

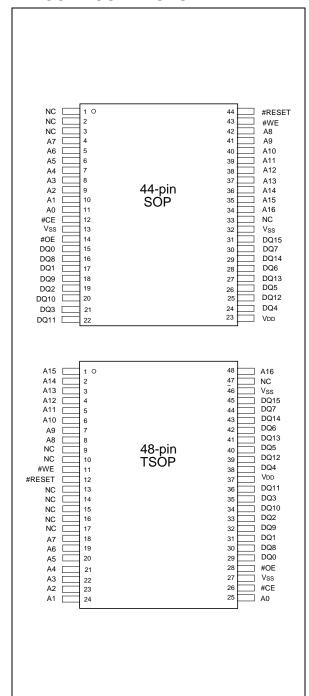
128K 16 CMOS FLASH MEMORY

GENERAL DESCRIPTION

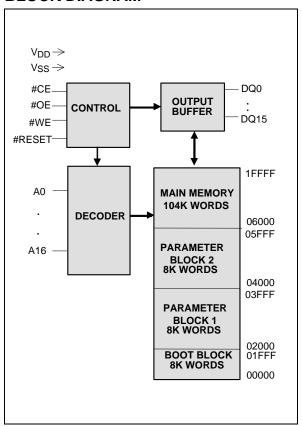
The W49L201 is a 2-megabit, 3.3-volt only CMOS flash memory organized as $128K \times 16$ bits. The device can be programmed and erased in-system with a standard 3.3V power supply. A 12-volt VPP is not required. The unique cell architecture of the W49L201 results in fast program/erase operations with extremely low current consumption (compared to other comparable 3.3-volt flash memory products). The device can also be programmed and erased using standard EPROM programmers.

FEATURES

- Single 3.3-volt operations:
 - 3.3-volt Read/Erase/Program
- Fast Program operation:
 - Word-by-Word programming: 50 μS (max.)
- Fast Erase operation: 100 mS (typ.)
- Fast Read access time: 90 nS
- Endurance: 10K cycles (typ.)
- Ten-year data retention
- Hardware data protection
- Sector configuration
 - One 8K word boot block with lockout protection
 - Two 8K word parameter blocks
 - One 104K word main memory block


- Low power consumption
 - Active current: 25 mA (typ.)
 - Standby current: 20 μA (typ.)
- Automatic program and erase timing with internal VPP generation
- · End of program or erase detection
 - Toggle bit

- 1 -


- Data polling
- · Latched address and data
- TTL compatible I/O
- JEDEC standard word-wide pinouts
- Available packages: 44-pin SOP, 48-pin TSOP

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
#RESET	Reset
A0 – A16	Address Inputs
DQ0 – DQ15	Data Inputs/Outputs
#CE	Chip Enable
#OE	Output Enable
#WE	Write Enable
VDD	Power Supply
Vss	Ground
NC	No Connection

FUNCTIONAL DESCRIPTION

Read Mode

The read operation of the W49L201 is controlled by #CE and #OE, both of which have to be low for the host to obtain data from the outputs. #CE is used for device selection. When #CE is high, the chip is de-selected and only standby power will be consumed. #OE is the output control and is used to gate data to the output pins. The data bus is in high impedance state when either #CE or #OE is high. Refer to the timing waveforms for further details.

Reset Operation

The #RESET input pin can be used in some application. When #RESET pin is at high state, the device is in normal operation mode. When #RESET pin is driven low for at least a period of TRP, it will halt the device and all outputs are at high impedance state. The device also resets the internal state machine to read array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence to assure data integrity. As the high state re-asserted to the #RESET pin, the device will return to read or standby mode, it depends on the control signals. The system can read data $T_{\rm RH}$ after the #RESET pin returns to VIH. The other function for #RESET pin is temporary reset the boot block. By applying the 12V to #RESET pin, the boot block can be reprogrammed even though the boot block lockout function is enabled.

Boot Block Operation

There is one 8K-word boot block in this device, which can be used to store boot code. It is located in the first 8K words of the memory with the address range from 0000(hex) to 1FFF(hex).

See Command Codes for Boot Block Lockout Enable for the specific code. Once this feature is set the data for the designated block cannot be erased or programmed (programming lockout); other memory locations can be changed by the regular programming method.

There is one condition that the lockout feature can be overrides. Just apply 12V to #RESET pin, the lockout feature will temporary be inactivated and the boot block can be erased/programmed. Once the #RESET pin returns to TTL level, the lockout feature will be activated again.

In order to detect whether the boot block feature is set on the 8K-words block, users can perform software command sequence: enter the product identification mode (see Command Codes for Identification/Boot Block Lockout Detection for specific code), and then read from address "0002 hex". If the output data in DQ0 is "1", the boot block programming lockout feature is activated; if the output data in DQ0 is "0", the lockout feature is inactivated and the block can be erased/programmed.

To return to normal operation, perform a three-byte command sequence (or an alternate single-word command) to exit the identification mode. For the specific code, see Command Codes for Identification/Boot Block Lockout Detection.

Chip Erase Operation

The chip-erase mode can be initiated by a six-word command sequence. After the command loading cycle, the device enters the internal chip erase mode, which is automatically timed and will be completed in a fast 100 mS (typical). The host system is not required to provide any control or timing during this operation. The entire memory array will be erased to FF(hex) by the chip erase operation if the boot block programming lockout feature is not activated. Once the boot block lockout feature is activated, the chip erase function will erase all the sectors except the 8K-word boot sector.

Sector Erase Operation

The three sectors, main memory and two parameters blocks, can be erased individually by initiating a six-word command sequence. Sector address is latched on the falling WE edge of the sixth cycle while the 30(hex) data input command is latched at the rising edge of WE. After the command loading cycle, the device enters the internal sector erase mode, which is automatically timed and will be completed in a fast 100 mS (typical). The host system is not required to provide any control or timing during this operation. The device will automatically return to normal read mode after the erase operation completed. Data polling and/or Toggle Bits can be used to detect end of erase cycle.

When the boot block lockout feature is inactivated, the boot block and the main memory block will be erased together. Once the boot block is locked, only the main memory block will be erased by the execution of sector erase operation.

Program Operation

The W49L201 is programmed on a word-by-word basis. Program operation can only change logical data "1" to logical data "0" The erase operation (changed entire data in main memory and/or boot block from "0" to "1" is needed before programming.

The program operation is initiated by a 4-word command cycle (see Command Codes for Word Programming). The device will internally enter the program operation immediately after the word-program command is entered. The internal program timer will automatically time-out (50 μ S max. - TBP) once completed and return to normal read mode. Data polling and/or Toggle Bits can be used to detect end of program cycle.

Hardware Data Protection

The integrity of the data stored in the W49L201 is also hardware protected in the following ways:

- (1) Noise/Glitch Protection: A #WE pulse of less than 15 nS in duration will not initiate a write cycle.
- (2) VDD Power Up/Down Detection: The programming and read operation are inhibited when VDD is less than 2.5V typical.
- (3) Write Inhibit Mode: Forcing #OE low, #CE high, or #WE high will inhibit the write operation. This prevents inadvertent writes during power-up or power-down periods.
- (4) VDD power-on delay: When VDD has reached its sense level, the device will automatically time-out 5 mS before any write (erase/program) operation.

Data Polling (DQ7)- Write Status Detection

The W49L201 includes a data polling feature to indicate the end of a program or erase cycle. When the W49L201 is in the internal program or erase cycle, any attempt to read DQ7 of the last word loaded will receive the complement of the true data. Once the program or erase cycle is completed, DQ7 will show the true data. Note that DQ7 will show logical "0" during the erase cycle, and become logical "1" or true data when the erase cycle has been completed.

Toggle Bit (DQ6)- Write Status Detection

In addition to data polling, the W49L201 provides another method for determining the end of a program cycle. During the internal program or erase cycle, any consecutive attempts to read DQ6 will produce alternating 0's and 1's. When the program or erase cycle is completed, this toggling between 0's and 1's will stop. The device is then ready for the next operation.

Product Identification

The product ID operation outputs the manufacturer code and device code. Programming equipment automatically matches the device with its proper erase and programming algorithms.

The manufacturer and device codes can be accessed by software operation. In the software access mode, a six-word (or JEDEC 3-word) command sequence can be used to access the product ID. A read from address 0000H outputs the manufacturer code, 00DA(hex). A read from address 0001(hex) outputs the device code, 00AE(hex). The product ID operation can be terminated by a three-word command sequence or an alternative one-word command sequence (see Command Definition table).

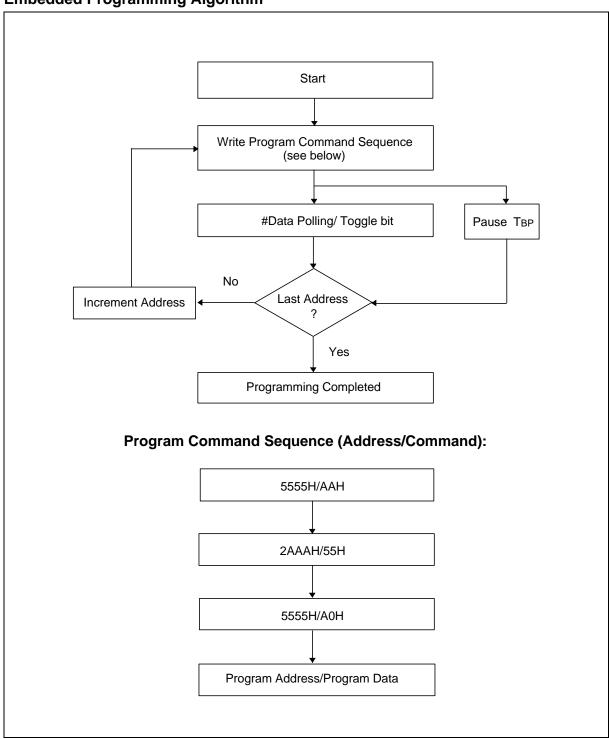
TABLE OF OPERATING MODES

Operating Mode Selection

 $(VHH = 12V \pm 0.5V)$

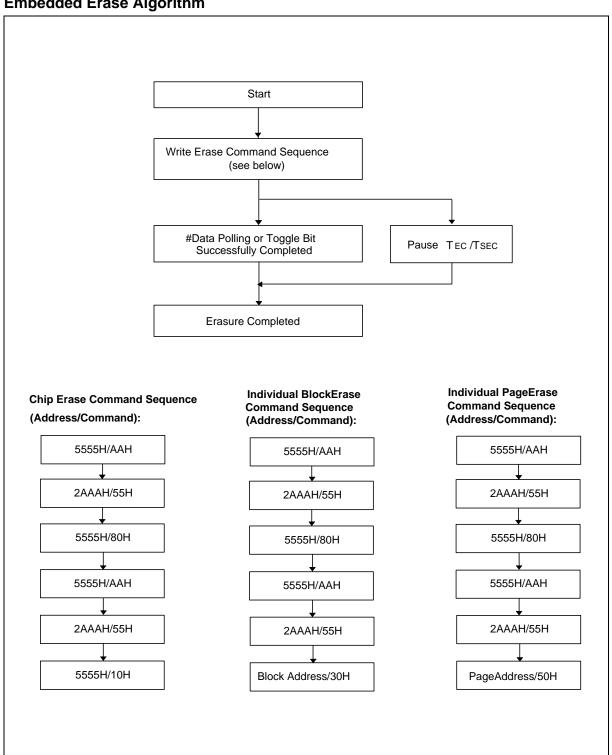
MODE		PINS							
	#CE	#OE	#WE	#RESET	ADDRESS	DQ.			
Read	VIL	VIL	ViH	VIH	Ain	Dout			
Erase/Program	VIL	VIH	VIL	VIH	Ain	Din			
Standby	VIH	Х	Х	VIH	Х	High Z			
Erase/Program	Х	VIL	Х	VIH	Х	High Z/Dout			
Inhibit	Х	Х	ViH	VIH	Х	High Z/Dout			
Output Disable	Х	VIH	Х	VIH	Х	High Z			
Reset	Х	Х	Х	VIL	Х	High Z			

TABLE OF COMMAND DEFINITION

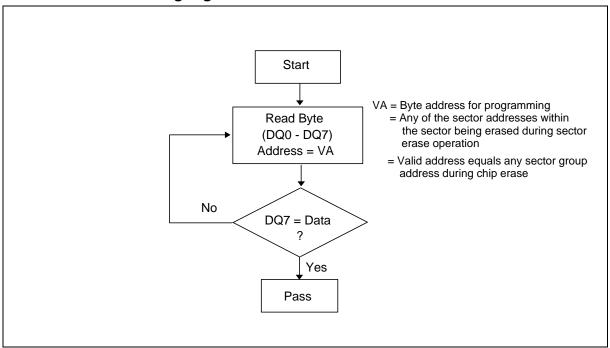

COMMAND	NO. OF	1ST C	YCLE	2ND CY	CLE	3RD CY	CLE	4TH CY	CLE	5TH CY	CLE	6TH CY	'CLE
DESCRIPTION	Cycles	Addr.	Data	Addr. [Data	Addr.	Data	Addr.	Data	Addr. I	Data	Addr.	Data
Read	1	A _{IN}	D _{OUT}										
Chip Erase	6	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	5555	10
Sector Erase	6	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	SA ⁽³⁾	30
Word Program	4	5555	AA	2AAA	55	5555	Α0	A _{IN}	D _{IN}				
Boot Block Lockout	6	5555	AA	2AAA	55	5555	80	5555	AA	2AAA	55	5555	40
Product ID Entry	3	5555	AA	2AAA	55	5555	90						
Product ID Exit (1)(2)	3	5555	AA	2AAA	55	5555	F0						
Product ID Exit (1)(2)	1	XXXX	F0										

Notes:

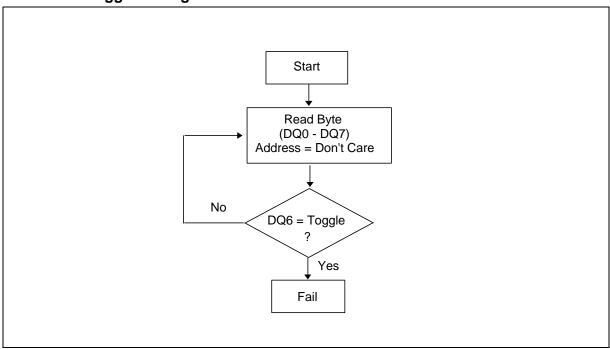
- 1. Data Format: DQ15 DQ8 (Don't Care); DQ7 DQ0 (Hex)
- 2. Either one of the two Product ID Exit commands can be used.
- 3. SA: Sector Address
 - SA = 03XXXh for Parameter Block1
 - SA = 05XXXh for Parameter Block2
 - SA = 1FXXXh
 - For Main Memory Block when Boot Block lockout feature is activated
 - For both Boot Block and Main Memory Block when Boot Block lockout feature is inactivated



Embedded Programming Algorithm

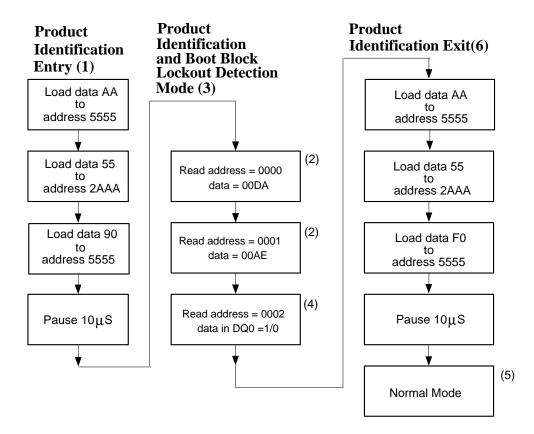


Embedded Erase Algorithm



Embedded #Data Polling Algorithm

Embedded Toggle Bit Algorithm



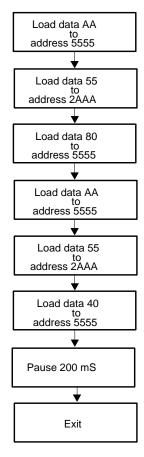
Command Codes for Product Identification and Boot Block Lockout Detection

BYTE SEQUENCE	ALTERNATE PRODUCT (6) IDENTIFICATION/BOOT BLOCK LOCKOUT DETECTION ENTRY		SOFTWARE PRODUCT IDENTIFICATION/BOOT BLOCK LOCKOU DETECTION EXIT (7)		
	ADDRESS	DATA	ADDRESS	DATA	
1 Write	5555	AA	5555H	AAH	
2 Write	2AAA	55	2AAAH	55H	
3 Write	5555	90	5555H	F0H	
	Pause 10 μS		Pause 10 μS		

Software Product Identification and Boot Block Lockout Detection Acquisition Flow

Notes for software product identification/boot block lockout detection:

- (1) Data Format: DQ15 DQ8 (Don't Care), DQ7 DQ0 (Hex); Address Format: A14 A0 (Hex)
- (2) A1 A16 = VIL; manufacture code is read for A0 = VIL; device code is read for A0 = VIH.
- (3) The device does not remain in identification and boot block lockout detection mode if power down.
- (4) If the output data in DQ0 = 1, the boot block programming lockout feature is activated; if the output data in DQ0 = 0, the lockout feature is inactivated and the block can be programmed.
- (5) The device returns to standard operation mode.
- (6) Optional 1-write cycle (write F0 hex at XXXX address) can be used to exit the product identification/boot block lockout detection.



Command Codes for Boot Block Lockout Enable

BYTE SEQUENCE	BOOT BLOCK LOCKOUT FEATURE SET				
	ADDRESS	DATA			
1 Write	5555H	AAH			
2 Write	2AAAH	55H			
3 Write	5555H	80H			
4 Write	5555H	AAH			
5 Write	2AAAH	55H			
6 Write	5555H	40H			
	Pause 200 mS				

Boot Block Lockout Enable Acquisition Flow

Boot Block Lockout Feature Set Flow

Notes for boot block lockout enable:

Data Format: DQ15 - DQ8 Don't Care), DQ7 - DQ0 (Hex)

Address Format: A14 - A0 (Hex)

DC CHARACTERISTICS

Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Power Supply Voltage to VSS Potential	-0.5 to +7.0	V
Operating Temperature	0 to +70	°C
Storage Temperature	-65 to +150	°C
D.C. Voltage on Any Pin to Ground Potential Except #OE	-0.5 to VDD +1.0	V
Transient Voltage (<20 nS) on Any Pin to Ground Potential	-1.0 to VDD +1.0	V
Voltage on #OE Pin to Ground Potential	-0.5 to 12.5	V

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

DC Operating Characteristics

(VDD = $3.3V \pm 10 \%$, Vss = 0V, TA = 0 to 70° C)

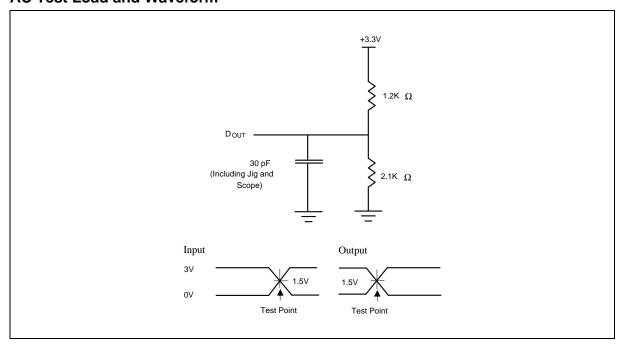
PARAMETER	SYM.	TEST CONDITIONS		LIM	ITS	UNIT
			MIN.	TYP.	MAX.	
Power Supply Current	Icc	#CE = #OE= VIL, #WE = VIH, all DQs open	-	25	50	mA
		Address inputs = VIL/VIH, at f = 5 MHz				
Standby VDD Current	ISB1	#CE = VIH, all DQs open	-	2	3	mA
(TTL input)		Other inputs = VIL/VIH				
Standby VDD Current	ISB2	#CE = VDD -0.3V, all DQs open	-	20	100	μΑ
(CMOS input)		Other inputs = VDD -0.3V/ VSS				
Input Leakage Current	ILI	VIN = VSS to VDD	-	-	10	μΑ
Output Leakage Current	llo	VOUT = VSS to VDD	-	-	10	μΑ
Input Low Voltage	VIL	-	-0.3	-	0.8	V
Input High Voltage	VIH	-	2.0	-	VDD +0.5	V
Output Low Voltage	Vol	IOL = 2.1 mA	-	-	0.45	V
Output High Voltage	Vон	IOH = -0.4 mA	2.4	-	-	V

Power-up Timing

PARAMETER	SYMBOL	TYPICAL	UNIT
Power-up to Read Operation	Tpu. READ	100	μS
Power-up to Write Operation	TPU. WRITE	5	mS

CAPACITANCE

 $(VDD = 3.3V, TA = 25^{\circ} C, f = 1 MHz)$


PARAMETER	SYMBOL	CONDITIONS	MAX.	UNIT
I/O Pin Capacitance	CI/O	VI/O = 0V	12	pf
Input Capacitance	CIN	VIN = 0V	6	pf

AC CHARACTERISTICS

AC Test Conditions

PARAMETER	CONDITIONS
Input Pulse Levels	0V to 3.0V
Input Rise/Fall Time	< 5 nS
Input/Output Timing Level	1.5V/1.5V
Output Load	1 TTL Gate and CL = 30 pF

AC Test Load and Waveform

AC Characteristics, continued

Read Cycle Timing Parameters

(VDD = 3.3V ± 10 %, Vss = 0V, Ta = 0 to 70° C)

PARAMETER	SYMBOL	W49L201-90		UNIT
		MIN.	MAX.	
Read Cycle Time	Trc	90	-	nS
Chip Enable Access Time	TCE	-	90	nS
Address Access Time	TAA	-	90	nS
Output Enable Access Time	TOE	-	35	nS
#CE Low to Active Output	Tclz	0	-	nS
#OE Low to Active Output	Tolz	0	-	nS
#CE High to High-Z Output	TCHZ	-	25	nS
#OE High to High-Z Output	Тонz	-	25	nS
Output Hold from Address Change	Тон	0	-	nS

Note: The parameter of TcLz, ToLz, TcHz, ToHz are characterized only and is not 100% tested.

Write Cycle Timing Parameters

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address Setup Time	TAS	0	-	-	nS
Address Hold Time	Тан	50	-	-	nS
#WE and #CE Setup Time	Tcs	0	-	-	nS
#WE and #CE Hold Time	Тсн	0	-	-	nS
#OE High Setup Time	Toes	0	-	-	nS
#OE High Hold Time	Тоен	0	-	-	nS
#CE Pulse Width	Тср	70	-	-	nS
#WE Pulse Width	TWP	70	-	-	nS
#WE High Width	TWPH	100	-	-	nS
Data Setup Time	TDS	50	-	-	nS
Data Hold Time	TDH	10	-	-	nS
Word Programming Time	Твс	-	35	50	μS
Erase Cycle Time	TEC	-	100	200	mS

Note: All AC timing signals observe the following guidelines for determining setup and hold times:

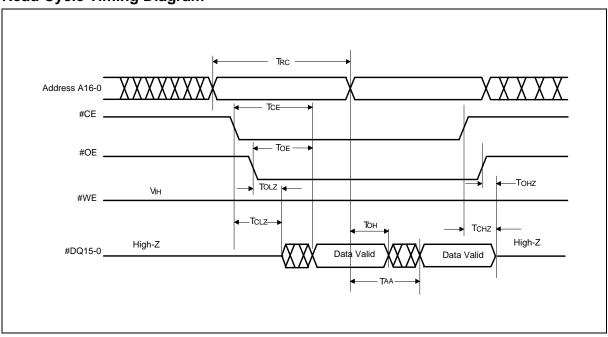
(a) High level signal's reference level is VIH and (b) low level signal's reference level is VIL.

AC Characteristics, continued

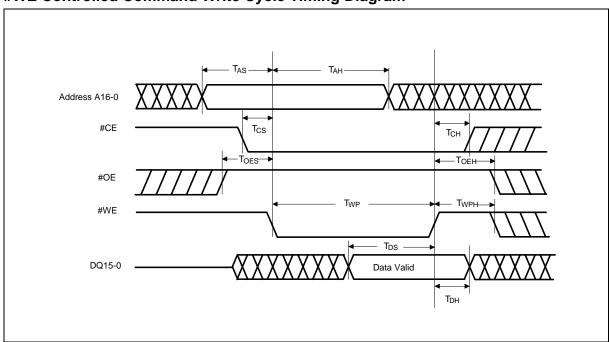
Data Polling and Toggle Bit Timing Parameters

PARAMETER	SYMBOL	W49L201-90		UNIT
		MIN.	MAX.	
#OE to Data Polling Output Delay	TOEP	-	35	nS
#CE to Data Polling Output Delay	ТСЕР	-	90	nS
#WE High to #OE Low for Data Polling	ТОЕНР	100	-	nS
#OE to Toggle Bit Output Delay	TOET	-	35	nS
#CE to Toggle Bit Output Delay	Тсет	-	90	nS
#WE High to #OE Low for Toggle Bit	Тоент	100	-	nS

Hardware Reset Timing Parameters

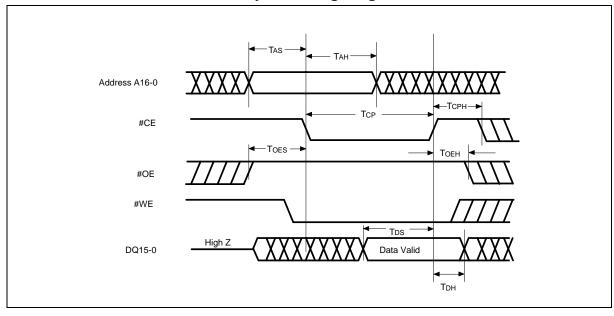

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
#RESET Pulse Width	TRP	500	-	nS
#RESET High Time Before Read*	TRH	10	-	μS

Note *: The parameters are characterized only and is not 100% tested.

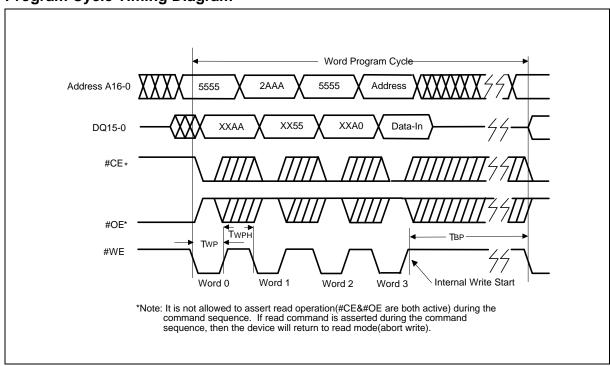


TIMING WAVEFORMS

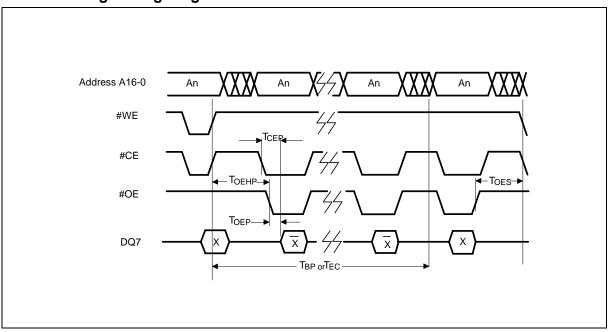
Read Cycle Timing Diagram



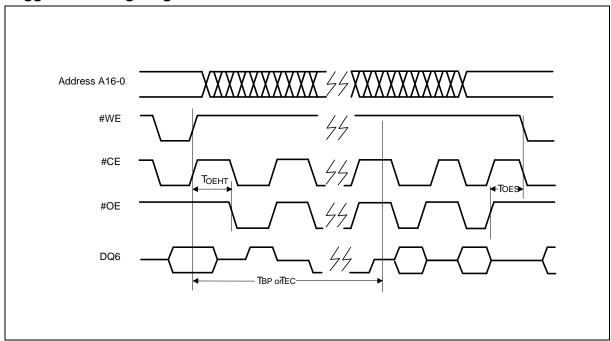
#WE Controlled Command Write Cycle Timing Diagram



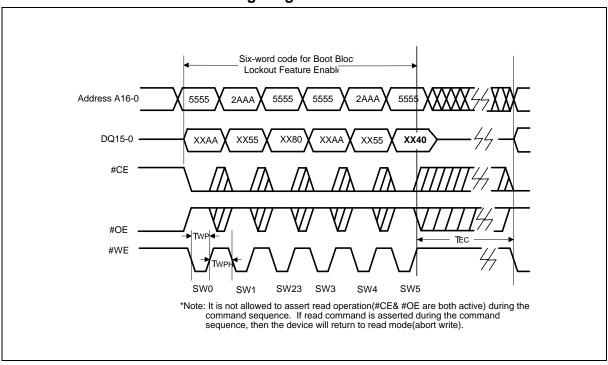
#CE Controlled Command Write Cycle Timing Diagram



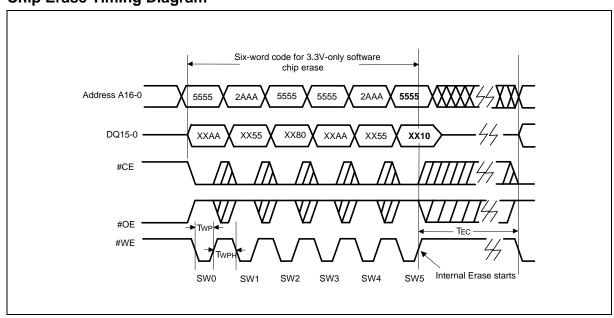
Program Cycle Timing Diagram



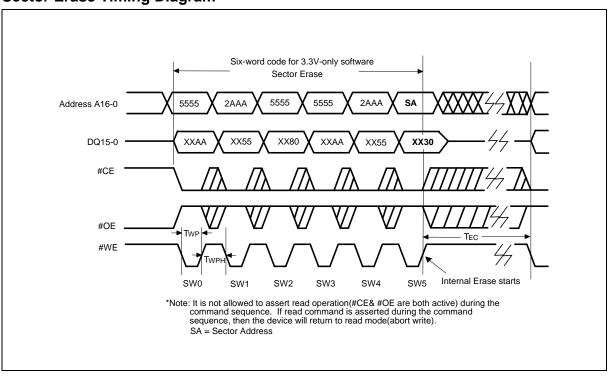
#DATA Polling Timing Diagram



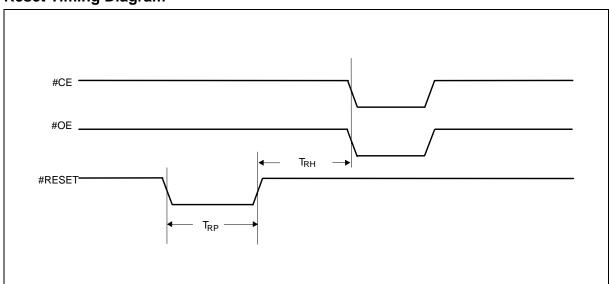
Toggle Bit Timing Diagram



Boot Block Lockout Enable Timing Diagram



Chip Erase Timing Diagram



Sector Erase Timing Diagram

Reset Timing Diagram

ORDERING INFORMATION

PART NO.	ACCESS TIME	POWER SUPPLY CURRENT MAX.	_	PACKAGE	CYCLE
	(nS)	(mA)	(Am)		
W49L201S-90B	90	50	100 (CMOS)	44-pin SOP	10K
W49L201T-90B	90	50	100 (CMOS)	48-pin TSOP (12 mm × 20 mm)	10K

Notes:

- 1. Winbond reserves the right to make changes to its products without prior notice.
- 2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.

HOW TO READ THE TOP MARKING

Example: The top marking of 48-pin TSOP W49L201T-90B

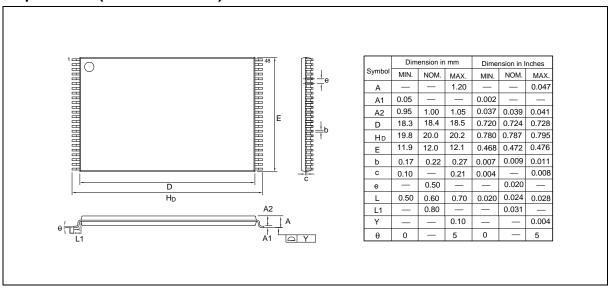
1st line: Winbond logo

2nd line: The part number: W49L201T-90B

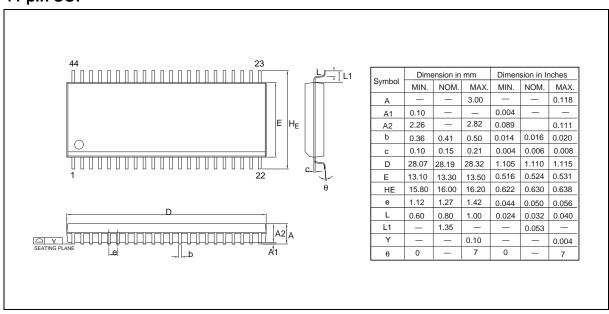
3rd line: The lot number

4th line: The tracking code: 149 O B SA

149: Packages made in '01, week 49


O: Assembly house ID: A means ASE, O means OSE, ... etc. B: IC revision; A means version A, B means version B, ... etc.

SA: Process code



PACKAGE DIMENSIONS

48-pin TSOP (12 mm ^{20 mm})

44-pin SOP

VERSION HISTORY

VERSION	DATE	PAGE	DESCRIPTION	
A1	Dec.1999	-	Initial Issued	
A2	July 2001	5	Delete hardware operation description	
		1, 14, 15, 21	Delete access time of 70 nS	
		15	Change TRH from 50 ns to 10 μS	
A3	Sep. 6, 2001	5	Modify VHH = 12V \pm 5 % as VHH = 12V \pm 0.5V	
		13, 15	Modify VDD = $3.3V \pm 10 \%$ as VDD = $3.3V \pm 0.3V$	
A4	Jan. 23, 2002	4	Modify VDD Power Up/Down Detection in Hardware Data Protection	
		4, 6	Modify Sector Configuration Description	
		5	Modify V _{нн} = 12V ±5 % as V _{нн} = 12V ±0.5V	
		7	Modify Embedded Algorithm Description	
		7, 8, 9, 10	Delete old flow chart and add embedded algorithm	
		17	Modify Program Cycle Timing Diagram	
		21	Add HOW TO READ THE TOP MARKING	

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5665577 http://www.winbond.com.tw/

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East. Rd., Taipei, Taiwan TEL: 886-2-27190505 FAX: 886-2-27197502

Winbond Electronics Corporation America

2727 North First Street, San Jose,

CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-5441798

Winbond Electronics Corporation Japan

7F Daini-ueno BLDG, 3-7-18 Shinyokohama Kohoku-ku, Yokohama, 222-0033 TEL: 81-45-4781881 FAX: 81-45-4781800

Winbond Electronics (Shanghai) Ltd. 27F, 2299 Yan An W. Rd. Shanghai,

200336 China TEL: 86-21-62365999 FAX: 86-21-62365998

Winbond Electronics (H.K.) Ltd. Unit 9-15, 22F, Millennium City, No. 378 Kwun Tong Rd., Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

Please note that all data and specifications are subject to change without notice.

All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.