.

The cycle timing for these operationsis shown in Figure 7-2.

COpI’O?ES.SOI' < Fetch > Decode > E)((g((:)u)te >l E)((é(gj)te >e Ez((ea%J)te >e I?Eitél._llgc)e > Memory > Write >
pipeline
e [UL LU
CPINSTR[31:0] X LDC X X X
nCPMREQ _\ [\ / / \
CPPASS / \
CPLATECANCEL \ /
CHSDE[1:0] X GO X
CHSEX[1:0] X GO X GO X LAST X IgnoredX
CPDOUT[31:0] X X X X
LDC
CPDIN[31:0] X X X X X
STC

Figure 7-2 LDC/STC cycle timing

In thisexample, four words of data are transferred. The number of wordstransferred is
determined by how the coprocessor drivesthe CHSDE[1:0] and CHSEX[1:0] buses.

Aswith al other instructions, the ARM9E-S macrocell performs the main Decode off
the rising edge of the clock during the Decode stage. From this, the core commitsto
executing the instruction and so performs an instruction Fetch. The coprocessor

7-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Coprocessor Interface

instruction pipeline keepsin step with ARM9E-S core by monitoringnCPM REQ. This
isaregistered version of the ARM9E-S core instruction memory request signal
INMREQ.

At therising edge of CLK, if CPCLKEN isHIGH, and n\CPMREQ isLOW, an
instruction Fetch istaking place, and CPINST R[31:0] contains the fetched instruction
on the next rising edge of the clock, when CPCLKEN isHIGH.

This means that:
1. Thelast instruction fetched enters the Decode stage of the coprocessor pipeline.

2. Theinstruction in the Decode stage of the coprocessor pipeline entersits Execute
stage.

3. Thefetched instruction is sampled.

In all other cases, the ARMOE-S pipelineis stalled, and the coprocessor pipeline does
not advance.

During the Execute stage, the condition codes are compared with the flagsto determine
whether the instruction really executes or not. The output CPPASS is asserted (HI GH)
if theinstruction in the Execute stage of the coprocessor pipeline:

. IS a coprocessor instruction
. has passed its condition codes.

If a coprocessor instruction busy-waits, CPPASS is asserted on every cycle until the
coprocessor instruction is executed. If an interrupt occurs during busy-waiting,
CPPASS isdriven LOW, and the coprocessor stops execution of the coprocessor
instruction.

Another output, CPL ATECANCEL, cancels a coprocessor instruction when the
instruction preceding it causes aData Abort. Thisisvalid on therising edge of CLK on
the cycle that follows the first Execute cycle of the coprocessor instruction. Thisisthe
only cycle that CPLATECANCEL can be asserted in.

On the rising edge of the clock, the ARM9E-S processor examines the coprocessor
handshake signals CHSDE[1:0] or CHSEX][1:0]:

. If anew instruction is entering the Execute stage in the next cycle, it examines
CHSDEJ1:0].
. If the currently executing coprocessor instruction requires another Execute cycle,

it examines CHSEX[1:0].

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 7-5

Coprocessor Interface

7.2.1 Coprocessor handshake states

The handshake signals encode one of four states:

ABSENT

WAIT

GO

LAST

If there is no coprocessor attached that can execute the coprocessor
instruction, the handshake signals indicate the ABSENT state. In this
case, the ARMOE-S macrocell takes the undefined instruction trap.

there is a coprocessor attached that can handle the instruction, but not
immediately, the coprocessor handshake signals are driven to indicate
that the ARM9E-S processor core must stall until the coprocessor can
catch up. Thisis known as the busy-wait condition. In this case, the
ARMOE-S processor core loopsin an IDLE state waiting for
CHSEX]1:0] to be driven to another state, or for an interrupt to occur. If
CHSEX][1:0] changesto ABSENT, the undefined instruction trap is
taken. If CHSEX][1:0] changesto GO or LAST, theinstruction proceeds
as described below. If an interrupt occurs, the ARM9E-S processor is
forced out of the busy-wait state. Thisisindicated to the coprocessor by
the CPPASS signal going LOW. Theinstruction isrestarted later and so
the coprocessor must not commit to the instruction (it must not change
any coprocessor state) until it has seen CPPASS HIGH, at the sametime
as the handshake signals indicate the GO or LAST condition.

The GO state indicates that the coprocessor can execute the instruction
immediately, and that it requires another cycle of execution. Both the
ARMOE-S processor core and the coprocessor must also consider the
state of the CPPASS signal before actually committing to theinstruction.
For an LDC or STC instruction, the coprocessor instruction drives the
handshake signals with GO when two or more words still have to be
transferred. When only one more word remains to be transferred, the
coprocessor drivesthe handshake signalswith LAST. During the Execute
stage, the ARMO9E-S processor core outputs the address for the LDC/STC.
Also inthis cycle, DnMREQ is driven LOW, indicating to the
ARMO946E-S memory system that amemory accessisrequired at the data
end of the device. The timing for the dataon CPDOUT and CPDIN is
shown in.

You can use an LDC or STC for more than one item of data. If thisisthe
case, possibly after busy-waiting, the coprocessor drives the coprocessor
handshake signals with a number of GO states, and in the penultimate
cycle LAST (LAST indicating that the next transfer isthe final one). If
thereis only one transfer, the sequence is [WAIT,[WAIT,...]], LAST.

7-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Coprocessor Interface

7.2.2 Coprocessor handshake encoding

Table 7-1 shows how the handshake signals CHSDE[1:0] and CHSEX[1:0] are

encoded.
Table 7-1 Handshake encoding

[1:0] Meaning

10 ABSENT

00 WAIT

01 GO

11 LAST

Note

If an external coprocessor is not attached in the ARM946E-S embedded system, the
CHSDE[1:0] and CHSEX[1:0] handshake inputs must betied off toindicate ABSENT.

7.2.3 Multiple external coprocessors

If multiple external coprocessors are to be attached to the ARM946E-S interface, you
can combine the handshaking signals by ANDing bit 1, and ORing bit 0. In the case of
two coprocessors that have handshaking signals CHSDE1, CHSEX1 and CHSDE?2,
CHSEX2 respectively:

CHSDE[1] = CHSDE1[1] AND CHSDE2[1]
CHSDE[0] = CHSDE1[0] OR CHSDE2[0]
CHSEX[1] = CHSEX1[1] AND CHSEX2[1]
CHSEX[0] = CHSEX1[0] OR CHSEX2[0].

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-7

Coprocessor Interface

7.3 MCR/MRC

MCR/MRC cycles look very similar to STC/LDC. An example, with a busy-wait state, is
shown in Figure 7-3.

Copropes_sor < Fetch >e Decode >le I%x:;#t;e >e Elfz%l"‘ls‘)e >e Memory >e Write
pipeline
e UL
CPINSTR[31:0] X MCR/ X X X
nCPMREQ \ [\ / / \
CPPASS / \
CPLATECANCEL \ /
CHSDE[1:0] X WAIT X
CHSEX[1:0] X LAST X Ignored X
CPDOUT[31:0] X Coproc X
MCR data
CPDIN[31:0] X Coproc X
MRC data

Figure 7-3 MCR/MRC transfer timing with busy-wait

First n\CPMREQ isdriven LOW to denote that the instruction on CPINSTR[31:0] is
entering the Decode stage of the pipeline. This causes the coprocessor to decode the
new instruction and drive CHSDE[1:0] as required. In the next cycle nCPMREQ is
driven LOW to denote that the instruction has now been issued to the Execute stage. If

7-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Coprocessor Interface

the condition codes pass, and therefore, the instruction isto be executed, then the
CPPASS signal isdriven HIGH and the CHSDE[1: 0] handshake busisexamined. Itis
ignored in all other cases.

For any successive Execute cyclesthe CHSEX][1:0] handshake busis examined. When
the LAST condition is observed, the instruction is committed. In the case of an MCR, the
CPDOUT][31:0] busisdriven with the registered data during the coprocessor Write
stage. In the case of an MRC, CPDIN[31:0] is sampled at the end of the ARM9E-S core
Memory stage and written to the destination register during the next cycle.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 7-9

Coprocessor Interface

7.4 Interlocked MCR

If the data for an MCR operation is not available inside the ARM9E-S core pipeline
during itsfirst Decode cycle, then the ARM9E-S core pipeline interlocks for one or
more cycles until the datais available. An example of thisiswhere the register being
transferred is the destination from a preceding LDR instruction.

In this situation the MCR instruction enters the Decode stage of the coprocessor pipeline,
and then remains there for a number of cycles before entering the Execute stage.

Figure 7-4 on page 7-11 gives an example of an interlocked MCR that al so hasabusy-wait
state.

7-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Coprocessor Interface

Coprocessor «Feeh =<(,Eg°rﬁ,"ci)=< Decode g E&(f,f,‘#‘? ble Efzg”;;a plaomory) o Wite
pipeline
LK [R R Y R Y O Y R O R B
CPINSTR[31:0] X o X X
nCPMREQ _\ \ ~ U \
CPPASS / \
CPLATECANCEL \
CHSDE[1:0] X WAIT X WAIT X
CHSEX[1:0] X LAST X Ignored X
CPDOUT[31:0] X X
MCR
CPDIN[31:0] X X
MRC

Figure 7-4 Interlocked MCR/MRC timing with busy-wait

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-11

Coprocessor Interface

7.5 CDP

CDP instructions normally execute in asingle cycle. Like all the previous cycles,
NCPMREQ isdriven LOW to signal when an instruction is entering the Decode and
then the Execute stage of the pipeline. If the instruction really is to be executed, the
CPPASSCHSDE[1:0] signal isdriven HIGH during the Execute cycle. If the
coprocessor can execute the instruction immediately it drives with LAST. If the
instruction requires a busy-wait cycle, the coprocessor drives CHSDE[1:0] with WAIT
and then CHSEX[1:0] with LAST.

Figure 7-5 shows a (DP cancelled because the previousinstruction caused a Data Abort.

Coprocessor —Folch) 4 Decode o Execute t(fatgce;iglegﬁ Instruction p,
pipeline
[L R R S O
CPINSTRI[31:0] X CPRT X
nCPMREQ __\ [\ /
CPPASS / \
CPLATECANCEL / \
CHSDE[1:0] X LAST X
CHSEX[1:0] X Ignored X

Figure 7-5 Late cancelled CDP

The CDP instruction enters the Execute stage of the pipeline and is signaled to execute
by CPASS. In the following cycle CPLATECANCEL is asserted. This causes the
coprocessor to terminate execution of the CDP instruction and for it to cause no state
changes to the coprocessor.

7-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Coprocessor Interface

7.6 Privileged instructions

The coprocessor can restrict certain instructionsfor usein privileged modesonly. To do
this, the coprocessor tracks the nCPTRANS output. Figure 7-6 shows how
NCPTRANS changes after a mode change.

Coprocessor < Fetch >e Decode >le Decode >e Decode >e Execute >e Memory ‘:In:lt’:;:r;;ggn;
pipeline

o UL UL
cowstrsor | et |
e O O
wcrtrans | oumie |
ceeass 1
coLaTECANCEL T
— igrores | tgnorea | s |

CHSEX[1:0] X Ignored

—

Figure 7-6 Privileged instructions

Thefirst two CHSDE[1:0] responses are ignored by the ARM9E-S because it is only
the final CHSDE[1: 0] response, as the instruction moves from Decode into Execute,
that counts. This allows the coprocessor to change its response as NCPTRANS
changes.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-13

Coprocessor Interface

7.7 Busy-waiting and interrupts

The coprocessor is permitted to stall, or busy-wait, the processor during the execution
of acoprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the Decode stage instruction
drives WAIT onto CHSDE[1:0]. When the instruction concerned enters the Execute
stage of the pipeline, the coprocessor can drive WAIT onto CHSEX|[1:0] for as many
cycles as necessary to keep the instruction in the busy-wait 1oop.

For interrupt latency reasons the coprocessor can be interrupted while busy-waiting.
This causes the instruction to be abandoned. Abandoning execution is done through
CPPASS. The coprocessor must monitor the state of CPPASS during every busy-wait
cycle. If itisHIGH, the instruction must still be executed. If it is LOW, the instruction
must be abandoned.

Figure 7-7 on page 7-15 shows a busy-waited coprocessor instruction abandoned due to
aninterrupt. CPLATECANCEL isaso asserted asaresult of the Execute interruption.

7-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Coprocessor Interface

Coprocessor POl Docode '%\’,(\?X#f ple Eﬁ;ﬁ‘;’ ple %’;ﬁ#f > ?ﬁ:ﬁt? =<|n$;$3;§§d=
pipeline
o UV LU
CPINSTR[31:0] X CPInstr X X
e \
CPPASS / \ /
CPLATECANCEL \ / \
CHSDE[1:0] X WAIT X
CHSEX[1:0] X WAIT X WAIT X WAIT X Ignored X

Figure 7-7 Busy-waiting and interrupts

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 7-15

Coprocessor Interface

7-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Chapter 8
Debug Support

This chapter describes the ARM946E-S (Rev 1) debug interface. It contains the
following sections:

. About the debug interface on page 8-2

. Debug systems on page 8-4

. The JTAG state machine on page 8-7

. Scan chains on page 8-13

. Debug access to the caches on page 8-19

. Debug interface signals on page 8-21

. ARMOE-S core clock domains on page 8-26

. Determining the core and system state on page 8-27.

The ARM9E-S Embedded| CE-RT logic is also discussed in this chapter including:
. Overview of Embedded| CE-RT on page 8-28

. Disabling Embedded| CE-RT on page 8-30

. The debug communications channel on page 8-31

. Real-time debug on page 8-34.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved.

Debug Support

8.1 About the debug interface

Debug support isimplemented using the ARM9E-S core embedded within the
ARMO946E-S (Rev 1). The ARM946E-S (Rev 1) macrocell debug interfaceis based on
|EEE Std. 1149.1-1990, Sandard Test Access Port and Boundary-Scan Architecture.
See this standard for an explanation of the terms used in this chapter and for a
description of the TAP controller states.

The ARM9E-S processor core within the ARM946E-S (Rev 1) macrocell contains
hardware extensions for advanced debugging features. These make it easier to develop
application software, operating systems, and the hardware itself.

The debug extensions allow you to force the core to be stopped by:
. agiven instruction fetch (breakpoint)

. a data access (watchpoint)

. an external debug request.

Thisis known as debug state. In debug state, the core and ARM946E-S (Rev 1)
macrocell memory system are effectively stopped, and isolated from the rest of the
system. Thisis known as halt mode operation and allows you to examine the internal
state of the ARMOE-S core, ARM946E-S (Rev 1) system, and external AHB state,
while all other system activity continues as normal. When debug has been compl eted,
the ARM9E-S restores the core and system state, and resumes program execution.

The examination of the internal state of the ARM946E-S (Rev 1) macrocell uses a
JTAG-style interface, that allows you to serially insert instructions into the instruction
pipeline. Thisexportsthe contents of the ARM9E-S coreregisters. The exported datais
serially shifted out without affecting the rest of the system.

In addition, the ARM9E-S supports a real -time debug mode, where instead of
generating a breakpoint or watchpoint, an internal Instruction Abort or Data Abort is
generated. Thisis known as monitor mode operation.

When used in conjunction with a debug monitor program activated by the abort
exception entry, you can debug the ARM946E-S (Rev 1) macrocell while allowing the
execution of critical interrupt service routines. The debug monitor program typically
communicateswith the debug host over the ARM 946E-S (Rev 1) debug communication
channel. Real-time debug is described in Real -time debug on page 8-34.

8.1.1 Debug clocks

You must synchronize the system and test clocks externally to the ARM946E-S (Rev 1)
macrocell. The ARM Multi-1CE debug agent directly supports one or more coreswithin
an ASIC design. To synchronize off-chip debug clocking with the ARM946E-S (Rev 1)
macrocell you must use a three-stage synchronizer. The off-chip device (for example,

8-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

Multi-ICE) issuesa TCK signal, and waits for the RTCK (Returned TCK) signal to

come back. Synchronization is maintained because the off-chip device does not
progress to the next TCK until after RTCK isreceived.

Figure 8-1 shows this synchronization.

DBGnTRST=
TDO DBGTDO
~
RTCK T \ DBGTCKEN>
~J ‘J
)
TCK N ’ ‘ J
1> L D Q D Q D Q L/
CLK TCK Synchronizer
THS [~ ynenronize b a DBGTMS,
CLK
TDI N b ql DBGTDl,
L~ o
CLK
Multi-ICE
interface Input sample and hold
pads CLK

ARMO946E-S

Figure 8-1 Clock synchronization

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

8-3

Debug Support

8.2 Debug systems

The ARM946E-S (Rev 1) macrocell forms one component of a debug system that
interfaces from the high-level debugging performed by the user to the low-level

interface supported by the ARM946E-S (Rev 1) macrocell. Figure 8-2 shows atypical
debug system.

Dt?:sutg Host computer running ARM or third party toolkit

>

Protocol

For example, Multi-ICE
converter

>

Itjaerzl;? Development system containing ARM946E-S

Figure 8-2 Typical debug system
A debug system typically has three parts:
. The debug host on page 8-4
. The protocol converter on page 8-5
. ARMO946E-S (Rev 1) debug target on page 8-5.

The debug host and the protocol converter are system-dependent.
8.2.1 The debug host
The debug host is a computer that is running a software debugger, such as armsd. The

debug host allows you to issue high-level commands such as setting breakpoints or
examining the contents of memory.

8-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

8.2.2 The protocol converter

An interface, such asaparallel port, connects the debug host to the ARM946E-S (Rev
1) macrocell devel opment system. The messages broadcast over this connection must
be converted to the interface signals of the ARM946E-S (Rev 1) macrocell. The
protocol converter performs the conversion.

8.2.3 ARMO946E-S (Rev 1) debug target

The ARMOE-S core within the ARM946E-S (Rev 1) macrocell has hardware
extensions that ease debugging at the lowest level. The debug extensions:

. allow you to stall the core from program execution
. examine the core internal state

. examine the state of the memory system

. resume program execution.

Thefollowing major blocks of the ARM9E-S are shown in the ARM9E-Shblock diagram
on page 8-6.

Embedded| CE-RT logic
With hardware support for debug

ARMO9E-S CPU core

Thisisaset of registers and comparators used to generate debug
exceptions (such as breakpoints). This unit is described in Overview of
Embedded| CE-RT on page 8-28.

TAP controller

This controls the action of the scan chains using a JTAG serial interface.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-5

Debug Support

ARMOE-S
EmbeddedICE-RT

Scan chain 1
Logic ARMOE-S

Scan chain 2 —
A

Y

v

ARMO9E-S
TAP Controller

Figure 8-3 ARM9E-S block diagram

The ARM9E-S debug model is extended within the ARM946E-S (Rev 1) macrocell by
the addition of scan chain 15. Thisis used for debug access to the CP15 register bank,
to allow you to configure the system state within the ARM946E-S (Rev 1) macrocell
while in debug state, for instance to enable or disable the SRAM before performing a
debug load or store.

8-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

8.3 The JTAG state machine

Theprocessof serial test and debug isbest explained in conjunction with the JTAG state
machine. Figure 8-4 on page 8-8 shows the state transitions that occur in the TAP
controller.

The state numbers are a so shown on the diagram. These are output from the
ARM946E-S (Rev 1) on the TAPSM|[3:0] bits.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 8-7

Debug Support

Test-Logic-Reset <

OxF
tms=1
tms=0
Y
Run-Test/Idle
0xC
tms=0 4

Select-DR-Scan
0x7

A 4

Update-DR
0x5

tms=0

<

Select-IR-Scan
0x4

tms=0

Y
tms=1 Capture-IR
OxE

il

tms=0

v
| Shift-IR
O0xA

tms=0
tms=1

Y
Exit1-IR tms=1
0x9

tms=0

Y
Pause-IR
0xB

tms=0

il

A 4

Update-IR
0xD

Figure 8-4 Test access port (TAP) controller state transitions?

1. From |EEE Std 1149.1-1990. Copyright 19991 EEE. All rights reserved.

8-8

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

Debug Support

8.3.1 Reset

The JTAG interface includes a state-machine controller (the TAP controller). To force
the TAP controller into the correct state after power-up of the device you must apply a
reset pulseto the DBGnTRST signal, or you must cycle the JTAG state machine
through the TEST-L OGIC-RESET state. Before you can use the JTAG interface, you
must drive DBGnTRST LOW, and then HIGH again. If you do not intend using the
boundary scan interface, you can tie the DBGNTRST input permanently L OW.

Note
A clock on TCK is not necessary to reset the device.

The action of reset is as follows:

1. Forcesexit from debug state. The boundary scan chain cells do not intercept any
of the signals passing between the external system and the core.

2. ThelDCODE instruction is selected. If the TAP controller is put into the
SHIFT-DR state and TCK is pulsed, the contents of the ID register are clocked
out of TDO.

8.3.2 Pull-up resistors

The |EEE 1149.1 standard effectively requires TDI and TM S to have internal pull-up
resistors. In order to minimize static current draw, these resistors are not fitted to the
ARMOE-S core. Accordingly, the four inputs to the test interface (the TDO, TDI, and
TMSsignalsplusTCK) must all bedriventovalid logic level sto achieve normal circuit
operation.

8.3.3 Instruction register

Theinstruction register is four bitsin length. There is no parity bit. The fixed value
loaded into the instruction register during the CAPTURE-IR controller state is 0001.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-9

Debug Support

8.3.4 Public instructions
Table 8-1 lists the public instructions that are supported.

Table 8-1 Public instructions

Instruction Binary code
EXTEST 0000
SCAN_N 0010
INTEST 1100
IDCODE 1110
BYPASS 1111

SAMPLE/PRELOAD 0011

RESTART 0100

Inthissection it isassumed that TDI and TM S are sampled on therising edge of TCK
and all output transitions on TDO occur as aresult of the falling edge of TCK.
EXTEST (0000)

The selected scan chain is placed in test mode by the EXTEST instruction. The
EXTEST instruction connects the selected scan chain between TDI and TDO.

When the instruction register isloaded with the EXTEST instruction, all the scan cells
are placed in their test mode of operation.

Inthe CAPTURE-DR state, inputs from the system logic and outputs from the output
scan cells to the system are captured by the scan cells.

Inthe SHIFT-DR state, the previously captured test datais shifted out of the scan chain
on TDO, while new test datais shifted in on the TDI input. Thisdatais applied
immediately to the system logic and system pins.

SCAN_N (0010)

This instruction connects the scan path select register between TDI and TDO.

During the CAPTURE-DR state, the fixed value 10000 is |oaded into the register.

During the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

8-10 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

In the UPDATE-DR state, the scan register of the selected scan chain is connected
between TDI and TDO, and remains connected until asubsequent SCAN_N instruction
isissued. On reset, scan chain 3 is selected by default. The scan path select register is
five bitslong in thisimplementation, although no finite length is specified.

INTEST (1100)

The selected scan chainisplaced in test mode by the INTEST instruction. The INTEST
instruction connects the selected scan chain between TDI and TDO.

When the instruction register isloaded with the INTEST instruction, al the scan cells
are placed in their test mode of operation.

In the CAPTURE-DR state, the value of the data applied from the core logic to the
output scan cells, and the value of the data applied from the system logic to the input
scan cellsis captured.

Inthe SHIFT-DR state, the previously captured test datais shifted out of the scan chain
on the TDO pin, while new test datais shifted in on the TDI pin.

IDCODE (1110)

The IDCODE instruction connects the device identification register (or 1D register)
between TDI and TDO. TheID register isa32-hit register that allowsthe manufacturer,
part number, and version of a component to be determined through the TAP. The ID
register isloaded from the TAPI D[31: 0] input bus. Thismust betied to aconstant value
that represents the unique JTAG IDCODE for the device.

When the instruction register isloaded with the IDCODE instruction, all the scan cells
are placed in their normal (system) mode of operation.

Inthe CAPTURE-DR state, the deviceidentification codeis captured by the I D register.

Inthe SHIFT-DR state, the previously captured device identification code is shifted out
of the ID register on the TDO pin, while datais shifted in on the TDI pininto the ID
register.

In the UPDATE-DR state, the ID register is unaffected.

BYPASS (1111)

The BY PASS instruction connects a 1-bit shift register (the bypass register) between
TDI and TDO.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 8-11

Debug Support

When the BY PASS instruction is loaded into the instruction register, al the scan cells
are placed in their normal (system) mode of operation. Thisinstruction has no effect on
the system pins.

Inthe CAPTURE-DR state, alogic 0 is captured by the bypass register.

Inthe SHIFT-DR state, test datais shifted into the bypass register on TDI and out on
TDO after adelay of one TCK cycle. Thefirst bit shifted out isaO0.

The bypass register is not affected in the UPDATE-DR state.

Note
All unused instruction codes default to the BY PASS instruction.

SAMPLE/PRELOAD (0011)

When the instruction register isloaded with the SAMPLE/PREL OAD instruction, al
the scan cells of the selected scan chain are placed in the normal mode of operation.

In the CAPTURE-DR state, a snapshot of the signals of the boundary scan is taken on
the rising edge of TCK. Normal system operation is unaffected.

In the SHIFT-DR state, the sampled test data is shifted out of the boundary scan on the
TDO pin, while new datais shifted in on the TDI pin to preload the boundary scan
parallel input latch. Thisdatais not applied to the system logic or system pinswhilethe
SAMPLE/PRELOAD instruction is active.

You must use this instruction to preload the boundary scan register with known data
prior to selecting INTEST or EXTEST instructions.

RESTART (0100)

Thisinstruction restarts the processor on exit from debug state. The RESTART
instruction connects the bypass register between TDI and TDO and the TAP controller
behaves asif the BY PASS instruction is loaded. The processor resynchronizes back to
the memory system when the RUN-TEST/IDLE state is entered.

8-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

8.4 Scan chains

ARM946E-S (Rev 1) macrocell supports 32 scan chains. Three scan chains are used
inside ARM946E-S (Rev 1) macrocell. These allow testing, debugging, and
programming of the Embedded! CE macrocell watchpoint units.

The supported scan chains are listed in Table 8-2 on page 8-13.

Table 8-2 ARM946E-S (Rev 1) scan chain allocations

Scan chain .
Function
number
0 Reserved
1 Debug
2 EmbeddedI CE-RT logic
programming
3 External boundary scan
4t014 Reserved
15 Control coprocessor
16to 31 Unassigned

8.4.1 Scan chain 1

This scan chain is primarily used for debugging and provides access to the core
instruction and data buses.

Scan chain 1 is 67 bitslong and is made up of:
. 32 bitsfor data values

. 3 control bits

. 32 bitsfor instruction data.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-13

Debug Support

These are arranged as shown in Table 8-3.

Table 8-3 Scan chain 1 bits

Bit Function

67:35 Datavalues
34:32 Control bits

31:0 Instruction values

The three control bits are:
. SY SSPEED

. WPTANDBKPT

. areserved hit.

While debugging, the value placed in the SY SSPEED control bit determinesif the
ARMOE-S core executes the instruction at system speed.

After the ARM946E-S (Rev 1) macrocell has entered debug state, the first time

SY SSPEED is captured and scanned out tellsthe debugger whether the core has entered
debug state due to a breakpoint (SY SSPEED LOW) or awatchpoint (SY SSPEED
HIGH). A watchpoint and a breakpoint can occur simultaneously. When a watchpoint
condition occurs, the WPTANDBKPT bit must be examined by the debugger to
determine whether the instruction currently in the Execute stage of the pipelineis
breakpointed. If it is, WPTANDBKPT isHIGH, otherwiseit is LOW.

8.4.2 Scan chain 2

Scan chain 2 allows access to the Embedded| CE-RT logic registers. The order of the
scan chain, from DBGTDI to DBGTDO, is:

. read/write
. register address bits 4:0
. data value bits 31:0.

No action occurs during CAPTURE-DR.

During SHIFT-DR, adatavalueis shifted into the serial register. Bits 36:32 specify the
address of the Embedded| CE-RT register to be accessed.

During UPDATE-DR, this register is either read or written depending on the value of
bit 37 (0 = read, 1 = write).

8-14 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

8.4.3 Scan chain 3

Debug Support

This scan chain allows ARM946E-S (Rev 1) macrocell to control an optional external
boundary scan chain. You can determine the length of scan chain 3.

8.4.4 Scan chain 15

Scan chain 15 allows debug access to the CP15 register bank and allowsthe cacheto be
interrogated. Scan chain 15 is 39 bits long.

The order of scan chain 15 from the DBGTDI input to the DBGTDO output is shown
in Table 8-4.

Table 8-4 Scan chain 15 addressing mode bit order

Bits Contents

38 Read =0, write=1

37:32 CP15 register address

31.0 CP15 datavalue

The mapping of the CP15 register address field of scan chain 15 to CP15 registersis
shown in Table 8-5.

Table 8-5 Mapping of scan chain 15 address field to CP15 registers

Address Register

[37] [36:33] [32] Number Name Type

0 0000 0 CO.ID ID register Read

0 0000 1 co.C Cachetype Read

0 0001 0 C1 Control Read/write
0 0010 0 c2.D Data cachable bits Read/write
0 0010 1 C2.l Instruction cachable bits Read/write
0 0011 0 C3 Write buffer control Read/write
0 0100 0 COo.M Tightly-coupled memory size Read

0 0101 0 C5.D Data space access permissions Read/write
0 0101 1 C5.1 Instruction address access permissions Read/write

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 8-15

Debug Support

Table 8-5 Mapping of scan chain 15 address field to CP15 registers (continued)

Address Register

[37] [36:33] [32] Number Name Type

1 <Crm>2 O C6.[7:0] Memory region protection Read/write
0 0111 0 C7.FD Flush data cache Read/write
0 0111 1 C7.F Flush instruction cache Read/write
0 1110 0 C7FD.s Flush DCache single (uses C15.C.Ind) Read/write
0 1110 1 C7.Fl.s Flush ICache single (uses C15.C.Ind) Read/write
1 1010 1 C7.CD.s Clean DCache single (uses C15.C.Ind) Read/write
0 1001 0 Ca.D Data cache lock-down Read/write
0 1001 1 cal Instruction cache lock-down Read/write
1 1000 1 C9.Dram Data SRAM size/location Read/write
1 1001 1 CO.lram Instruction SRAM size/location Read/write
0 1101 1 C13.TPID Trace processidentifier Read/write
0 1111 0 Cl5.State Test state Read/write
0 1111 1 C15TAG TAG BIST control Read/write
1 1111 1 C15.RAM Cache RAM BIST control Read/write
1 1101 0 C15.C.Ind Cacheindex (address/segment) Read/write
0 1010 0 C15.DC Data cache read/write (uses C15.C.Ind) Read/write
0 1010 1 Cis.IC Instruction cache read/write (uses C15.C.Ind) Read/write
0 1011 0 C15.DT Data tag read/write (uses C15.C.Ind) Read/write
0 1011 1 C15.1T Instruction tag read/write (uses C15.C.Ind) Read/write
1 1110 1 Ci5.Mem Memory RAM BIST control Read/write

a. For CP15 register 6, CRm corresponds to the region number (0 to 7).

Inthe SHIFT-DR state of the TAP state machine, the read/write bit, the register address
and the register value for writing, are shifted in.

For awrite, the register value is updated when the UPDATE-DR state is reached.

8-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

For reading, return to SHIFT-DR through CAPTURE-DR to shift out the register value.

8.4.5 Scan chain debug status register

In situations where the AHB clock frequency is significantly less than the debugger
clock frequency, cache maintenance operationsinitialized by the debug scan chain (scan
chain 15) might be missed by the ARM946E-S (Rev 1) macrocell.

This situation can be prevented by providing status information to the debugger. Cache
maintenance operations (cache flush and cache clean) are read/write accesses. By
reading back from the same scan chain register address that initiated the maintenance
operation, astatus bit is returned to the debugger. If the bit is set, the operation has been
completed and the debug sequence can continue. If the bit is cleared, the requested
operation has not been compl eted.

The Status Bit isimplemented for the debug scan chain operations shown in Table 8-6
on page 8-17.

Table 8-6 Status bit mapping of scan chain 15 address field to CP15 registers

Address Register

[37] [36:33] [32] Number Name Type

0 0111 0 C7.FD Flush data cache Read/write
0 0111 1 C7.F Flush instruction cache Read/write
0 1110 0 C7.FD.s Flush DCache single (uses C15.C.Ind) Read/write
0 1110 1 C7.Fl.s Flush ICache single (uses C15.C.Ind) Read/write
1 1010 1 C7.CD.s Clean DCache single (uses C15.C.Ind) Read/write
0 1011 1 C15.1T Instruction tag read/write (uses C15.C.Ind) Read/write
1 1110 1 Ci5.Mem Memory RAM BIST control Read/write

The complete list of operations that can be initiated from the debug scan chain are
shown in Table 8-6.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 8-17

Debug Support

The status bit associated with each cache maintenance operation is shown in Table 8-7.

Table 8-7 Correlation between status bits and cache operations

Status bit Cache maintenance operation
6:0 Unpredictable

7 Clean DCache Single Busy

9 Flush DCache Single Busy

10 Flush DCache Busy

17 Flush ICache Single Busy

18 Flush ICache Busy

31:19 Unpredictable

8-18

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

Debug Support

8.5 Debug access to the caches

It is desirable for the debugger to examine the contents of the instruction and data
caches during debug operations. Thisis achieved in two steps:

1. Thedebugger determinesif valid addressesare stored in the cache and forms TAG
addresses from the TAG contents and the TAG index.

2. Thedebugger uses the generated addresses to either access main memory, or to
read individual entries using the CP15 scan chain.

8.5.1 Debug access to the caches, Step 1

Thisis done by reading the | Cache and DCache TAG arrays using scan chain 15. The
debugger must do this for each entry set within the cache. The format of the data
returned is shown in Figure 8-5 on page 8-19.

31 543210

Valid —,
Dirty1

Dirty2
Set1
Set0

TAG address

Figure 8-5 TAG address format

The TAG address is formed from the TAG contents and the TAG index used to
interrogate the TAG. This ensures that the data format returned is consistent regardless
of cache size.

8.5.2 Debug access to the caches, Step 2

Reading individual entries using the CP15 scan chain can be useful where an entry has
been marked as dirty, because thisindicates that there is an inconsistency between the
cache contents and main memory.

For the DCache, the debugger can execute system speed accesses that hit in the cache
and, therefore, return the cache contents. Writes to the DCache from the processor core
by thismethod result in the dirty bits being set for write-back regions, and main memory
is updated for write-through regions.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-19

Debug Support

If the CP15 scan chain is used for updating the DCache, only the cache contents are
updated. Writes are not made to main memory. For this method you must first program
theindex/set register with the required cacheindex, set, and word values. The format of
the cache index register is shown in Figure 8-6 on page 8-20.

313029 N+1 N 5 4 210
Word
SBz Index address SBz
Segment

Figure 8-6 Cache index register format

Note

Although 27 bitsare specified for the TAG address, only those bitsrequired for the TAG
implemented are used.

The cache index register is aso used for writing to the instruction cache. Thisis useful
for setting software breakpoints within code already in the cache. This means that you
do not have to flush the cache and rel oad the entry.

Note

Thereis no mechanism for detecting that the | Cache has been updated in thisway. The
debugger must restore the original cache contents after executing the breakpoint.

8-20

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

8.6 Debug interface signals

There are four primary external signals associated with the debug interface:

. DBGIEBKPT, DBGDEWPT, and EDBGRQ are system requests for the
ARMOY46E-S (Rev 1) to enter debug state.

. DBGACK isused by the ARM946E-S (Rev 1) to flag back to the system that it
isin debug state.

8.6.1 Entry into debug state on breakpoint

Any instruction being fetched from memory is sampled at the end of acycle. To apply
abreakpoint to that instruction, you must assert the breakpoint signal by the end of the
same cycle. Thisis shown in Figure 8-7 on page 8-21.

Ddebug Edebug1 Edebug2
F1 D1 E1 M1 W1
F2 D2 E2 M2 w2
F1 D1 E1 M1 W1
clk \ \ \ \ \ \ \ \
1A[31:1] X)
STRiz10 A
DBGIEBKPT / \
DBGACK /

Figure 8-7 Breakpoint timing

You can build external logic, such as additional breakpoint comparators, to extend the
breakpoint functionality of the EmbeddedI CE-RT logic. The output from the external
logic must be applied to the DBGIEBK PT input. Thissignal is ORed with the
internally-generated Breakpoint signal before being applied to the ARM9E-S core
control logic. Thetiming of the input makesit unlikely that data-dependent external
breakpoints are possible.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-21

Debug Support

8.6.2

8.6.3

Breakpoints

Watchpoints

A breakpointed instruction is allowed to enter the Execute stage of the pipeline, but any
state change as aresult of the instruction is prevented. All writes from previous
instructions complete as normal.

The Decode cycle of the debug entry sequence occurs during the Execute cycle of the
breakpointed instruction. The latched Break point signal forces the processor to start
the debug segquence.

and exceptions

A breakpointed instruction can have a Prefetch Abort associated with it. If so, the
Prefetch Abort takes priority and the breakpoint isignored. (If thereisaPrefetch Abort,
instruction data might be invalid, the breakpoint might have been data-dependent, and
as the data might be incorrect, the breakpoint might have been triggered incorrectly.)

SWI and undefined instructions are treated in the same way as any other instruction that
might have a breakpoint set on it. Therefore, the breakpoint takes priority over the SWI
or undefined instruction.

On an instruction boundary, if thereis a breakpointed instruction and an interrupt
(nIRQ or nFIQ), the interrupt is taken and the breakpointed instruction is discarded.
When the interrupt has been serviced, the execution flow is returned to the original
program. This means that the previously breakpointed instruction is fetched again, and
if the breakpoint is still set, the processor enters debug state when it reaches the Execute
stage of the pipeline.

When the processor has entered halt mode debug state, it isimportant that additional
interrupts do not affect the instructions executed. For this reason, as soon as the
processor enters stop-mode debug state, interrupts are disabled, although the state of the
| and F bitsin the Program Status Register (PSR) are not affected

Entry into debug state following a watchpointed memory accessisimprecise. Thisis
necessary because of the nature of the pipeline.

You can build external logic, such as external watchpoint comparators, to extend the
functionality of the Embedded| CE-RT logic. The output of the external logic must be
applied to the DBGDEWPT input. Thissignal is ORed with the internally-generated
Watchpoint signal beforebeing applied tothe ARM9E-S corecontrol logic. Thetiming
of the input makesit unlikely that data-dependent external watchpoints are possible.

8-22

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

F1

D1
F2

Debug Support

After awatchpointed access, the next instruction in the processor pipeline is aways
allowed to complete execution. Where thisinstruction isasingle-cycle data-processing
instruction, entry into debug state is delayed for one cycle while the instruction
completes. The timing of debug entry following awatchpointed load in this caseis
shown in Figure 8-8 on page 8-23.

E1 M1 w1
D2 E2 M2 w2
Fldr Didr Eldr Midr Widr
FDp DDp EDp MDp WDp

F5 D5 ES M5 W5
Ddebug Edebug1 Edebug2

INMREQ A A\ JAY A N N i
werwsre ()R8 ()
DA[31:0] X Y

WDATA[31:0] \ Y

RDATA[31:0] Ej

DBGDEWPT /i *\

DBGACK

Figure 8-8 Watchpoint entry with data processing instruction

—— Note

Although instruction 5 enters the Execute stage, it is not executed, and there is no state
update as aresult of thisinstruction. When the debugging session is complete, normal
continuation involves areturn to instruction 5, the next instruction in the code sequence
that has not yet been executed.

Theinstruction following the instruction that generated the watchpoint might modify
the Program Counter (PC). If this happens, you cannot determine the instruction that
caused the watchpoint. However, you can always restart the processor. A timing
diagram showing debug entry after awatchpoint where the next instruction is a branch
is shown in Figure 8-9 on page 8-24.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 8-23

Debug Support

cLK
INMREQ
IA[31:1]
INSTR[31:0]
DA[31:0]
WDATA([31:0]
RDATA[31:0]
DBGDEWPT

DBGACK

Fidr

Didr

When the processor has entered debug state, you can interrogate the ARM9E-S core to
determine its state. In the case of awatchpoint, the PC contains avalue that is five

instructions on from the address of the next instruction to be executed. Therefore, if on
entry to debug state, in ARM state, theinstruction SUB PC, PC, #20 isscanned inandthe
processor restarted, execution flow returns to the next instruction in the code sequence.

Eldr Midr Widr

FT DT ET
Ddebug Edebug1 Edebug2

JAUSEED [VO [WY (R VY (N VY N VO VO VO (i VD VY (R VY (R W
A\ A\ A\ A\ A\ A\ A\ 7
XX XX XX XX XX XX XX
—{wR) &} S O) {Tte) {T18) {Tic}
X X
X X
D
1\

Figure 8-9 Watchpoint entry with branch

8.6.4 Watchpoints and exceptions

If awatchpointed data access is also abort, the watchpoint condition is registered and
the exception entry sequence performed. Then the processor enters debug state. If there
isan interrupt pending, the ARM9E-S all ows the exception entry sequenceto occur and
then enters debug state.

8.6.5 Debug request

A debug request can take place through the EmbeddedI CE-RT logic or by asserting the
EDBGRQ signal. The request is synchronized and passed to the processor. Debug
request takes priority over any pending interrupt. Following synchronization, the core
enters debug state when the instruction at the execution stage of the pipeline has

8-24

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

completely finished executing (when memory and write stages of the pipeline have
completed). While waiting for the instruction to finish executing, no more instructions
are issued to the Execute stage of the pipeline.

Note

If EDBGRQ isasserted whilethe processor isoperating in monitor mode, the processor
enters debug state as if operating in halt mode.

8.6.6 Actions of the ARM9E-S in debug state

When the ARMOE-S isin debug state, both memory interfacesindicate internal cycles.
Thisensuresthat thetightly-coupled SRAM withinthe ARM946E-S (Rev 1) macrocell,
and the AHB interface, are both quiescent, allowing the rest of the AHB system to
ignore the ARM9E-S and function as normal. Because the rest of the system continues
operation, the ARM9E-S ignores aborts and interrupts.

ThenRESET signal must be held stable during debug. If the system appliesreset to the
ARMOY46E-S (Rev 1) (nRESET isdriven LOW), the state of the ARM9E-S macrocell
changes without the knowledge of the debugger.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 8-25

Debug Support

8.7 ARMO9E-S core clock domains

The ARMOE-S core has asingle clock, CLK, that is qualified by two clock enables:
. SYSCLKEN controls access to the memory system
. DBGTCKEN controls debug operations.

During normal operation, SY SCLKEN conditions CLK to clock the core. When the
ARMOY46E-S (Rev 1) macrocell isin debug state, DBGTCKEN conditions CLK to
clock the core.

8-26 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

8.8 Determining the core and system state

When the ARM946E-S (Rev 1) macrocell isin debug state, you can examine the core
and system state by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug from Thumb state or ARM state, by examining
bit 4 of the Embeddedl CE-RT debug status register. When bit 4 is HIGH, the core has
entered debug from Thumb state.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 8-27

Debug Support

8.9 Overview of EmbeddedICE-RT

The ARM9E-S Embeddedl CE-RT logic providesintegrated on-chip debug support for
the ARM9E-S core within the ARM946E-S (Rev 1) macrocell.

EmbeddedI CE-RT is programmed serially using the ARM9E-S TAP controller.
Figure 8-10 on page 8-28 illustrates the relationship between the core,

EmbeddedI CE-RT, and the TAP contraller, showing only the signals that are pertinent
to Embedded| CE-RT.

DBGEXT[1:0]

DBGCOMMRX

DBGCOMMTX

DBGRNG[1:0]

ARM9E-S |EmbeddedICE-RT DBGACK

DBGIEBKPT

A

EDBGRQ

A

DBGDEWPT

A

DBGEN

A

DBGTCKEN

DBGTMS

DBGTDI
DBGTDO >

TAP

AAA

CLK

DBGNnTRST

Figure 8-10 The ARM9E-S, TAP controller, and EmbeddedICE-RT

8-28 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

The EmbeddedI CE-RT logic comprises:
. two real-time watchpoint units
. two independent registers:
— thedebug control register
— thedebug status register
. debug comms channel.

The debug control register and the debug status register provide overall control of
Embedded| CE-RT operation.

You can program one or both watchpoint units to halt the execution of instructions by
the core. Execution halts when the values programmed into EmbeddedI CE-RT match
the values currently appearing on the address bus, data bus, and various control signals.

Note
You can mask hits so that their values do not affect the comparison.

You can configure each watchpoint unit to be either a watchpoint (monitoring data
accesses) or abreakpoint (monitoring instruction fetches). Watchpoints and breakpoints
can be data-dependent in halt mode debug.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 8-29

Debug Support

8.10 Disabling EmbeddedICE-RT
You can disable EmbeddedI CE-RT by setting the DBGEN input LOW.

—— Caution
Hard wiring the DBGEN input LOW permanently disables debug access.

When DBGEN isLOW, it inhibits DBGDEWPT, DBGIEBKPT, and EDBGRQ to
the core, and DBGACK from the ARM946E-S (Rev 1) macrocell is always L OW.

8-30 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

8.11 The debug communications channel

The ARM9E-S Embedded| CE-RT logic contains a communications channel for
passing information between the target and the host debugger. Thisisimplemented as
coprocessor 14.

The communications channel comprises:
. a 32-bit comms data read register
. a 32-bit wide comms data write register

. a 6-bit wide comms control register for synchronized handshaking between the
processor and the asynchronous debugger.

These registers are located in fixed locations in the Embedded! CE-RT logic register
map and are accessed from the processor using MCR and MRC instructions to coprocessor
14.

In addition to the comms channel registers, the processor can access a 1-bit debug status
register for use in the real-time debug configuration.

8.11.1 Debug comms channel registers

CP14 contains 4 registers. These have the register allocations listed in Table 8-8 on

page 8-31.
Table 8-8 Coprocessor 14 register map
Register name Register number Notes
Comms channel status Cco Read-only
Comms channel data read C1 For reads
Comms channel datawrite C1 For writes
Debug status Cc2 Read/write

8.11.2 Debug comms channel status register

The debug comms channel status register is read-only. It controls synchronized
handshaking between the processor and the debugger. The debug comms channel status
register is shown in Figure 8-11 on page 8-32.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-31

Debug Support

3130292827 210

00|11 SBzZ WIR

Figure 8-11 Debug comms channel status register

Each register bit functions as follows:

Bits 31:28 Contain afixed pattern that denotesthe Embedded! CE-RT version
number (in this case 0011).

Bits27:2 Arereserved.

Bit 1 Denotes whether the comms data write register is available (from

the point of view of the processor). If, from the point of view of
the processor, the comms data write register is free (W=0), new
data can bewritten. If theregister isnot free (W=1), the processor
must poll until W=0. From the point of view of the debugger,
when W=1, some new data has been written that can then be
scanned out.

Bit 0 Denoteswhether thereisnew datain the commsdataread register.
If, from the point of view of the processor, R=1, there is new data
that can be read using an MRC instruction. From the point of view
of the debugger, if R=0, the comms data read register isfree, and
new data can be placed there through the scan chain. If R=1, this
denotes that data previously placed there through the scan chain
has not been collected by the processor, and so the debugger must
wait.

From the point of view of the debugger, the registers are accessed using the scan chain
in the usual way. From the point of view of the processor, these registers are accessed
using coprocessor register transfer instructions.

You are recommended to use the following instructions:

MRC p14, @, Rd, c@, co Thisreturnsthe debug comms control register into Rd.

MCR pl4, @, Rn, cl, c@ Thiswritesthevaluein Rn to the comms datawrite register.
MRC pl4, @, Rd, c1, c@ Thisreturnsthe debug dataread register into Rd.

You are advised to access this data using SWI instructions when in Thumb state because
the Thumb instruction set does not contain coprocessor instructions.

8-32 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

8.11.3 Communications using the comms channel

You can send and receive messages using the comms channel.

Sending a message to the debugger

When the processor has to send a message to the debugger, it must check the comms
datawrite register isfreefor use by finding out whether the W bit of the debug comms
control register is clear.

The processor reads the debug comms control register to check the status of the W hit:
. If the W bit is clear, the comms data write register is clear.

. If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

When the W hit is clear, a message is written by aregister transfer to coprocessor 14.
Asthe datatransfer occurs from the processor to the comms data write register, the W
bit is set in the debug comms control register.

Thedebugger seesboth the R and W bitswhen it pollsthe debug comms control register
through the JTAG interface. When the debugger seesthat the W bit is set, it can read the
comms datawrite register, and scan the data out. The action of reading this dataregister
clears the debug comms control register W hit. At this point, the communications
process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger polls the R bit of the debug comms
control register:

. if the R bit is LOW, the comms data read register is free, and data can be placed
there for the processor to read

. if the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the comms data read register is free, data is written there using the JTAG
interface. The action of thiswrite sets the R bit in the debug comms control register.

The processor polls the debug comms control register. If the R bit is set, thereis data

that can be read using an MRC instruction to coprocessor 14. The action of thisload clears
the R bit in the debug comms control register. When the debugger pollsthisregister and
seesthat the R bit is clear, the data has been taken, and the process can now be repeated.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 8-33

Debug Support

8.12 Real-time debug

The ARM9E-Swithin ARM946E-S (Rev 1) macrocell containslogic that allowsyou to
debug a system without stopping the core entirely. This enablesthe continued servicing
of critical interrupt routineswhilethe coreisbeing interrogated by the debugger. Setting
bit 4 of the debug control register enabl es the real-time debug features of ARM9E-S.
When this bit is set, the EmbeddedI CE-RT logic is configured so that a
breakpoint/watchpoint causes the ARM to enter abort mode, taking the Prefetch Abort
or Data Abort vectors respectively. You must be aware of anumber of restrictionswhen
the ARM is configured for real-time debugging:

. Breakpoints/watchpoints cannot be data-dependent. No support is provided for
the range and chain functionality. Breakpoints/watchpoints can only be based on:
— instruction/data addresses
— external watchpoint conditioner (DBGEXTERN)
— User/Privileged mode access (DNTRANS/INTRANS)
— read/write access (watchpoints)
— accesssize (breakpoints: I TBIT, watchpoints: DMAS[1:Q]).

. The single-step hardware is not enabled.
. External breakpoints/watchpoints are not supported.

. You can use the vector catching hardware, but must not configure it to catch the
Prefetch or Data Abort exceptions.

. No support is provided to mix halt mode/monitor mode debug functionality.
When the core is configured into the monitor mode, asserting the external
EDBGRQ signal results in unpredictable behavior. Setting the internal
EDBGRQ hit results in unpredictable behavior.

When an abort is generated by the monitor mode, it is recorded in the debug status
register in coprocessor 14 (see Scan chain debug status register on page 8-17).

Because the monitor mode debug does not put the ARM9E-Sinto debug state, you must
now changethe contents of the watchpoint registerswhile external memory accessesare
taking place, rather than being changed when in debug state. If the watchpoint registers
are written to during an access, all matches from the affected watchpoint unit using the
register being updated are disabled for the cycle of the update.

8-34

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Debug Support

If fal se matches can occur during changesto thewatchpoint registers, caused by old data
in some registers and new data in others, then you must:

1. Disablethat watchpoint unit using the control register for that watchpoint unit.
2. Changethe other registers.

3. Re-enablethe watchpoint unit by rewriting the control register.

8.12.1 Further reading - debug in depth

A more detailed description of the ARM9E-S debug features and JTAG interface are
provided in the ARM9E-S Technical Reference Manual, Appendix D Debug in Depth.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 8-35

Debug Support

8-36 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Chapter 9
ETM Interface

This chapter describes the ARM946E-S (Rev 1) Embedded Trace Macrocell (ETM)
interface. It contains the following sections:

. About the ETM interface on page 9-2
. Enabling the ETM interface on page 9-4.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 9-1

ETM Interface

9.1 About the ETM interface

The ARM946E-S (Rev 1) supports the connection of an optional external Embedded
Trace Macrocell (ETM) to provide real-time tracing of ARM946E-S (Rev 1)
instructions and datain an embedded system.

The ETM consists of two parts:

A traceport A trace protocol has been devel oped to provide areal-time trace
capability for processor cores that are deeply embedded in much
larger ASIC designs. Asthe ASIC typically includes significant
amounts of on-chip memory, you cannot determine how the
processor core is operating simply by observing the pins of the
ASIC. A trace port is required to confirm the performance of the
processor in operational use.

Triggering facilities

An extensible specification exists, allowing you to specify the
exact set of trigger resources required for aparticular application.
Resources include address and data comparators, counters, and
sequencers.

The ETM compresses the trace information and exportsit through the trace port. An
external Trace Port Analyzer (TPA) is used to capture the trace information.

The ETM interfaceis primarily oneway. To provide code tracing, the ETM block must
be able to monitor various ARM9E-S inputs and outputs. The required ARM9E-S
inputs and outputs are coll ected and driven out from the ARM946E-S (Rev 1) macrocell
asthe ETM interface.

The ETM interface outputs are pipelined by asingle clock cycleto provide early output
timing and to isolateany ETM input load from the critical ARM946E-S (Rev 1) signals.
The latency of the pipelined outputs does not affect ETM trace behavior, because all
outputs are delayed by the same amount.

Figure 9-1 on page 9-3 shows the ARM946E-S (Rev 1) ETM interface.

9-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

ETM Interface

ETM
A A A A A A A
ETMEN
ARMO946E-S v
E
CLK " ETM interface registers O nRESET
f A A A A t
FIFOFULL
L
> g To/from
Tolfrom > ARMO946E-S
ARMO46E-S > ARMOE-S logic
logic -

Figure 9-1 ARM946E-S (Rev 1) ETM interface

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

9-3

ETM Interface

9.2 Enabling the ETM interface

Theonly input to the ETM interface of the ARM946E-S (Rev 1) isan enable signal that
determines whether the required ARM9E-S inputs and outputs are driven out from the
ARMO46E-S (Rev 1).

The ETM enableis controlled by the top-level pin ETM EN. When thisinput isHIGH,
the ETM interface is enabled and the outputs are driven so that an external ETM can
begin code tracing.

Whenthe ETMEN input isdriven LOW, the ETM interface outputs are held at their last
value beforetheinterfaceisdisabled. At reset, al ETM interface outputs are reset L OW.

The ETMEN input is usually driven by the ETM, and driven HIGH when you have
programmed the ETM using its TAP controller. It must be connected to the inverted
PWRDOWN output of the ETM.

Note

If you do not use an ETM in an embedded ARM946E-S (Rev 1) design, you must tie
the ETMEN input LOW to save power.

9-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Chapter 10
Test Support

This chapter describes the test methodol ogy used for the ARM946E-S (Rev 1)
synthesized logic and TCM. It contains the following sections:

. About the ARM946E-S (Rev 1) test methodol ogy on page 10-2
. Scan insertion and ATPG on page 10-3
. BIST of memory arrays on page 10-5.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. 10-1

Test Support

10.1 About the ARM946E-S (Rev 1) test methodology

To achieve a high level of fault coverage, you can use scan insertion and ATPG
techniques on the ARM9E-S core and ARM946E-S (Rev 1) control logic as part of the

synthesisflow. You can use BIST to provide high fault coverage of the compiled RAMs
(cache and TCM).

10-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

TestSupport

10.2 Scan insertion and ATPG

Thistechnique is covered in detail in the ARM946E-S (Rev 1) Implementation Guide.
Scaninsertion requiresthat all register elements are replaced by scannable versionsthat
are then connected up into anumber of large scan chains. These scan chains are used to
set up data patterns on the combinatorial logic between the registers, and capture the
logic outputs. The logic outputs are then scanned out while the next data pattern is
scanned in.

You can use Automatic Test Pattern Generation (ATPG) tools to create the necessary
scan patterns to test the logic, when the scan insertion has been performed. With this
technique you can achieve very high fault coverage for the standard cell combinatorial
logic, typicaly in the 95-99% range.

Scan insertion does have an impact on the area and performance of the synthesized
design, due to the larger scan register elements and the serial routing between them.
However, to minimize these effects, the scan insertion is performed early in the
synthesis cycle and the design re-optimized with the scan elements in place.

10.2.1 ARMO946E-S (Rev 1) INTEST wrapper

In addition to the auto-inserted scan chains, the ARM946E-S (Rev 1) macrocell
optionally includes adual-purpose INTEST scan chain wrapper. Thisfacilitates ATPG
and provides an additional method for activating BIST of the compiled RAM.

ATPG

You can usethe INTEST scan chain to enable an ATPG tool to accessthe ARM946E-S
(Rev 1) top-level inputs and outputs in an embedded design. This wrapper adds a scan
source for each ARM946E-S (Rev 1) input and a capture cell for each output. The
ATPG tools use this scan chain in addition to the ones created by scan insertion, to test
thelogic from agiveninput pinto any register that it connectsto, and from any registers
whose outputs end up at apin.

Note

The order of this scan chainis predetermined and must be maintained through synthesis
and place and route of the macrocell.

BIST activation

To enable the BIST hardware to be activated by scan means, the INTEST wrapper has
a second operational mode. When the ARM946E-S (Rev 1) SERIALEN input istrue,
this scan chain scans in serialized MCR instructions to initiate BIST test using the CP15

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 10-3

Test Support

BIST register. After apredetermined number of clock cycles (depending on the size of
the test), the appropriate MRC instruction is scanned in to read the BIST control register
to check the test result. The INTEST wrapper allows the full range of BIST teststo be
applied asdetailed in BIST of memory arrays on page 10-5. Theflow for generating the

serialized patternsfrom ARM assembler sourceis supplied with the ARM 946E-S (Rev
1) implementation scripts.

10-4

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

TestSupport

10.3 BIST of memory arrays

10.3.1 BIST control

Caution

Code for running the BIST must not be placed in the ITCM or in a cacheable location,
because this can cause invalid or dirty data to be introduced into program execution.
Also, caches must be flushed after running the BIST.

Adding asimple memory test controller allows you to perform an exhaustive test of the
memory arrays. You can activate the BIST test using an MCR to the CP15 BIST control
register.

When you perform aBIST test on compiled RAM, the functional enable for all RAMs
isautomatically disabled, forcing all memory accessesto all TCM and cache address
ranges to go to the AHB. This enables you to run BIST tests in the background, for
instance the instruction RAM can be BIST tested, while codeis executed over the AHB.

Serial scan access to the CP15 BIST operationsis also provided for production test
purposes, using a special mode of operation of the INTEST wrapper. See ARM946E-S
(Rev 1) INTEST wrapper on page 10-3.

You can aso perform limited BIST testing in debug state by using scan chain 15 to
access the CP15 BIST control register. Thisis not necessarily recommended as the
BIST test corrupts the contents of the SRAM being tested.

You can achieve full programmer control over the BIST mechanism through five
registers that are mapped to CP15 register 15 address space. For details of the MCR/MRC
instructions used to access these registers, see Register 15, RAM and TAG BIST test
registers on page 2-29.

register

The CP15 register 15BIST control register controlsthe operation of the compiled RAM
memory BIST. Before initiating a BIST test, an MCR is first performed to the BIST
control register to set up the size of the test and enable the RAM to be tested. An
additional MCR is required to initiate the test.

You can access the current status of a BIST test and result of a completed test by
performing an MRC to the BIST control register. Thisreturns flags to indicate that atest
is:

. running

. paused

. failed

. compl eted.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 10-5

Test Support

In addition to returning the state for the size of thetest memory array, having completed
aBIST test, if you wish to usethe memory array for functional operation you must first
clear the BIST enable by writing to the BIST control register. You must then re-enable
the memory array by writing to CP15 register 1.

Note

Clearing the functional memory array enable when BIST is enabled prevents you from
trying to run from cache or TCM following aBIST test, without having first flushed the
cache memory and reprogrammed the RAM. Thisis necessary as the BIST algorithm
corrupts al tested memory locations.

10.3.2 BIST address and general registers

The BIST control register enables you to perform standard BIST operations on each
RAM block and to optionally specify the size of the test. Additional registers are
required, however, to provide the following functionality:

. testing of the BIST hardware

. changing the seed datafor a BIST test

. providing a nonzero starting address for a BIST test

. peek and poke of the RAM

. returning an address location for afailed BIST test.

This additional functionality is most useful for debugging faulty silicon during
production test. The exception to thisis the start address for aBIST test. It is possible
that BIST of the RAM is performed periodically during program execution, the memory
being tested in smaller pieces rather than in one go. Thisrequires a start addressthat is
incremented by the size of the test each time atest is activated.

Note

ARM Ltd. recommends that you do not write application code that relies on the
presence of the BIST address and general registers. ARM Ltd. does not guarantee to
support these registers in future versions of the ARM946E-S (Rev 1) macrocell.

10-6

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

TestSupport

Table 10-1 and Table 10-2 show how the registers are used. The pause bits from the
BIST control register provide extra decode of these registers.

Table 10-1 Instruction BIST address and general registers

. IBIST .
BIST register Read Write
pause
IBIST address register 0 IBIST fail address IBIST start address
IBIST address register 1 IBIST fail address IBIST peek/poke address
IBIST general register 0 IBIST fail data IBIST seed data
IBIST general register 1 IBIST peek data IBIST poke data

Table 10-2 Data BIST address and general registers

. IBIST .
BIST register Read Write
pause
DBIST address register 0 DBIST fail address DBIST start address
DBIST address register 1 DBIST fail address DBIST peek/poke address
DBIST genera register 0 DBIST fail data DBIST seed data
DBIST general register 1 DBIST peek data DBIST poke data

10.3.3 Pause modes

ARM Ltd. recommends that you use the following production test sequence for the

compiled RAM:

1. Test each RAM using afull test.

2. Test the BIST hardware for each RAM.

To allow testing of the BIST hardware, it is necessary to deliberately corrupt datain the
SRAM. This can be done by the ATPG tool if isrecognizesthe SRAM parameters.
Alternatively a pause mechanism enables you to halt the BIST test. This enablesyou to
corrupt data within the RAM. The sequence for thisis:

1. Writetheaddressfor thelocation to be corrupted with an MCR to therelevant BIST

address register.

2. Writethe corrupted data using aMCR to the BIST general register.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. 10-7

Test Support

You can then restart the test using an MCR to the BIST control register and check to see
that the corrupted data causesthetest to fail. You can read the fail address and datafrom
the BIST address and general registers.

In addition to controlling the addressing within the address and general registers, the
pause bit also controls the progression of the BIST algorithm as described in:

. Auto pause on page 10-8

Note

ARM Ltd. recommends that you do not write application code that relies on the
presence of the BIST pause mode. ARM Ltd. does not guarantee to support thisfeature
in future versions of the ARM946E-S macrocell.

Auto pause

If you set the pause bit inthe BIST control register before you activate the test, the test
runs in auto pause mode. The BIST test pauses at predetermined points of the BIST
algorithm, for instance when the algorithm has reached the top or the bottom of the
memory array being tested.

You can poll the BIST control register to detect when atest has paused (the running flag
is LOW). You can then corrupt the data, as described in Pause modes on page 10-7,
before you restart the BIST test.

Note
Auto pause only operates after the first pass of the BIST.

10-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Appendix A
AC Parameters

This appendix lists the AC timing parameters for the ARM946E-S (Rev 1) macrocell.
It contains the following sections:

. Timing diagrams on page A-2
. AC timing parameter definitions on page A-12.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-1

AC Parameters

A.1 Timing diagrams

The timing diagramsin this section are:

Clock, reset, and AHB enable timing on page A-2
AHB bus request and grant related timing on page A-3
AHB bus master timing on page A-4

Coprocessor interface timing on page A-5

Debug interface timing on page A-6

JTAG interface timing on page A-7

DBGSDOUT to DBGTDO timing on page A-8
Exception and configuration timing on page A-8
INTEST wrapper timing on page A-9

ETM interface timing on page A-11.

Clock, reset, and AHB enable timing parameters are shown in Figure A-1.

ew [\

Teye

HCLKEN X
Tishen

Hﬁ Tinhen

HRESETn
Tisrst
—f Tinrst

Figure A-1 Clock, reset, and AHB enable timing

AHB bus request and grant related timing parameters are shown in Figure A-2.

A-2

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

CLK

HBUSREQ

—

HLOCK

HGRANT

S N U

—

AC Parameters

— Tovreq — L Tohreq

—

“— Tovick — L Tohlck

~

/r Tisgnt
\

=

Figure A-2 AHB bus request and grant related timing

AHB bus master timing parameters are shown in Figure A-3.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

A-3

AC Parameters

Tovetl

Tohetl

S A U L U T \
HTRANS[1:0] NONSEQ >O<
— Tovtr — Tohtr
HADDR[31:0] A >O<
— Tova — Toha
HWRITE
HSIZE[2:0]
HBURST[2:0] Control >O<
HPROT[3:0]

= == e

HWDATA[31:0] Write data (A)
- Tovwd — Tohwd
HREADY X\ / /r)
isrdy
‘ - Tihrdy
HRESP X X X X OKAY X OKAY X:
Tisrsp | Tinrsp
HRDATA[31:0] >O< >O< >< Read dala
(A)
— Tihrd
Tisrd

Figure A-3 AHB bus master timing

Coprocessor interface timing parameters are shown in Figure A-4.

A-4

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

AC Parameters

S R U R U S W
CPCLKEN XX
Tovcpen — Tohcpen
CPINSTR[31:0] >O<
Tovepid — Tohcpid
nCPMREQ
nCPTRANS XX
CPTBIT
Tovepctl — Tohcpetl
CHSDE >< WAIT/GO >< X
CHSEX LAST/ABSENT
Tiscphs —| T|hcphs
CPLATECANCEL XX
Toveple — Tohcplc
CPPASS XX
Tovcpps — Tohcpps
CPDOUT([31:0] LDSQQCR
— Toveprd — Tohcprd
CPDIN[31:0] STCMRE
— Tihcpwr
Tiscpwr [—

Figure A-4 Coprocessor interface timing

Debug interface timing parameters are shown in Figure A-5.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

A-5

AC Parameters

CLK —\— \
DBGACK
— Tovdbgack — Tohdbgack
DBGRNGI1:0]
— Tovdbgrng — Tohdbgrng
DBGRAQI
o Tovdbgrqi e Tohdbgrgi
DBGINSTREXEC
— Tovdbgstat — Tohdbgstat
COMMRX
COMMTX
— Tovdbgcomm — Tohdbgcomm
DBGEN
EDBGRQ X X
DBGEXT[1:0]
Tisdogin | Lk— Tindbgin
DBGIEBKPT X X
Tisiebkpt — —o L— Tiniebkpt
DBGDEWPT X X
Tisdewpt k— Tihdewpt

Figure A-5 Debug interface timing

JTAG interface timing parameters are shown in Figure A-6.

A-6 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

CLK
—

DBGIR[3:0]
DBGSCREG[4:0]
DBGTAPSM[3:0]

DBGnTDOEN

DBGSDIN

DBGTDO

DBGNnTRST

DBGTDI
DBGTMS

DBGTCLKEN

TAPID[31:0]

AC Parameters

)

Tovdbgsm

Tohdbgsm

Tovtdoen

Tovsdin

Tohsdin

N

Tovtdo

Tohtdo

:
:
:

Tihntrst ‘ Tisntrst
\ \
Tistdi t— Tihtdi
\ \
Tistcken k— Tihtcken
\ \
Tistapid — Tihtapid

Figure A-6 JTAG interface timing

A combinatorial path timing parameter exists from the DBGSDOUT input to
DBGTDO output. Thisis shown in Figure A-7.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

A-7

AC Parameters

DBGSDOUT

DBGTDO
Ttdsd |
Ttdsh

Figure A-7 DBGSDOUT to DBGTDO timing

Exception and configuration timing parameters are shown in Figure A-8.
w [\

BIGENDOUT
— Tovbigend — Tohbigend

nFlQ
nIRQ
Tisint — — Tihint
VINITHI X X
Tishivees) L— Tinnivecs
INITRAM X X
Tisinitram | t— Tihinitram

Figure A-8 Exception and configuration timing

The INTEST wrapper timing parameters are shown in Figure A-9.

A-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

AC Parameters

e [T [

SO
| ' Tovso v Tohso

s \
Tissi — .« Tihsi
SCANEN X X
Tisscanen | t— Tihscanen
TESTEN X X
Tistesten | t— Tihtesten
SERIALEN X X
Tisserialen | t— Tihserialen

Figure A-9 INTEST wrapper timing

The TCM interface timing parameters are shown in Figure A-10

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. A-9

AC Parameters

CLK _/ —\— —\— —\—
TCMADDR[17:0] A A
—» Tovatem —+ +— Tohatcm
TCMEn U W
— F Toventcm — ‘H Tohentcm
TCMWEn / Control \ \
— +— Tovtemetl — ‘% Tohtemetl
TCMWData[31:0] >O Write data (A)
— — Tovtcmwd — Tohtcmwd

TCMRData[31:0]

i

i

Read data
(A)

The ETM interface timing parameters are shown in Figure A-11.

- Tintemrd
Tistemrd

Figure A-10 TCM interface timing

A-10

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

AC Parameters

w [L

ETMIA[31:1]
ETMID31T024[31:24]
ETMID15To8[15:8]

|

— ~— Tovetminst — Tohetminst

ETMINMREQ
ETMISEQ
ETMITBIT

ETMIABORT

— ~— Tovetmictl — Tohetmictl

ETMINSTREXEC

— ~— Tovetmstat — Tohetmstat

ETMDA[31:0]
ETMRDATA[31:0]
ETMWDATA[31:0]
ETMDMASI[1:0]

— ~— Tovetmdata — Tohetmdata

ETMnWAIT

— «— Tovetmnwait — Tohetmnwait

ETMDMORE
ETMDnMREQ
ETMDnRW
ETMDABORT

— ~— Tovetmdectl — Tohetmdctl

ETMBIGEND
ETMHIVECS

— — Tovetmcfg — Tohetmcfg

ETMCHSD[1:0]
ETMCHSE[1:0]
ETMPASS
ETMLATECANCEL

— [— Tovetmcpif — Tohetmcpif

ETMDBGACK
ETMRNGOUTI[1:0]

s o Ry o y s s o Ry o i s (R

Tohetmdbg

ETMEN X X

Tisetmen | Tihetmen

— — Tovetmdbg —*

Figure A-11 ETM interface timing

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-11

AC Parameters

A.2 ACtiming parameter definitions

Table A-1 on page A-12 shows target AC parameters. All figures are expressed as

percentages of the CLK period at maximum operating frequency.

Note

Thefigures quoted are relative to therising clock edge after the clock skew for internal
buffering hasbeen added. Inputs given a0% hold figuretherefore require apositive hold
relative to the top-level clock input. The amount of hold required is equivalent to the

internal clock skew.

Table A-1 Timing parameter definitions

Symbol Parameter Min Max
Tcyc CLK cycletime 100% -
Tishen HCLKEN input setup to rising CLK 85% -
Tihhen HCLKEN input hold from rising CLK - 0%
Tisrst HRESETn de-assertion input setup to rising CLK 90% -
Tihrst HRESETn de-assertion input hold from rising CLK - 0%
Tovreq Rising CLK to HBUSREQ valid - 30%
Tohreq HBUSREQ hold time from rising CLK >0% -
Tovick Rising CLK to HLOCK valid - 30%
Tohlck HLOCK hold time fromrising CLK >0% -
Tisgnt HGRANT input setup to rising CLK 50% -
Tihgnt HGRANT input hold fromrising CLK - 0%
Tovtr Rising CLK to HTRANS[1:0] valid - 30%
Tohtr HTRANS[1:0] hold time from rising CLK >0% -
Tova Rising CLK to HADDR[31:0] valid - 30%
Toha HADDRJ[31:0] hold time from rising CLK >0% -
Tovctl Rising CLK to AHB control signalsvalid - 30%
Tohctl AHB control signals hold time from rising CLK >0% -

A-12 Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

AC Parameters

Table A-1 Timing parameter definitions (continued)

Symbol Parameter Min Max
Tovwd Rising CLK to HWDATA[31:0] valid - 30%
Tohwd HWDATA[31:0] hold time from rising CLK >0% -
Tisrdy HREADY input setup torising CLK 50% -
Tihrdy HREADY input hold fromrising CLK - 0%
Tisrsp HRESP[1:0] input setup to rising CLK 50% -
Tihrsp HRESP[1:0] input hold from rising CLK - 0%
Tisrd HRDATA[31:0] input setup to rising CLK 40% -
Tihrd HRDATA[31:0] input hold from rising CLK - 0%
Tovcpen Rising CLK to CPCLKEN valid - 30%
Tohcpen CPCLKEN hold time from rising CLK >0% -
Tovepid Rising CLK to CPINSTR[31:0] valid - 30%
Tohcpid CPINSTR[31:0] hold time from rising CLK >0% -
Tovcepctl Rising CLK to transaction control valid - 30%
Tohcpctl Transaction control hold time from rising CLK >0% -
Tiscphs Coprocessor handshake input setup to rising CLK 50% -
Tihcphs Coprocessor handshake input hold from rising CLK - 0%
Tovceplc Rising CLK to CPLATECANCEL valid - 30%
Tohcplc CPLATECANCEL hold time fromrising CLK >0% -
Tovepps Rising CLK to CPPASSvalid - 30%
Tohcpps CPPASS hold time from rising CLK >0% -
Tovcprd Rising CLK to CPDOUT[31:0] valid - 30%
Tohcprd CPDOUT[31:0] hold time from rising CLK >0% -
Tiscpwr CPDIN[31:0] input setup to rising CLK 50% -
Tihcpwr CPDIN[31:0] input hold from rising CLK - 0%
Tovdbgack Rising CLK to DBGACK valid - 60%
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-13

AC Parameters

Table A-1 Timing parameter definitions (continued)

Symbol Parameter Min Max
Tohdbgack DBGACK hold time from rising CLK >0% -
Tovdbgrng Rising CLK to DBGRNG[1:0] valid - 80%
Tohdbgrng DBGRNG[1:0] hold time from rising CLK >0% -
Tovdbgraqi Rising CLK to DBGRQI valid - 45%
Tohdbgrqi DBGRQI hold time from rising CLK >0% -
Tovdbgstat Rising CLK to DBGINSTREXEC valid - 30%
Tohdbgstat CLK hold time from rising DBGINSTREXEC >0% -
Tovdbgcomm Rising CLK to comms channel outputs valid - 60%
Tohdbgcomm Comms channel outputs hold time from rising CLK >0% -
Tisdbgin Debug inputsinput setup to rising CLK 30% -
Tihdbgin Debug inputsinput hold from rising CLK - 0%
Tisiebkpt DBGIEBKPT input setup to rising CLK 20% -
Tihiebkpt DBGIEBKPT input hold from rising CLK - 0%
Tisdewpt DBGDEWRPT input setup torising CLK 20% -
Tihdewpt DBGDEWRPT input hold from rising CLK - 0%
Tovdbgsm Rising CLK to debug state valid - 30%
Tohdbgsm Debug state hold time from rising CLK >0% -
Tovtdoen Rising CLK to DBGnTDOEN valid - 40%
Tohtdoen DBGNnTDOEN hold time from rising CLK >0% -
Tovsdin Rising CLK to DBGSDIN valid - 20%
Tohsdin DBGSDIN hold time from rising CLK >0% -
Tovtdo Rising CLK to DBGTDO valid - 65%
Tohtdo DBGTDO hold time from rising CLK >0% -
Tisntrst DBGNTRST de-asserted input setup to rising CLK 25% -
Tihntrst DBGNTRST input hold from rising CLK - 0%

A-14

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

AC Parameters

Table A-1 Timing parameter definitions (continued)

Symbol Parameter Min Max
Tistdi Tap state control input setup to rising CLK 25% -
Tihtdi Tap state control input hold from rising CLK - 0%
Tistcken DBGTCKEN input setup to rising CLK 50% -
Tihtcken DBGTCKEN input hold fromrising CLK - 0%
Tistapid TAPID[31:0] input setup to rising CLK 35% -
Tihtapid TAPID[31:0] input hold from rising CLK - 0%
Tdsd DBGTDO delay from DBGSDOUTBS changing - 30%
Tdsh DBGTDO hold timefrom DBGSDOUTBS changing >0% -
Tovbigend Rising CLK to BIGENDOUT valid - 30%
Tohbigend BIGENDOUT hold time from rising CLK >0% -
Tisint Interrupt input setup to rising CLK 15% -
Tihint Interrupt input hold from rising CLK - 0%
Tishivecs VINITHI input setup to rising CLK 90% -
Tihhivecs VINITHI input hold fromrising CLK - 0%
Tisinitram INITRAM input setup torising CLK 90% -
Tihinitram INITRAM input hold from rising CLK - 0%
Tovso Rising CLK to SO valid - 30%
Tohso SO hold time from rising CLK >0% -
Tiss Sl input setup to rising CLK 95% -
Tihs Sl input hold from rising CLK - 0%
Tisscanen SCANEN input setup to rising CLK 95% -
Tihscanen SCANEN input hold from rising CLK - 0%
Tistesten TESTEN input setup to rising CLK 95% -
Tihtesten TESTENinput hold from rising CLK - 0%
Tisseridlen SERIALEN input setup to rising CLK 95% -
ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. A-15

AC Parameters

Table A-1 Timing parameter definitions (continued)

Symbol Parameter Min Max
Tihseriden SERIALEN input hold from rising CLK - 0%
Tovatcm Rising CLK to TCMAdrg[17:0] valid - 10%
Toventcm Rising CLK to TCMEn valid - 10%
Tovtcmctl Rising CLK to TCM control signasvalid - 10%
Tohatcm TCMAdrg[17:0] hold time from rising CLK >0% -
Tohentcm TCMERn hold time from rising CLK >0% -
Tohtemctl TCM control signashold time from rising CLK >0%

Tistemrd TCMRData[31:0] input setup to rising CLK 30% -
Tihtcmrd TCMRData[31:0] input hold from rising CLK - 0%
Tovtcmwd Rising CLK to TCMWData[31:0] valid - 10%
Tohtcmwd TCMWData[31:0] hold time from rising CLK >0% -
Tovetminst Rising CLK to ETM instruction interface valid - 30%

Tohetminst ETM instruction interface hold time from rising CLK >0% -

Tovetmictl Rising CLK to ETM instruction control valid - 30%
Tohetmictl ETM instruction control hold time from rising CLK >0% -
Tovetmstat Rising CLK to ETMINSTREXEC valid - 30%
Tohetmstat ETMINSTREXEC hold time from rising CLK >0% -
Tovetmdata Rising CLK to ETM datainterface valid - 30%
Tohetmdata ETM datainterface hold time from rising CLK >0% -
Tovetmnwait Rising CLK to ETMnWAIT valid - 30%
Tohetmnwait ETMnWAIT hold time from rising CLK >0% -
Tovetmdctl Rising CLK to ETM data control valid - 30%
Tohetmdctl ETM data control hold time from rising CLK >0% -
Tovetmcfg Rising CLK to ETM configuration valid - 30%
Tohetmcfg ETM configuration hold time from rising CLK >0% -

A-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

AC Parameters

Table A-1 Timing parameter definitions (continued)

Symbol Parameter Min Max
Tovetmcepif Rising CLK to ETM coprocessor signals valid - 30%
Tohetmcpif ETM coprocessor signals hold time from rising CLK >0% -
Tovetmdbg Rising CLK to ETM debug signasvalid - 30%
Tohetmdbg ETM debug signals hold time from rising CLK >0% -
Tisetmen ETMEN input setup to rising CLK 50% -
Tihetmen ETMEN input hold from rising CLK - 0%
Note

The VINITHI pinis specified as 95% of the cycle becauseit isfor input configuration
during reset and can be considered static. The INTEST wrapper inputs/outputs are
specified as 95% of the cycle asthey are production test related and expected to operate

at typically 50% of the functional clock rate.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

A-17

AC Parameters

A-18 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Appendix B
Signal Descriptions

This appendix introduces the ARM946E-S (Rev 1) processor. It contains the following

sections:

. Sgnal properties and requirements on page B-2
. Clock interface signals on page B-3

. TCM interface signals on page B-4

. AHB signals on page B-5

. Coprocessor interface signals on page B-7
. Debug signals on page B-9

. JTAG signals on page B-11

. Miscellaneous signals on page B-12

. ETM interface signals on page B-13

. INTEST wrapper signals on page B-15.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved.

B-1

Signal Descriptions

B.1 Signal properties and requirements

In order to ensure ease of integration of the ARM946E-S (Rev 1) into embedded
applications and to simplify synthesis flow, the following design techniques have been
used:

. asinglerising edge clock times all activity
. all signals and buses are unidirectional
. all inputs are required to be synchronous to the single clock.

These techniques simplify the definition of the top-level ARM946E-S (Rev 1) signals
asall outputschange from therising edge and all inputs are sampled with therising edge
of the clock. In addition, all signals are either input or output only, as bidirectional
signals are not used.

Note

You must use external logic to synchronize asynchronous signals (for exampleinterrupt
sources) before applying them to the ARM946E-S (Rev 1) macrocell.

B-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

B.2 Clock interface signals

Signal Descriptions

Table B-1 describes the ARM946E-S (Rev 1) clock interface signals.

Table B-1 Clock interface signals

Name

Direction

Description

CLK
System clock

Input

This clock times all operationsin the ARM946E-S
(Rev 1) design. All outputs change from the rising
edge and all inputs are sampled on the rising edge.
The clock can be stretched in either phase.

Using the HCLKEN signal, this clock also times
AHB operations.

Using the DBGTCKEN signal, thisclock also times
debug operations.

HCLKEN

Input

Synchronous enablefor AHB transfers. When HIGH
indicates that the next rising edge of CLK isaso a
rising edge of HCLK in the AHB system that the
ARMO46E-S (Rev 1) is embedded in. Must betied
HIGH in systemswhere CLK and HCLK are
intended to be the same frequency.

DBGTCKEN

Input

Synchronous enable for debug logic accessed using
the JTAG interface. When HIGH on the rising edge
of CLK the debug logic can advance.

GateTheCLK

Output

Clock control signal for Wait For Interrupt. When
asserted, the CLK input can be stopped to minimize
power.

Notethat when CLK isdisabled, generating adebug
request within the ARM946E-S does not re-enable
the core.

UngatedCLK

Input

Free-running clock.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. B-3

Signal Descriptions

TCM interface signals

Table B-2 describes the ARM946E-S TCM interface signals.

Table B-2 TCM interface signals

Signal Direction Description

DTCMAdrg17:0] Out Data tightly-coupled memory address. Thisis aword
address.

DTCMWData[31:0] Out Write Data to the Tightly-coupled memory.

DTCMRData[31:0] In Read data from the Tightly-coupled memory.

DTCMEn Out Data Tightly-coupled memory enable.

DTCMWen[3:0] Out Data Tightly-coupled memory write enables. Thereisone
writer enable fir each byte.

PhyDTCM Size[3:0] In Encoded size of the Data Tightly-coupled memory. The
encoding for these signalsis given in Table 2-5.

ITCMAdrg17:0] Out Instruction tightly-coupled memory address. Thisisa
word address.

ITCMWData[31:0] Out Write Data to the Instruction Tightly Coupled Memory.

ITCMRData[31:0] In Read data from the Instruction Tightly Coupled Memory.

ITCMEn Out Instruction Tightly-coupled memory enable.

ITCMWen[3:0] Out Instruction Tightly-coupled memory write enables. There
is one writer enable fir each byte.

Phyl TCM Siz€[3:0] In Encoded size of the instruction Tightly-coupled memory.

The encoding for these signalsis given in Table 2-5.

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

AHB signals

Signal Descriptions

Table B-3 describes the ARM946E-S (Rev 1) AHB signals.

Table B-3 AHB signals

Name Direction Description

HADDR[31.0] Output The 32-bit AHB system address bus.

Address bus

HBURST[2:0] Output Indicates if the transfer forms part of a burst. The

Burst type ARM946E-S (Rev 1) supports SINGLE transfer
(000) and incremental burst cycles INCR(001),
INCR4(011) and INCR8(101).

HBUSREQ Output Indicates that the ARM946E-S (Rev 1) requires the

Bus request bus.

HGRANT Input Indicates that the ARM946E-S (Rev 1) is currently

Busgrant the highest priority master. Ownership of the
address/control signals changes at the end of a
transfer when HREADY isHIGH, so the
ARMO46E-S (Rev 1) gets access to the bus when
both HREADY and HGRANT are HIGH.

HLOCK Output When HIGH, indicatesthat the ARM946E-S (Rev 1)

Request locked requires|ocked accessto the bus and no other master

transfers must be granted until this signal has gone LOW.
Asserted by the ARM946E-S (Rev 1) when
executing SWP instructions to AHB address space.

HPROTI[3:0] Output Indicates that the ARM946E-S (Rev 1) transfer isan

Protection control opcode fetch (0--0) or dataaccess (0--1). Indicates if
the transfer is User mode access (0-0-) or a
Supervisor mode access (0-1-). Indicates that an
access is nonbufferable (00--) or bufferable (01--).
Bit [3] istied LOW indicating noncachable.

HRDATA[31:0] Input The 32-hit read data bus transfers data from a

Read data bus selected bus lave to the ARM 946E-S (Rev 1) during
read operations.

HREADY Input When HIGH indicates that atransfer has finished on

Transfer done the bus. This signal can be driven LOW by the

selected bus slave to extend a transfer.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. B-5

Signal Descriptions

Table B-3 AHB signals (continued)

Name Direction Description

HRESETNn Input Asynchronoudly asserted LOW input used to

Not reset initialize the ARM946E-S (Rev 1) system state.
Synchronously de-asserted.

HRESP[1:0] Input The transfer response from the selected slave

Transfer response provides additional information on the status of the
transfer. The response can be OKAY (00), ERROR
(01), RETRY (10), or SPLIT (11).

HSIZE[2:0] Output Indicatesthesize of an ARM946E-S (Rev 1) transfer.

Transfer size This can be Byte (000), Halfword (001), or Word
(010). Bit[2] istied LOW.

HTRANS1:0] Output Indicates the type of ARM946E-S (Rev 1) transfer.

Transfer type This can be IDLE (00), BUSY (01), NONSEQ (10),
or SEQ (11).

HWDATA[31:0] Output The 32-bit write data bus transfers data from the

Write data bus ARM946E-S (Rev 1) to a selected bus slave during
write operations.

HWRITE Output When HIGH indicates awrite transfer. When LOW

Transfer direction

indicates aread transfer.

B-6

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0201A

Signal Descriptions

B.5 Coprocessor interface signals
Table B-4 describes the ARM946E-S (Rev 1) coprocessor interface signals.

Table B-4 Coprocessor interface signals

Name Direction Description

CPCLKEN Output Synchronous enable for coprocessor pipeline

Coprocessor clock follower. When HIGH ontherising edge of CLK the

enable pipeline follower logic can advance.

CPINSTRJ[31:0] Output The 32-bit coprocessor instruction bus used to

Coprocessor transfer instructions to the coprocessor pipeline

instruction data follower.

CPDOUTI[31:0] Output The 32-bit coprocessor read data bus for transferring

Coprocessor read data to the coprocessor.

data

CPDIN[31:0] Input The 32-bit coprocessor write databusfor transferring

Coprocessor write data from the coprocessor.

data

CPPASS Output Indicatesthat thereisacoprocessor instruction in the
Execute stage of the pipeline, that must be executed.

CPLATECANCEL Output If HIGH during the first memory cycle of a
coprocessor instruction, then the coprocessor must
cancel the instruction without changing any internal
state. Thissignal isonly asserted in cycleswhere the
previous instruction causes a Data Abort to occur.

CHSDEJ1:0] Input The handshake signals from the Decode stage of the

Coprocessor coprocessor’s pipeline follower. Indicates ABSENT

handshake decode (10), WAIT (00), GO (01), or LAST (11).

CHSEX]1:0] Input The handshake signals from the Execute stage of the

Coprocessor coprocessor’s pipeline follower. Indicates ABSENT

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. B-7

Signal Descriptions

Table B-4 Coprocessor interface signals (continued)

Name Direction Description

CPTBIT Output When HIGH indicates that the ARM946E-S (Rev 1)
Coprocessor isin Thumb state. When LOW indicates that the
instruction Thumb ARM9Y46E-S (Re/ l) isin ARM state. Sampled by
bit the coprocessor pipeline follower.

nCPMREQ Output When LOW on therising edge of CLK and

Not coprocessor
instruction request

CPCLKEN isHIGH, theinstruction on CPINSTR
must enter the coprocessor pipeline.

NCPTRANS Output

Not coprocessor
memory trandate

When LOW indicates that the ARM946E-S (Rev 1)
isin User mode. When HIGH indicates that the
ARMO46E-S (Rev 1) isin Privileged mode. Sampled
by the coprocessor pipeline follower.

B-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

B.6 Debug signals

Signal Descriptions

Table B-5 describes the ARM946E-S (Rev 1) debug signals.

Table B-5 Debug signals

Name Direction

Description

COMMRX Output

Communications
channel receive

When HIGH, denotes that the comms channel
receive buffer contains valid data waiting to be read.

COMMTX Output

Communications
channel transmit

When HIGH, denotes that the comms channel
transmit buffer is empty.

DBGACK Output When HIGH indicates that the processor is in debug
Debug acknowledge state.
DBGDEWPT Input Asserted by external hardware to halt execution of

Data watchpoint

the processor for debug purposes. If HIGH at the end
of adata memory request cycle, it causesthe
ARMO46E-S (Rev 1) to enter debug state.

DBGEN Input Enables the debug features of the processor. This
Debug enable signal must betied LOW if debug is not required.
DBGEXT[1:0] Input Input to the Embedded| CE-RT logic alows
EmbeddedI CE-RT breakpoints/watchpoints to be dependent on external
external input conditions.

DBGIEBKPT Input Asserted by external hardware to halt execution of
Instruction the processor for debug purposes. If HIGH at the end
breakpoint of an instruction fetch, it causesthe ARM946E-S

(Rev 1) to enter debug stateif that instruction reaches
the Execute stage of the processor pipeline.

DBGINSTREXEC Output
Instruction executed

Indicates that the instruction in the Execute stage of
the processor’s pipeline has been executed.

ARM DDI 0201A Copyright © 2001 ARM Limited. All rights reserved. B-9

Signal Descriptions

Table B-5 Debug signals (continued)

Name Direction Description

DBGRNG[1:0] Output Indicates that the corresponding EmbeddedI CE-RT

Embedded| CE-RT watchpoint register has matched the conditions

Rangeout currently present on the address, data, and control
buses. Thissignal isindependent of the state of the
watchpoint enable control bit.

DBGROQI Output Represents the debug request signal that is presented

Internal debug to the core debug logic. Thisis a combination of

request EDBGRQ and bit 1 of the debug control register.

EDBGRQ Input An external debugger can force the processor into

External debug debug state by asserting thissignal.

request

B-10

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

B.7 JTAG signals

Signal Descriptions

Table B-6 describes the ARM946E-S (Rev 1) JTAG signals.

Table B-6 JTAG signals

Name Direction Description

DBGIR[3:0] Output These four bits reflect the current instruction loaded

TAP controller into the TAP controller instruction register. These

instruction register bits change when the TAP controller isin the
UPDATE-IR state.

DBGNnTRST Input Internally synchronized active LOW reset signal for

Not test reset the EmbeddedI CE-RT interna state.

DBGnTDOEN Output When LOW, the serial dataisbeing driven out of the

Not DBGTDO DBGTDO output. Normally used as an output

enable enable foraDBGTDO pin in apackaged part.

DBGSCREG[4:0] Output These five bits reflect the ID number of the scan
chain currently selected by the TAP controller. These
bits change when the TAP controller isin the
UPDATE-DR state.

DBGSDIN Output Contains the serial datato be applied to an external

External scan chain scan chain.

serial input data

DBGSDOUT Input Containsthe serid data out of an external scan chain.

External scan chain When an external scan chain is not connected, this

serial data output signal must be tied LOW.

DBGTAPSMI[3:0] Output This bus reflects the current state of the TAP

TAP controller state controller state machine.

machine

DBGTCKEN Input Synchronous enable test clock.

DBGTDI Input Test datainput for debug logic.

DBGTDO Output Test data output from debug logic.

DBGTMS Input Test mode select for TAP controller.

TAPID[31:0] Input Specifiesthe D code value shifted out on DBGTDO

Boundary scan ID
code

when the IDCODE instruction is entered into the
TAP controller.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. B-11

Signal Descriptions

B.8 Miscellaneous signals
Table B-7 describes the miscellaneous signals on the ARM946E-S (Rev 1) macrocell.
Table B-7 Miscellaneous signals
Name Direction Description
BIGENDOUT Output When HIGH, the ARM946E-S (Rev 1) treatshytesin
memory as being in big-endian format. When LOW,
memory is treated as little-endian.
nFIQ Input Thisisthe Fast Interrupt Request signd. Thissignal
Not fast interrupt must be synchronousto CLK.
request
nIRQ Input Thisisthe Interrupt Request signal. Thissignal must
Not interrupt request be synchronousto CLK.
VINITHI Input Determines the reset location of the exception
Exception vector vectors. When LOW, the vectors are located at
location at reset 0x00000000. When HIGH, the vectors are |ocated at
OxFFFF0000.
INITRAM Input Determinesif the TCMsare enabled at reset. If high,
they are enabled, if low, disabled.
B-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

B.9 ETM interface signals

Signal Descriptions

Table B-8 describes the ARM946E-S (Rev 1) ETM interface signals.

Table B-8 ETM interface signals

Name Direction Description

ETMEN Input Synchronous ETM interface enable. Thissignal must
betied LOW if an ETM is not used.

ETMBIGEND Output Big-endian configuration indication for the ETM.

ETMHIVECS Output Exception vectors configuration for the ETM.

ETMIA[31:1] Output Instruction address for the ETM.

ETMINMREQ Output Instruction memory request for the ETM.

ETMISEQ Output Sequential instruction access for the ETM.

ETMITBIT Output Thumb state indication for the ETM.

ETMIABORT Output Instruction Abort for the ETM.

ETMDA[31:0] Output Data addressfor the ETM.

ETMDMAS[1:0] Output Data size indication for the ETM.

ETMDMORE Output More sequential dataindication for the ETM.

ETMDnMREQ Output Data memory request for the ETM.

ETMDnRW Output Data not read/write for the ETM.

ETMDSEQ Output Sequential dataindication for the ETM.

ETMRDATA[31:0] Output Read data for the ETM.

ETMWDATA[31:0] Output Write datafor the ETM.

ETMDABORT Output Data Abort for the ETM.

ETMnWAIT Output ARMOE-S stalled indication for the ETM.

ETMDBGACK Output Debug state indication for the ETM.

ETMINSTREXEC Output Instruction execute indication for the ETM.

ETMRNGOUTI[1:0] Output Watchpoint register match indication for the ETM.

ETMID31TO25[31:25] Output Instruction datafield for the ETM.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. B-13

Signal Descriptions

Table B-8 ETM interface signals (continued)

Name Direction Description

ETMID15TO11[15:11] Output Instruction datafield for the ETM.

ETMCHSD[1:0] Output Coprocessor handshake decode signalsfor the ETM.

ETMCHSE[1:0] Output Coprocessor handshake execute signalsfor the ETM.

ETMPASS Output Coprocessor instruction execute indication for the
ETM.

ETMLATECANCEL Output Coprocessor late cancel indication for the ETM.

ETMPROCID[31:0] Output Process identifier for the ETM.

ETMPROCIDWR Output ETMPROCID write strobe.

ETMINSTRVALID Output Instruction valid indication for the ETM.

B-14

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

B.10 INTEST wrapper signals

Signal Descriptions

Table B-9 describes the ARM946E-S (Rev 1) INTEST wrapper signals.

Table B-9 INTEST wrapper signals

Name Direction Description

INNGtEXTEST Input Selects between INTEST and EXTEST mode of the
INTEST wrapper scan chain.

S Input Seria input datafor the INTEST wrapper scan chain.

SO Output Seria output data from the INTEST wrapper scan
chain.

SCANEN Input Enables scanning of data through the INTEST
wrapper scan chain.

TESTEN Selectsthe INTEST wrapper scan chain asthe source

Input for ARM946E-S (Rev 1) inputs.
SERIALEN Input Enablesthe INTEST wrapper BIST activation mode

where the scan chain applies serialized ARM
instructions to the ARM946E-S (Rev 1) to activate
BIST test of the tightly-coupled SRAM.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. B-15

Signal Descriptions

B-16 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Glossary

Abort

Abort model

ALU

Application Specific
Integrated Circuit

Arithmetic Logic Unit

ARM state

ASIC

This glossary describes some of the terms used in this manual. Where terms can have
several meanings, the meaning presented here isintended.

A mechanism that indicatesto acorethat it should halt execution of an attempted illegal
memory access. An abort can be caused by the external or internal memory system asa
result of attempting to accessinvalid instruction or data memory. An abort is classified
as either a prefetch abort, a data abort, or an external abort. See al'so Data abort,
External abort and Prefetch abort.

An abort model is the defined behavior of an ARM processor in response to a Data
Abort exception. Different abort model s behave differently with regard to load and store
instructions that specify base register writeback.

See Arithmetic Logic Unit.

Anintegrated circuit that has been designed to perform a specific application function.
It can be custom-built or mass-produced.

The part of aprocessor core that performs arithmetic and logic operations.

A processor that is executing ARM (32-bit) word-aligned instructionsis operating in
ARM state.

See Application Specific Integrated Circuit.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. Glossary-i

Glossary

Associative sets

Banked registers

Base register

Big-endian

Breakpoint

Byte

Cache

Cache contention

Cache hit

Cache line index

Cache lockdown

Cache miss

CAM

Total cache memory isusually divided into associative sets, allowing 8 word long data
blocks with memory addresses having the same L SBs to be loaded into cache in the
samelines(rows), but in different sets. For example, 4-way association allowsup to four
data blocks with different tags but the same row address in cache, to be stored, before
data has to be overwritten.

Those physical registers whose use is defined by the current processor mode. The
banked registers are R8 to R14.

A register specified by aload or store instruction that is used to hold the base value for
the instruction’s address cal cul ation.

Byte ordering scheme in which bytes of decreasing significance in adataword are
stored at increasing addresses in memory. See aso Little-endian and Endianness.

A breakpoint isamechanism provided by debuggersto identify an instruction at which
program execution isto be halted. Breakpoints are inserted by the programmer to allow
inspection of register contents, memory locations, variable values at fixed pointsin the
program execution to test that the program is operating correctly. Breakpoints are
removed after the program is successfully tested. See also Watchpoint.

An 8-bit dataitem.

A block of on-chip or off-chip fast access memory locations, situated between the
processor and main memory, used for storing and retrieving copies of often used
instructions and/or data. This is done to greatly reduce the average speed of memory
accesses and so to increase processor performance.

When the number of frequently-used memory cache linesthat use a particular cache set
exceeds the set-associativity of the cache. In this case, main memory activity increases
and performance decreases.

A memory access that can be processed at high speed because the instruction or data
that it addressesis aready held in the cache.

The number associated with each cache line in a cache set. Within each cache set, the
cache lines are numbered from O to (set associativity) -1.

To fix alinein cache memory so that it cannot be overwritten. Cache lockdown allows
critical instructions and/or data to be loaded into the cache so that the cache lines
containing them will not subsequently be reallocated. This ensures that all subsequent
accesses to the instructions/data concerned are cache hits, and therefore compl ete as
quickly as possible.

A memory accessthat cannot be processed at high speed because the instruction/data it
addressesis not in the cache and a main memory access is required.

See Content addressable memory.

Glossary-ii

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Glossary

Central Processing Unit The part of a processor that containsthe ALU, the registers, and the instruction decode

Clock gating
Condition field
Content addressable

memory

Coprocessor

CPU

Data Abort

Data cache

DCache

Debugger

Domain

Double word

EmbeddedICE

Endianness

Exception vector

logic and control circuitry. Also commonly known as the processor core.

Gating aclock signal for amacrocell with a control signal (such as PWRDOWN) and
using the modified clock that results to control the operating state of the macrocell.

A 4-bit field in an instruction that is used to specify a condition under which the
instruction can execute.

Memory that isidentified by its contents. Content addressable memory isused in
CAM-RAM architecture caches to store the tags for cache entries.

A processor that supplements the main CPU. It carries out additional functions that the
main CPU cannot perform. Usually used for floating-point math calculations, signal
processing, or memory management.

See Central Processing Unit.

An indication from a memory system to a core that it should halt execution of an
attempted illegal memory access. A data abort is attempting to access invalid data
memory. See also Abort, External abort and Prefetch abort.

See DCache.

A block of on-chip fast access memory locations, situated between the processor and
main memory, used for storing and retrieving copies of often used data. Thisisdoneto
greatly increase the average speed of memory accesses and so to improve processor
performance.

A debugging system that includes aprogram, used to detect, locate, and correct software
faults, together with custom hardware that supports software debugging.

A collection of sections, large pages and small pages of memory, which can have their
access permissions switched rapidly by writing to the Domain Access Control Register
(CP15 register 3).

A 64-bit dataitem. The contentsaretaken asbeing an unsigned integer unless otherwise
stated.

The additional JTAG-based hardware provided by debuggable ARM processorsto aid

debugging.

Byte ordering. The schemethat determinesthe order in which successive bytes of adata
word are stored in memory. See also Little-endian and Big-endian.

One of anumber of fixed addresses in low memory, or in high memory if high vectors
are configured, that contains the first instruction of the corresponding interrupt service
routine.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. Glossary-iii

Glossary

External abort

Halfword

ICache

Instruction cache

Anindication from an external memory system to acorethat it should halt execution of
an attempted illegal memory access. An external abort iscaused by the external memory
system as aresult of attempting to access invalid memory. See also Abort, Data abort
and Prefetch abort

A 16-bit dataitem.

A block of on-chip fast access memory locations, situated between the processor and
main memory, used for storing and retrieving copies of often used instructions. Thisis
done to greatly increase the average speed of memory accesses and so to improve
processor performance.

See |Cache.

Joint Test Action Group The hame of the organization that devel oped standard |EEE 1149.1. This standard

JTAG

Little-endian

Macrocell

Prefetch abort

Processor

Region
Register
SBO
SBZ
SCREG

Should be one

defines a boundary-scan architecture used for in-circuit testing of integrated circuit
devices. It is commonly known by the initials JTAG.

See Joint Test Action Group.

Byte ordering schemeinwhich bytes of increasing significancein adataword are stored
at increasing addresses in memory. See also Big-endian and Endianness.

A complex logic block with a defined interface and behavior. A typical VLSI system
will comprise several macrocells (such asan ARM9E-S, an ETM9, and a memory
block) plus application-specific logic.

An indication from amemory system to acore that it should halt execution of an
attempted illegal memory access. A prefetch abort can be caused by the external or
internal memory system as a result of attempting to access invalid instruction memory.
See also Data abort, External abort and Abort

A contraction of microprocessor. A processor includesthe CPU or core, plus additional
components such as memory, and interfaces. These are combined asasingle macrocell,
that can be fabricated on an integrated circuit.

A partition of instruction or data memory space.

A temporary storage location used to hold binary data until it is ready to be used.
See Should be one.

See Should be zero.

The currently selected scan chain number in an ARM TAP controller.

Should be written as 1 (or all 1sfor bit fields) by software. Writing a0 will produce
UNPREDICTABLE results.

Glossary-iv

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Should be zero

Tag bits

TAP

TCM

Test Access Port

Thumb state

UNDEFINED

UNPREDICTABLE

Watchpoint

Word

Glossary

Should be written as 0 (or all Osfor bit fields) by software. Writing a 1 will produce
UNPREDICTABLE results.

Theindex or key field of a CAM entry.
See Test access port.
Tightly- coupled memory.

The collection of four mandatory and one optional terminals that form the input/output
and control interface to a JTAG boundary-scan architecture. The mandatory terminals
areTDI, TDO, TMS, and TCK. The optional terminal isTRST.

A processor that is executing Thumb (16-bit) half-word aligned instructionsis operating
in Thumb state

An instruction that generates an undefined instruction exception.

For reads, the datareturned when reading from thislocation isunpredictable. It can have
any value. For writes, writing to this location causes unpredictable behavior, or an
unpredictable change in device configuration. UNPREDICTABLE instructions must
not halt or hang the processor, or any part of the system.

A watchpoint is a mechanism provided by debuggers to halt program execution when
the data contained by a particular memory addressis changed. Watchpointsareinserted
by the programmer to allow inspection of register contents, memory locations, and
variable values when memory iswritten to test that the program is operating correctly.
Watchpoints are removed after the program is successfully tested. See also Breakpoint.

A 32-bit dataitem.

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved. Glossary-v

Glossary

Glossary-vi Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

Index

Theitemsin thisindex are listed in al phabetical order, with symbols and numerics appearing at the end. The

references given are to page numbers.

A

AC timing parameters A-12
Access permission
bits 2-17
registers 2-17
AHB
bus master interface 6-3
clock relationships 6-11
clocking 6-10
signals B-5
Alternate vectors select bit 2-14
ARMOE-S 1-2
ARMO946E-S
transfer 6-3
ATPG 10-3
Auto pause 10-8
Automatic test pattern generator 10-3

B

Background regions 4-6

Base restored data abort model 2-3
Base setting, example 2-22
Base updated data abort model 2-3
Bd bit 3-9, 6-13
Big-endian 2-15
BIST
activation 10-3
addressregister 10-6
control register 10-5
general register 10-6
of tightly-coupled SRAM 10-5
Breakpoints 8-21
exceptions 8-22
instruction boundary 8-22
prefetch abort 8-22
timing 8-21
Burst
access 6-7
crossing 1K boundary 6-7
size 6-4
Businterface unit 6-2
Bus master interface, AHB 6-3
Busy-waiting 7-14

C

Cachable bits 2-16

Cache
architecture 3-5
associativity 2-10
configuration registers 2-15
debug index register 2-32
example 8K 3-3
lockdown register 2-25
operationsregister 2-22
size 2-9

Cdbit 3-9

CDP 7-12

Clean and flush DCache 3-10

CLK toHCLK dew 6-10

Clock
domains 8-26
interface signals B-3
relationships 6-11

Clock treeinsertion 6-11
hierarchical 6-12

Clocking, AHB 6-10

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

Index-1

Index

Configure disable loading TBIT 2-14

Control register 2-12, 5-3
Coprocessor
external 7-7
handshake signals 7-6
interface signals B-7

Status register 8-29
systems 8-4
target 8-5

Debug state
actionsof ARM9TDMI 8-25
breakpoints 8-21

Index/segment format 2-23

Instruction RAM

enable bit 2-13

load mode bit 2-13
Interlocked MCR 7-10

Interrupts 7-14

states 7-6 watchpoints 8-22 INTEST wrapper 10-3
CP15 5-3 Determining signals B-15
register map 2-5 core state 8-27 I-SRAM
system state 8-27 enabling 5-3
Dirty bits 3-5 ITCM
D Disabling EmbeddedI CE-RT 8-30 disabling 5-3
DTCM load mode 5-3
Data Abort model 2-3 disabling 5-4
Data bufferable bits 2-16, 6-13 enabling 5-4
Data RAM load mode 5-5 J
enable bit 2-14
load mode bit 2-13 JTAG
Datawrite modes 6-13 E signals B-11
DCache state machine 8-7
Bd and Cd bits 3-9 EmbeddedI CE-RT 8-5
cleanand flush 3-10 disabling 8-30
disabling 3-8 overview 8-28 L
enablebit 2-15 Enable bit 2-13
enabling 3-8 Endian bit 2-15 Linefetch
lockdown 3-12 ETM interface 9-2 back to back 6-5
operation 3-9 enabling 9-4 transfer 6-4
validity 3-10 signals B-13 Little-endian 2-15
Debug External coprocessors 7-7 Load mode
clocks 8-2 bit 2-13
comms channel 8-31, 8-33 DTCM 5-5
comms channel registers 8-31 F ITCM 5-3
comms channel statusregister 8-31 Lockdown
comms control register 8-31 Flushing cache 3-12
comms dataread register 8-31 entire |ICache 3-7 DCache 3-12
comms datawrite register 8-31 single ICacheline 3-7 example subroutine 3-14
control register 8-29 ICache 3-13
host 8-4
instruction register 8-9 |
interface 8-2 M
interface signals 8-21 ICache 3-6
message transfer 8-33 disabling 3-6 MCR
Multi-ICE 8-2 enablebit 2-14 bit pattern 2-7
public instructions 8-10 enabling 3-6 cycles 7-8
pullup resistors 8-9 flushing 3-7 interlocked 7-10
real-time 8-34 lockdown 3-13 Memory
request 8-24 operation 3-6 sizefield 2-11
reset 8-9 validity 3-7 Miscellaneous signals B-12
signals B-9 Index field 2-23 MRC
Index-2 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

bit pattern 2-7
cycles 7-8
Multi-ICE 8-2

N

NCB 6-14
Noncachable
bufferable 6-14
Noncached Thumb instruction fetch
6-9

O

Overlapping regions 4-7

P

Privileged instructions 7-13
Protection region/base size register
2-19
Protection unit
enable bit 2-15
enabling 4-2
Protocol converter 8-5
Public instructions within debug
BYPASS 8-11
EXTEST 8-10
IDCODE 8-11
INTEST 8-11
SCAN_N 8-10

R

RAM and TAG BIST test registers
2-29
Real-time debug 8-34
Region
overlapping 4-7
Register
access permission 2-17
basesize 2-19
BIST address 10-6
BIST control 10-5
BIST general 10-6

cache configuration 2-15
cache debug index 2-32
cache lockdown 2-25
cache operations 2-22
control 2-12, 5-3
debug comms channel 8-31
debug comms channel status 8-31
debug comms control 8-31
debug comms dataread 8-31
debug comms datawrite 8-31
debug control 8-29
debug status 8-29
protection region 2-19
RAM and TAG BIST test 2-29
test state 2-31
tightly-coupled memory region
2-26
tightly-coupled memory size 2-10
trace process identifier 2-28
write buffer control 2-16
Register map, CP15 2-5
Round robin replacement bit 2-14

S

Scan insertion 10-3

Signa descriptions B-2

Signal propertiesand requirements B-2

Signas
AHB B-5
clock interface B-3
coprocessor interface B-7
debug B-9
debug interface 8-21
ETM interface B-13
INTEST wrapper B-15
JTAG B-11
miscellaneous B-12

Slew 6-10

System state, determining 8-27

T

TagRAM 3-4
TAP controller 8-5, 8-7
TCM
memory interface description 5-2

Index

read cycle 5-2
Test methodology 10-2
Test state register 2-31
Thumb instruction fetch, noncached
6-9
Tightly-coupled memory
areasize 2-27
region register 2-26
sizeregister 2-10
Tightly-coupled SRAM
BIST 10-5
Timing
diagrams A-2
parameters A-12
Transfer 6-3
linefetch 6-4
uncached 6-6

U

Uncached transfers 6-6

w

Watchpoints 8-22
exceptions 8-24
timing 8-23

WB 6-14

Writeback 6-14

Write buffer 6-2, 6-14
control bit 6-13
control register 2-16
disabling 6-14
enabling 6-14
operation 6-13

Writethrough 6-14

WT 6-14

ARM DDI 0201A

Copyright © 2001 ARM Limited. All rights reserved.

Index-3

Index

Index-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0201A

	ARM946E-S (Rev 1) Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this document
	Intended audience
	Using this manual
	Typographical conventions
	Timing diagram conventions

	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on the ARM946E-S macrocell
	Feedback on the document

	1 Introduction
	1.1 About the ARM946E-S (Rev 1)
	1.2 Microprocessor block diagram

	2 Programmer’s Model
	2.1 About the ARM946E-S (Rev 1) programmer’s model
	2.2 About the ARM9E-S programmer’s model
	2.2.1 Data Abort model

	2.3 CP15 register map summary
	2.3.1 Accessing CP15 registers
	2.3.2 Register 0, ID code register
	2.3.3 Register 0, Cache type register
	2.3.4 Register 0, Tightly-coupled memory size register
	2.3.5 Register 1, Control register
	Bit 19, Instruction RAM load mode
	Bit 18, Instruction RAM enable
	Bit 17, Data RAM load mode
	Bit 16, Data RAM enable
	Bit 15, Configure disable loading TBIT
	Bit 14, Round-robin replacement
	Bit 13, Alternate vectors select
	Bit 12, ICache enable
	Bit 7, Endian
	Bit 2, DCache enable
	Bit 0, Protection unit enable

	2.3.6 Register 2, Cache configuration registers
	2.3.7 Register 3, Write buffer control register
	2.3.8 Register 5, Access permission registers
	2.3.9 Register 6, Protection region/base size registers
	Example base setting

	2.3.10 Register 7, Cache operations register
	Cache clean and flush operations
	Drain write buffer
	Wait for interrupt

	2.3.11 Register 9, Cache lockdown registers
	2.3.12 Register 9, Tightly-coupled memory region registers
	2.3.13 Register 13, Trace process identifier register
	2.3.14 Register 15, RAM and TAG BIST test registers
	2.3.15 Register 15, Test state register
	2.3.16 Register 15, Cache debug index register
	2.3.17 Register 15: Trace Control Register

	3 Caches
	3.1 Cache architecture
	3.2 ICache
	3.2.1 Enabling and disabling the ICache
	3.2.2 ICache operation
	3.2.3 ICache validity
	Flushing the entire cache
	Flushing a single cache line

	3.3 DCache
	3.3.1 Enabling and disabling the DCache
	3.3.2 Operation of the Bd and Cd bits
	3.3.3 DCache operation
	3.3.4 DCache validity
	3.3.5 DCache clean and flush

	3.4 Cache lockdown
	3.4.1 Locking down the caches
	DCache lockdown
	ICache lockdown
	Example ICache lockdown subroutine

	4 Protection Unit
	4.1 About the protection unit
	4.1.1 Enabling the protection unit

	4.2 Memory regions
	4.2.1 Region base address
	4.2.2 Region size
	4.2.3 Partition attributes

	4.3 Overlapping regions
	4.3.1 Background regions

	5 Tightly-coupled Memory Interface
	5.1 ARM946E-S (Rev 1) TCM interface description
	5.2 Using CP15 control register
	5.2.1 Enabling the ITCM
	5.2.2 Disabling the ITCM
	5.2.3 ITCM load mode
	5.2.4 Enabling the DTCM
	5.2.5 Disabling the DTCM
	5.2.6 DTCM load mode

	5.3 Enabling the instruction tightly-coupled memory during soft reset
	5.4 DTCM Accesses
	5.5 ITCM accesses
	5.5.1 Instruction Accesses to ITCM
	5.5.2 Data Accesses to ITCM
	5.5.3 Stall cycles for ITCM accesses

	6 Bus Interface Unit and Write Buffer
	6.1 About the BIU and write buffer
	6.2 AHB bus master interface
	6.2.1 About the AHB
	6.2.2 ARM946E-S (Rev 1) transfer descriptions
	6.2.3 Burst sizes
	6.2.4 Linefetch transfers
	6.2.5 Back to back linefetches
	6.2.6 Uncached transfers
	6.2.7 Burst accesses
	6.2.8 Bursts crossing 1KB boundary
	6.2.9 Uncached LDC operations

	6.3 Noncached Thumb instruction fetches
	6.4 AHB clocking
	6.4.1 CLK to HCLK skew
	Clock tree insertion at top level
	Hierarchical clock tree insertion

	6.5 The write buffer
	6.5.1 Write buffer operation
	6.5.2 Enabling and disabling the write buffer
	6.5.3 Self-modifying code

	7 Coprocessor Interface
	7.1 About the coprocessor interface
	7.1.1 Coprocessor instructions

	7.2 LDC/STC
	7.2.1 Coprocessor handshake states
	7.2.2 Coprocessor handshake encoding
	7.2.3 Multiple external coprocessors

	7.3 MCR/MRC
	7.4 Interlocked MCR
	7.5 CDP
	7.6 Privileged instructions
	7.7 Busy-waiting and interrupts

	8 Debug Support
	8.1 About the debug interface
	8.1.1 Debug clocks

	8.2 Debug systems
	8.2.1 The debug host
	8.2.2 The protocol converter
	8.2.3 ARM946E-S (Rev 1) debug target

	8.3 The JTAG state machine
	8.3.1 Reset
	8.3.2 Pull-up resistors
	8.3.3 Instruction register
	8.3.4 Public instructions
	EXTEST (0000)
	SCAN_N (0010)
	INTEST (1100)
	IDCODE (1110)
	BYPASS (1111)
	SAMPLE/PRELOAD (0011)
	RESTART (0100)

	8.4 Scan chains
	8.4.1 Scan chain 1
	8.4.2 Scan chain 2
	8.4.3 Scan chain 3
	8.4.4 Scan chain 15
	8.4.5 Scan chain debug status register

	8.5 Debug access to the caches
	8.5.1 Debug access to the caches, Step 1
	8.5.2 Debug access to the caches, Step 2

	8.6 Debug interface signals
	8.6.1 Entry into debug state on breakpoint
	8.6.2 Breakpoints and exceptions
	8.6.3 Watchpoints
	8.6.4 Watchpoints and exceptions
	8.6.5 Debug request
	8.6.6 Actions of the ARM9E-S in debug state

	8.7 ARM9E-S core clock domains
	8.8 Determining the core and system state
	8.9 Overview of EmbeddedICE-RT
	8.10 Disabling EmbeddedICE-RT
	8.11 The debug communications channel
	8.11.1 Debug comms channel registers
	8.11.2 Debug comms channel status register
	8.11.3 Communications using the comms channel
	Sending a message to the debugger
	Receiving a message from the debugger

	8.12 Real-time debug
	8.12.1 Further reading - debug in depth

	9 ETM Interface
	9.1 About the ETM interface
	9.2 Enabling the ETM interface

	10 Test Support
	10.1 About the ARM946E-S (Rev 1) test methodology
	10.2 Scan insertion and ATPG
	10.2.1 ARM946E-S (Rev 1) INTEST wrapper
	ATPG
	BIST activation

	10.3 BIST of memory arrays
	10.3.1 BIST control register
	10.3.2 BIST address and general registers
	10.3.3 Pause modes
	Auto pause

	Appendix A AC Parameters
	A.1 Timing diagrams
	A.2 AC timing parameter definitions

	Appendix B Signal Descriptions
	B.1 Signal properties and requirements
	B.2 Clock interface signals
	B.3 TCM interface signals
	B.4 AHB signals
	B.5 Coprocessor interface signals
	B.6 Debug signals
	B.7 JTAG signals
	B.8 Miscellaneous signals
	B.9 ETM interface signals
	B.10 INTEST wrapper signals

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

