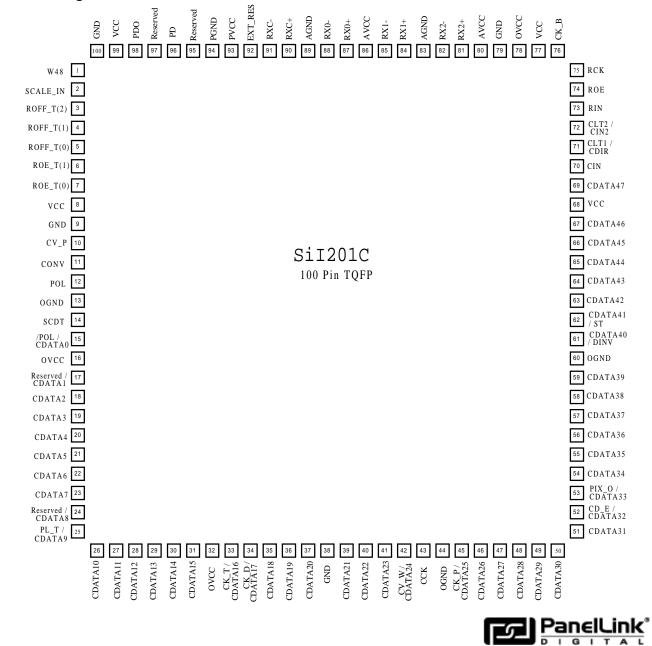
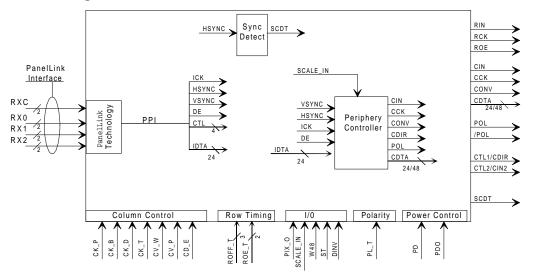
# Silicon Image

#### **General Description**


The SiI 201C Intelligent Panel Controller (IPC) uses PanelLink Digital technology to support displays ranging from VGA to XGA (25-68 MHz), which is ideal for LCD notebook and desktop monitor applications. With a flexible single or dual pixel out interface and selectable output drive, the SiI 201C IPC supports up to true color panels (24 bit/pixel, 16.7M colors) in 1 or 2 pixels/clock mode. The SiI 201C is highly programmable to support multiple column and row drivers and to optimize display quality. PanelLink also features an inter-pair skew tolerance up to 1 full input clock cycle and a highly jitter tolerant PLL design.

PanelLink Digital technology simplifies PC design by resolving many of the system level issues associated with high-speed digital design, providing the system designer with a digital interface solution that is quicker to market and lower in cost.


#### SiI 201C Pin Diagram

#### Features

- Scaleable Bandwidth: 25-68 MHz (VGA to XGA)
- Low Power: 3.3V core operation & power-down mode
- High Skew Tolerance: 1 full input clock cycle (15ns at 65 MHz)
- Highly programmable: supports multiple column drivers
- Sync Detect: for Plug & Display "Hot Plugging"
- Cable Distance Support: over 5m with twisted-pair, fiberoptics ready
- Compliant with DVI 1.0 (DVI is backwards compatible with VESA® P&D<sup>™</sup> and DFP)



#### **Functional Block Diagram**



The SiI 201C consists of four major blocks: the Functional PanelLink Interface, Sync Detection and the Row and Column Interface.

PanelLink *Interface:* The SiI 201C accepts the PanelLink interface of 4 low swing, differential input signals. One pair contains the pixel clock, the other three pairs are the serialized and encoded red, green and blue channels. Each of the color channels also contain two encoded control signals. The PanelLink technology de-serializes and decodes the input data to recover the original panel interface, labeled PPI in the block diagram. This interface is a one color pixel per clock interface at 24 bits per pixel, the recovered input clock is ICK.

*Column Interface(CIN, CCK, CONV, CDTA):* The column interface block is programmed so that the column drive outputs are set to match the desired column drivers. By programming the pins CK\_P, CK\_B, CK\_D, CK\_T, CV\_W, CV\_P, PL\_T and DINV a wide variety of column drivers can be addressed.

*Row Interface(RIN, RCK, ROE):* The row driving signals are output from this block. While the row signals require no programmability, their timing with respect to the column drive signals is critical, and varies with panel size and processing parameters. Sufficient time must be allowed for the row select signals to be fully switched off before the column driver's analog outputs are allowed to change. This time  $T_{OFF}$ , can be set over a wide range of values through the ROFF\_T[2:0] programming input bits. If the row driver chosen has an output enable, the width of the output enable pulse can be set using ROE\_T[1:0].

*Sync Detect:* This block monitors the state of HSYNC. If HSYNC becomes inactive the output signal SCDT will be set low. This signal can be used to control driver and backlight supplies enabling panel protection and power savings.

#### **Absolute Maximum Conditions**

Note: Permanent device damage may occur if absolute maximum conditions are exceeded. 

| Functional operation should be restricted to the conditions described under Normal Operating Condition |                                             |      |     |                       |       |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------|------|-----|-----------------------|-------|
| Symbol                                                                                                 | Parameter                                   | Min  | Тур | Max                   | Units |
| V <sub>cc</sub>                                                                                        | Supply Voltage                              | -0.3 | -   | 6.0                   | V     |
| VI                                                                                                     | Input Voltage                               | -0.3 | -   | V <sub>CC</sub> + 0.3 | V     |
| Vo                                                                                                     | Output Voltage                              | -0.3 | -   | V <sub>CC</sub> + 0.3 | V     |
| T <sub>A</sub>                                                                                         | Ambient Temperature<br>(with power applied) | -25  | -   | 85                    | °C    |
| T <sub>STG</sub>                                                                                       | Storage Temperature                         | -40  | -   | 125                   | °C    |
| P <sub>PD</sub>                                                                                        | Package Power Dissipation                   | -    | -   | 1                     | W     |

#### **Normal Operating Conditions**

| Symbol           | Parameter                                   | Min | Тур | Max | Units      |
|------------------|---------------------------------------------|-----|-----|-----|------------|
| V <sub>cc</sub>  | Supply Voltage                              | 3.0 | 3.3 | 3.6 | V          |
| V <sub>CCN</sub> | Supply Voltage Noise                        |     |     | 100 | $mV_{P-P}$ |
| T <sub>A</sub>   | Ambient Temperature<br>(with power applied) | 0   | 25  | 70  | °C         |

Note: <sup>1</sup> Guaranteed by design.

#### **DC Digital I/O Specifications**

Under normal operating conditions unless otherwise specified.

| Symbol            | Parameter                         | Conditions              | Min | Тур | Max        | Units |
|-------------------|-----------------------------------|-------------------------|-----|-----|------------|-------|
| VIH               | High-level Input Voltage          |                         | 2   |     |            | V     |
| VIL               | Low-level Input Voltage           |                         |     |     | 0.8        | V     |
| V <sub>OH</sub>   | High-level Output Voltage         |                         | 2.4 |     |            | V     |
| V <sub>OL</sub>   | Low-level Output Voltage          |                         |     |     | 0.4        | V     |
| V <sub>CINL</sub> | Input Clamp Voltage <sup>1</sup>  | I <sub>CL</sub> = -18mA |     |     | GND -0.8   | V     |
| V <sub>CIPL</sub> | Input Clamp Voltage <sup>1</sup>  | I <sub>CL</sub> = 18mA  |     |     | IVCC + 0.8 | V     |
| V <sub>CONL</sub> | Output Clamp Voltage <sup>1</sup> | I <sub>CL</sub> = -18mA |     |     | GND -0.8   | V     |
| V <sub>COPL</sub> | Output Clamp Voltage <sup>1</sup> | $I_{CL} = 18 \text{mA}$ |     |     | OVCC + 0.8 | V     |
| I <sub>IL</sub>   | Input Leakage Current             |                         | -10 |     | 10         | μΑ    |

Note: <sup>1</sup> Guaranteed by design.

#### **DC Specifications**

Under normal operating conditions unless otherwise specified. Low drive strength values, when ST=0, are shown in brackets.

| Symbol           | Parameter                                                                                 | Conditions                                                                                                                                                                                | Min  | Тур   | Max   | Units |
|------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|-------|
| I <sub>OH</sub>  | (ST=0) Output High Drive (CCK)                                                            | V <sub>OUT</sub> = V <sub>OH</sub>                                                                                                                                                        | 6    | 8     | 10.5  | mA    |
|                  | (ST=1)                                                                                    |                                                                                                                                                                                           | 15   | 16.5  | 35    |       |
| I <sub>OL</sub>  | (ST=0) Output Low Drive (CCK)                                                             | $V_{OUT} = V_{OL}$                                                                                                                                                                        | -8.5 | -12   | -15.4 | mA    |
|                  | (ST=1)                                                                                    |                                                                                                                                                                                           | -19  | -24   | -27   |       |
| I <sub>OH</sub>  | (ST=0) Output High Drive (All Others)                                                     | $V_{OUT} = V_{OH}$                                                                                                                                                                        | 4    | 5.5   | 7     | mA    |
| 011              | (ST=1)                                                                                    |                                                                                                                                                                                           | 9    | 11    | 22    |       |
| I <sub>OL</sub>  | (ST=0) Output Low Drive (All Others)                                                      | $V_{OUT} = V_{OL}$                                                                                                                                                                        | -5.6 | -8    | -10   | mA    |
|                  | (ST=1)                                                                                    |                                                                                                                                                                                           | -9   | -16   | -11   |       |
| $V_{\text{ID}}$  | Differential Input Voltage Single Ended<br>Amplitude                                      |                                                                                                                                                                                           | 250  |       | 1000  | mV    |
| I <sub>PD</sub>  | Power-down Current <sup>1</sup>                                                           |                                                                                                                                                                                           | -    | 50 uA | 1 mA  |       |
| I <sub>PDL</sub> | Output leakage current to ground in high impedance mode (PD, PDO = LOW)                   |                                                                                                                                                                                           |      |       | 10    | uA    |
| I <sub>CCR</sub> | Supply Current @ 3.3V V <sub>CC</sub><br>Output is one pixel per clock mode. <sup>2</sup> | DLCK = 65 MHz<br>$C_{LOAD} = 10$ pF<br>$R_{EXT_SWING} = 680 \Omega$<br>Typical Pattern <sup>3</sup>                                                                                       | -    | 137   | 157   | mA    |
|                  |                                                                                           | $\begin{array}{l} \text{DCLK} = 65 \text{ MHz} \\ \text{C}_{\text{LOAD}} = 10 \text{pF} \\ \text{R}_{\text{EXT}\_\text{SWING}} = 680 \ \Omega \\ \text{Worst Case Pattern}^4 \end{array}$ | -    | 153   | 185   | mA    |

Notes:

1

The transmitter must be in power-down mode, powered off, or disconnected for the current to be under this maximum. 2 For worst case I/O power consumption. 3

The Typical Pattern contains a gray scale area, checkerboard area, and text. 4

Black and white checkerboard pattern, each checker is one pixel wide.

#### **AC Specifications**

| Symbol            | Parameter                                                                           | Conditions                                             | Min          | Тур | Max              | Units |
|-------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|-----|------------------|-------|
| T <sub>DPS</sub>  | Intra-Pair (+ to -) Differential Input Skew                                         |                                                        |              |     | 200              | ps    |
| T <sub>CCS</sub>  | Channel to Channel Differential Input Skew                                          |                                                        |              |     | T <sub>CIP</sub> | ns    |
| T <sub>IJIT</sub> | Worst Case Differential Input Clock Jitter tolerance <sup>1,2</sup>                 |                                                        |              |     | 2                | ns    |
| D <sub>LHT</sub>  | Low-to-High Transition Time: Data and Controls                                      | ST=1 [ST=0]<br>C <sub>L</sub> = 10pF [5pF]             |              |     | 1.9<br>[1.9]     | ns    |
|                   | ССК                                                                                 |                                                        |              |     | 1.6<br>[1.4]     |       |
| D <sub>HLT</sub>  | High-to-Low Transition Time: Data and Controls                                      | ST=1 [ST=0]<br>C <sub>L</sub> = 10pF [5pF]             |              |     | 1.6<br>[1.6]     | ns    |
|                   | ССК                                                                                 |                                                        |              |     | 1.4<br>[1.2]     |       |
| T <sub>SOF</sub>  | Data/Control Setup Time to CCK: <sup>4</sup><br>65 MHz, One Pixel / Clock, PIXS = 0 | ST=1 [ST=0]<br>C <sub>L</sub> = 10pF [5pF]<br>CK_T = 0 | 6.0<br>[5.8] |     |                  | ns    |
|                   | ST=1 [ST=0]<br>C <sub>L</sub> = 10pF [5pF]<br>CK_T = 1                              | 1.8 [2.1]                                              |              |     | ns               |       |
| T <sub>HOF</sub>  | Data/Control Hold Time to CCK : <sup>4</sup><br>65 MHz, One Pixel / Clock, PIXS = 0 | ST=1 [ST=0]<br>C <sub>L</sub> = 10pF [5pF]<br>CK_T = 0 | 4.9<br>[4.5] |     |                  | ns    |
|                   |                                                                                     | ST=1 [ST=0]<br>C <sub>L</sub> = 10pF [5pF]<br>CK_T = 1 | 8.9 [9.0]    |     |                  | ns    |
| R <sub>CIP</sub>  | CCK Cycle Time (1 pixel/clock)                                                      |                                                        | 14.7         |     | 50               | ns    |
| F <sub>CIP</sub>  | CCK Frequency (1 pixel/clock)                                                       |                                                        | 20           |     | 68               | MHz   |
| R <sub>CIP</sub>  | CCK Cycle Time (2 pixels/clock)                                                     |                                                        | 29.4         |     | 100              | ns    |
| F <sub>CIP</sub>  | CCK Frequency (2 pixels/clock)                                                      |                                                        | 10           |     | 34               | MHz   |
| R <sub>CIH</sub>  | CCK High Time<br>65 MHz, One Pixel / Clock, PIXS = 0 <sup>3</sup>                   | ST=1 [ST=0]<br>C <sub>L</sub> = 10pF [5pF]             | 5.3<br>[4.9] |     |                  | ns    |
| R <sub>CIL</sub>  | CCK Low Time<br>65 MHz, One Pixel / Clock, PIXS = 0 <sup>3</sup>                    | ST=1 [ST=0]<br>C <sub>L</sub> = 10pF [5pF]             | 6.9<br>[6.7] |     |                  | ns    |
| T <sub>HSC</sub>  | Link disabled (HSYNC inactive) to SCDT low                                          |                                                        |              |     | 50               | ms    |
| T <sub>FSC</sub>  | Link enabled (HSYNC active) to SCDT high                                            |                                                        |              |     | 2                | ms    |
| T <sub>PDL</sub>  | Delay from PD/ PDO Low to high impedance outputs                                    |                                                        |              |     | 8                | ns    |

Notes:

<sup>1</sup> Jitter can be estimated by: 1) triggering a digital scope at the rising of input clock, and 2) measuring the peak to peak time spread of the rising edge of the input clock 1µs after the trigger.
 <sup>2</sup> Actual jitter tolerance may be higher depending on the frequency of the jitter.
 <sup>3</sup> Output clock duty cycle is independent of the differential input clock duty cycle and the IDCK duty cycle.
 <sup>4</sup> The setup and hold timing for the data and controls is measured relative to CCK rising edge.

## 1.1 Data Bus Mapping

|       |         | 18-bpp        | 24-bpp        | 36-bit        | 48-bit        |
|-------|---------|---------------|---------------|---------------|---------------|
| Pin # | Name    | 1-pixel/clock | 1-pixel/clock | 2-pixel/clock | 2-pixel/clock |
| 15    | CDATA0  |               |               |               | B0/E          |
| 17    | CDATA1  |               |               |               | B1/E          |
| 18    | CDATA2  | B0            | B2            | B0/E          | B2/E          |
| 19    | CDATA3  | B1            | B3            | B1/E          | B3/E          |
| 20    | CDATA4  | B2            | B4            | B2/E          | B4/E          |
| 21    | CDATA5  | B3            | B5            | B3/E          | B5/E          |
| 22    | CDATA6  | B4            | B6            | B4/E          | B6/E          |
| 23    | CDATA7  | B5            | B7            | B5/E          | B7/E          |
| 24    | CDATA8  |               |               |               | G0/E          |
| 25    | CDATA9  |               |               |               | G1/E          |
| 26    | CDATA10 | G0            | G2            | G0/E          | G2/E          |
| 27    | CDATA11 | G1            | G3            | G1/E          | G3/E          |
| 28    | CDATA12 | G2            | G4            | G2/E          | G4/E          |
| 29    | CDATA13 | G3            | G5            | G3/E          | G5/E          |
| 30    | CDATA14 | G4            | G6            | G4/E          | G6/E          |
| 31    | CDATA15 | G5            | G7            | G5/E          | G7/E          |
| 33    | CDATA16 |               |               |               | R0/E          |
| 34    | CDATA17 |               |               |               | R1/E          |
| 35    | CDATA18 | R0            | R2            | R0/E          | R2/E          |
| 36    | CDATA19 | R1            | R3            | R1/E          | R5/E          |
| 37    | CDATA20 | R2            | R4            | R2/E          | R4/E          |
| 39    | CDATA21 | R3            | R5            | R5/E          | R5/E          |
| 40    | CDATA22 | R4            | R6            | R4/E          | R6/E          |
| 41    | CDATA23 | R5            | R7            | R5/E          | R7/E          |
| 42    | CDATA24 |               |               |               | B0/O          |
| 45    | CDATA25 |               |               |               | B1/O          |
| 46    | CDATA26 |               | B0            | B0/O          | B2/O          |
| 47    | CDATA27 |               | B1            | B1/O          | B3/O          |
| 48    | CDATA28 |               | G0            | B2/O          | B4/O          |
| 49    | CDATA29 |               | G1            | B3/O          | B5/O          |
| 50    | CDATA30 |               | R0            | B4/O          | B6/O          |
| 51    | CDATA31 |               | R1            | B5/O          | B7/O          |
| 52    | CDATA32 |               |               |               | G0/O          |
| 53    | CDATA33 |               |               |               | G1/O          |
| 54    | CDATA34 |               |               | G0/O          | G2/O          |
| 55    | CDATA35 |               |               | G1/O          | G3/O          |
| 56    | CDATA36 |               |               | G2/O          | G4/O          |
| 57    | CDATA37 |               |               | G3/O          | G5/O          |
| 58    | CDATA38 |               |               | G4/O          | G6/O          |
| 59    | CDATA39 |               |               | G5/O          | G7/O          |
| 61    | CDATA40 |               |               |               | R0/O          |
| 62    | CDATA41 |               |               |               | R1/O          |
| 63    | CDATA42 |               |               | R0/O          | R2/O          |
| 64    | CDATA43 |               |               | R1/O          | R3/O          |
| 65    | CDATA44 |               |               | R2/O          | R4/O          |
| 66    | CDATA45 |               |               | R3/O          | R5/O          |
| 67    | CDATA46 |               |               | R4/O          | R6/O          |
| 69    | CDATA47 |               |               | R5/O          | R7/O          |

#### Legend :

- 1. R = RED Channel, G = GREEN Channel, B = BLUE Channel.
- 2. /E = EVEN (first) pixel data (P0, P2, P4, etc.)
- 3. /O = ODD (second) pixel data (P1, P3, P5, etc.)

#### Assumptions on how PanelLink is connected :

- 1. Bits 7:0 mapped MSB:LSB.
- 2. Tx0/Rx0 transmits BLUE (B) data.
- 3. Tx1/Rx1 transmits GREEN (G) data.
- 4. Tx2/Rx2 transmits RED (R) data

## 2. Input Timing

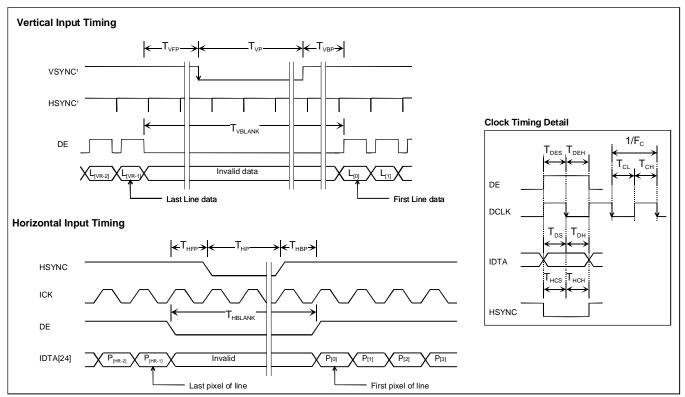



Figure 1: Input Timing Diagram

| Signal | Parameter                                                          | Symbol           | Min | Тур | Max | Unit  | Note |
|--------|--------------------------------------------------------------------|------------------|-----|-----|-----|-------|------|
| DCLK   | Pixel clock frequency                                              | $F_C = 1/T_C$    | 30  | 65  |     | MHz   |      |
|        | Low time                                                           | T <sub>CL</sub>  | 5   |     |     | ns    |      |
|        | High Time                                                          | T <sub>CH</sub>  | 5   |     |     | ns    |      |
| VSYNC  | Pulse width                                                        | T <sub>VP</sub>  | 1   | 2   |     | HSYNC |      |
|        | Vertical front porch                                               | T <sub>VFP</sub> | 0   | 4   |     | HSYNC |      |
|        | Vertical back porch                                                | T <sub>VBP</sub> | 0   | 1   |     | HSYNC |      |
| HSYNC  | Pulse width                                                        | T <sub>HP</sub>  | 2   | 32  |     | DCLK  |      |
|        | Horizontal front porch                                             | T <sub>HFP</sub> | 0   | 144 |     | DCLK  |      |
|        | Horizontal back porch                                              | T <sub>HBP</sub> | 0   | 1   |     | DCLK  |      |
| IDATA  | IDATA to ICK $\downarrow$ setup time                               | T <sub>DS</sub>  |     |     |     |       | 1    |
|        | IDATA to ICK $\downarrow$ hold time                                | T <sub>DH</sub>  |     |     |     |       | 1    |
|        | HSYNC to ICK $\downarrow$ setup time                               | T <sub>HCS</sub> |     |     |     |       | 2    |
|        | HSYNC to ICK $\downarrow$ hold time                                | T <sub>HCH</sub> |     |     |     |       | 2    |
| DE     | DE <sup><math>\uparrow</math></sup> to ICK $\downarrow$ setup time | T <sub>DES</sub> |     |     |     |       | 2    |
|        | DE $\downarrow$ to ICK $\downarrow$ hold time                      | T <sub>DEH</sub> |     |     |     |       | 2    |

### Table 1: Input Timing Table

Notes:

- 1. HSYNC and VSYNC can be of either polarity, and their polarities are independent of each other.
- 2. Actual times will be set by the decoding logic. It is assumed that input data is latched on the falling edge of ICK.
- 3. Actual times will be set by the decoding logic. It is assumed that HSYNC and DE are latched by the falling edge of ICK.

## 3. Output Timing

## 3.1 Timing Overview

#### Frame Start/End Timing Overview

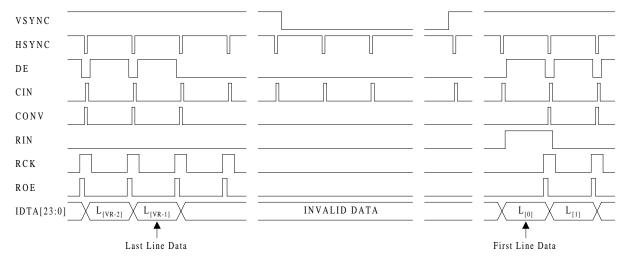



Figure 2: General timing diagram for frame start and end

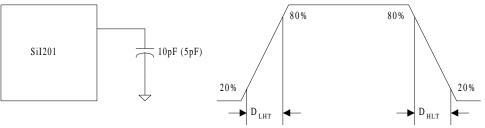



Figure 3: Digital output transition time

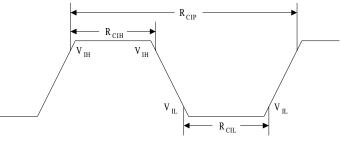



Figure 4:Receiver Clock Cycle/High/Low Times

7

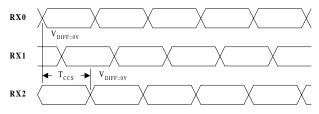
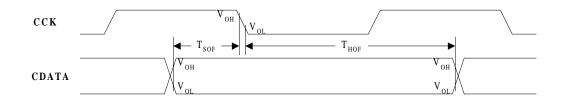
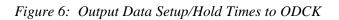





Figure 5: Channel-to-Channel Skew Timing





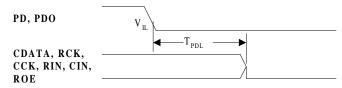
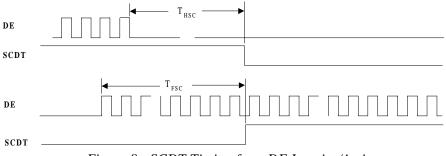
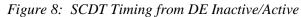





Figure 7: Output Signals Disabled Timing from PD Active





## 3.2 CCK/CIN/CDTA Timing

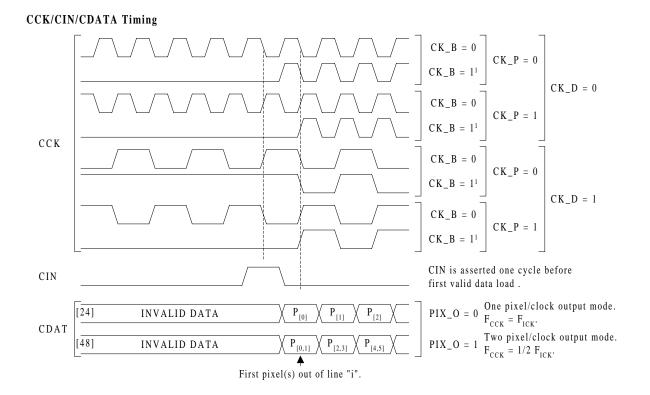



Figure 9: CCK/CIN/CDTA Timing Diagram

#### Notes:

1. In blanked (controlled) clock mode, there are **four extra load clock** cycles at the end of a data load period. These provide "dummy" load cycles for column drivers that require internal pipelines to be emptied for proper operation.

## 3.3 CONV/POL Timing

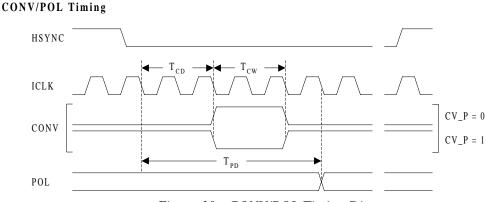



Figure 10: CONV/POL Timing Diagram

| Signal | Parameter        | Symbol          | Value                      | Program Pin | Note |
|--------|------------------|-----------------|----------------------------|-------------|------|
| CONV   | CONV start time  | T <sub>CD</sub> | 4*T <sub>SYNC</sub>        | -           | 1    |
|        | CONV pulse width | T <sub>CW</sub> | 6* T <sub>SYNC</sub>       | $CV_W = 0$  | 1, 2 |
|        |                  |                 | 48* T <sub>SYNC</sub>      | $CV_W = 1$  |      |
| POL    | POL start time   | T <sub>PD</sub> | 0                          | $PL_T = 0$  | 1, 3 |
|        |                  |                 | $T_{CD}+T_{CW}+4*T_{SYNC}$ | $PL_T = 1$  |      |

Table 2: CONV/POL Timing Table

Notes:

1. The time  $T_{SYNC}$  varies according to the setting of the SCALE\_IN input.

For SCALE\_IN=0,  $T_{SYNC} = T_C$ 

For SCALE\_IN=1,  $T_{SYNC} = 2*T_C$ 

- 2. Some column drivers that support on-chip inversion schemes require a wide conversion pulse. By setting input CV\_W to the HIGH state, conversion pulses greater than 1µs in width can be obtained.
- 3. The POL output signal can be used to control the LC polarity switching. Programming input pin PL\_T sets the polarity signal to switch before or after the conversion pulse, as shown above.

## 3.4 Polarity Inversion Timing

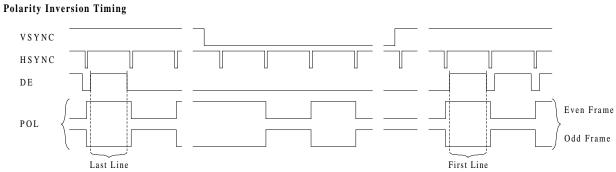



Figure 11: Polarity Inversion Timing Diagram

## 3.5 RCK to CONV Timing

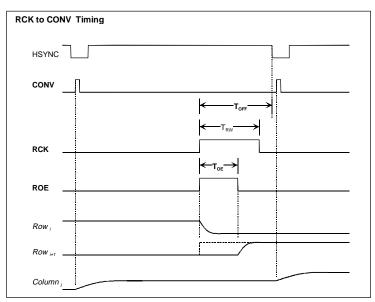



Figure 12: RCK to CONV Timing Diagram

| Signal | Parameter                        | Symbol           | Value                  | Program<br>Pin | Note |
|--------|----------------------------------|------------------|------------------------|----------------|------|
| RCK    | Row clock pulse width.           | T <sub>RW</sub>  | 255* T <sub>SYNC</sub> | -              | 1    |
|        | Row off time. TOFF is            | T <sub>OFF</sub> |                        | $ROFF_T =$     | 1, 2 |
|        | approximately the time between   |                  | 64*T <sub>SYNC</sub>   | 000            |      |
|        | when the next row is selected to |                  | 80*T <sub>SYNC</sub>   | 001            |      |
|        | when the column data is          |                  | 96*T <sub>SYNC</sub>   | 010            |      |
|        | allowed to change.               |                  | 112*T <sub>SYNC</sub>  | 011            |      |
|        |                                  |                  | 128*T <sub>SYNC</sub>  | 100            |      |
|        |                                  |                  | $176*T_{SYNC}$         | 101            |      |
|        |                                  |                  | $240*T_{SYNC}$         | 110            |      |
|        |                                  |                  | Reserved               | 111            |      |
| ROE    | Row blank time.                  | T <sub>OE</sub>  |                        | $ROE_T =$      | 1, 3 |
|        |                                  |                  | 64* T <sub>SYNC</sub>  | 00             |      |
|        |                                  |                  | 96* T <sub>SYNC</sub>  | 01             |      |
|        |                                  |                  | 112* T <sub>SYNC</sub> | 10             |      |
|        |                                  |                  | 128* T <sub>SYNC</sub> | 11             |      |

Table 3: RCK to CONV Table

Notes:

1. The time  $T_{SYNC}$  varies according to the setting of the SCALE\_IN input.

For SCALE\_IN=0,  $T_{SYNC} = T_C$  For SCALE\_IN=1,  $T_{SYNC} = 2*T_C$ 

2. T<sub>OFF</sub> is the time from when the next row is selected (RCK), to when the column out changes (CONV). Input signal ROFF\_T[2:0] is used to program the delay.

 $T_{OE}$  is the pulse width of ROE. For most row drivers when ROE is HIGH all of the row output select signals are LOW. The width of this blank period is controlled with ROE\_T[1:0].

## 3.6 W48 Mode

When pin 1 (W48) is set HIGH, W48 mode is asserted and the data path is set to 48 bit output. With W48 is asserted, the SiI 201C outputs two 24 bit pixels per clock cycle. In this mode, some of the programming pins (CK\_P, DINV, ST, PIX\_O, CK\_D, CK\_T, CV\_W, CD\_E) are no longer accessible because they are used to output the extra 12 bits of data (also see Configuration Pin Description table on page 16). The internal state of these programming pins in W48 mode is shown in the table below.

| Pin Name | Pin # | Description                        | Pin State During<br>W48 Mode   | Description of State                                                                                   |
|----------|-------|------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------|
| CIN      | 70    | Column Shift Register<br>Start Bit | -                              | CIN pulse is <b>always</b> one output clock cycle before<br>the first data load, even when W48 is low. |
| ST       | 62    | Output Drive Strength              | ST = 1                         | Output drive strength is high                                                                          |
| PIX_0    | 53    | Output Pixel Select                | PIX_0 = 1                      | Two 24 bit pixels are output per clock                                                                 |
| CK_D     | 34    | Dual Edge Clocking                 | $CK_D = 0$                     | Dual edge clocking is off                                                                              |
| CK_T     | 33    | Column Clock Timing                | $CK_T = 0$                     | Clock to data setup and hold timings are symmetrical                                                   |
| CV_W     | 42    | Conversion Pulse<br>Width          | $\mathbf{CV}_{\mathbf{W}} = 0$ | Conversion pulse width is narrow                                                                       |

Table 4: Programming Pin Values During W48 Mode

In W48 mode, the programming pin CV\_P (CONV Pulse Polarity) selects the Clock Inversion mode (to latch data on the rising or falling clock edge) and Data Inversion mode. The table below describes how CV\_P configures these modes.

| <b>CONV Pulse Polarity Setting</b><br>Pin 10                                         | Data Latching Edge                          | Data Inversion Mode           |
|--------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|
| <ul><li>CV_P = 0</li><li>CONV set to positive polarity</li><li>NEC/TI mode</li></ul> | • Output data latched on rising clock edge  | • Output data is not inverted |
| <ul><li>CV_P = 1</li><li>CONV set to negative polarity</li><li>Vivid mode</li></ul>  | • Output data latched on falling clock edge | • Output data is inverted     |

Note: In W48 mode,  $CV_P = 0$  selects NEC/TI mode.  $CV_P = 1$  selects Vivid mode.

 Table 5: CONV Pulse Polarity Configuration for Clock & Data Inversion

| Output | Pin | Description |
|--------|-----|-------------|
|--------|-----|-------------|

| Pin #    | Pin Name                        | Туре | Description                                                                           |
|----------|---------------------------------|------|---------------------------------------------------------------------------------------|
| 69       | CDTA47                          | Out  | Output Data/Programming pins 47-0.                                                    |
| 67       | CDTA46                          |      | Output data is synchronized with output data clock (CCK).                             |
| 66       | CDTA45                          |      | ······································                                                |
| 65       | CDTA44                          |      | See the "Data Bus Mapping" table to see how pixel data is mapped in                   |
| 64       | CDTA43                          |      | 24/36/48 bit mode.                                                                    |
| 63       | CDTA42                          |      |                                                                                       |
| 62       | CDTA41 <sup>1,2</sup>           |      | Pin Notes:                                                                            |
| 61       | CDTA40 <sup>1,2</sup>           |      | <sup>1.</sup> Only available for data output if W48 is HIGH.                          |
| 59       | CDTA39                          |      | <sup>2</sup> . This data pin is shared with a programming pin, the programming pin is |
| 58       | CDTA38                          |      | accessible when W48 is LOW.                                                           |
| 50<br>57 | CDTA37                          |      |                                                                                       |
| 56       | CDTA36                          |      |                                                                                       |
| 55       | CDTA35                          |      |                                                                                       |
| 55<br>54 | CDTA34                          |      |                                                                                       |
| 53       | CDTA34                          |      |                                                                                       |
| 53<br>52 | CDTA32 <sup>1,2</sup>           |      |                                                                                       |
| 51       | CDTA31                          |      |                                                                                       |
| 50       | CDTA30                          |      |                                                                                       |
| 30<br>49 | CDTA30<br>CDTA29                |      |                                                                                       |
| 49       | CDTA29<br>CDTA28                |      |                                                                                       |
| 48<br>47 | CDTA28<br>CDTA27                |      |                                                                                       |
|          | CDTA27<br>CDTA26                |      |                                                                                       |
| 46       | CDTA26<br>CDTA25 <sup>1,2</sup> |      |                                                                                       |
| 45<br>42 | $CDTA25^{+}$<br>$CDTA24^{1,2}$  |      |                                                                                       |
| 42       |                                 |      |                                                                                       |
| 41       | CDTA23                          |      |                                                                                       |
| 40       | CDTA22                          |      |                                                                                       |
| 39<br>27 | CDTA21                          |      |                                                                                       |
| 37       | CDTA20                          |      |                                                                                       |
| 36       | CDTA19                          |      |                                                                                       |
| 35       | CDTA18                          |      |                                                                                       |
| 34       | $CDTA17^{1,2}$                  |      |                                                                                       |
| 33       | CDTA16 <sup>1,2</sup>           |      |                                                                                       |
| 31       | CDTA15                          |      |                                                                                       |
| 30       | CDTA14                          |      |                                                                                       |
| 29       | CDTA13                          |      |                                                                                       |
| 28       | CDTA12                          |      |                                                                                       |
| 27       | CDTA11                          |      |                                                                                       |
| 26       | CDTA10                          |      |                                                                                       |
| 25       | CDTA9 <sup>1,2</sup>            |      |                                                                                       |
| 24       | CDTA8 <sup>1</sup>              |      |                                                                                       |
| 23       | CDTA7                           |      |                                                                                       |
| 22       | CDTA6                           |      |                                                                                       |
| 21       | CDTA5                           |      |                                                                                       |
| 20       | CDTA4                           |      |                                                                                       |
| 19       | CDTA3                           |      |                                                                                       |
| 18       | CDTA2                           |      |                                                                                       |
| 17       | CDTA1 <sup>1</sup>              |      |                                                                                       |
| 15       | CDTA0 <sup>1,2</sup>            |      |                                                                                       |

| Outp  | Output Pin Description (continued) |      |                                                                                                                                                                                                                                                                                                                                                                     |  |
|-------|------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pin # | Pin Name                           | Туре | Description                                                                                                                                                                                                                                                                                                                                                         |  |
| 43    | CCK                                | Out  | Column driver load clock. Valid column driver data (CDTA) is loaded by this clock into the column drivers. This clock is programmable.                                                                                                                                                                                                                              |  |
| 70    | CIN                                | Out  | Column shift register start bit. If CD_E is low, this signal starts the loading of the column shift registers. If mirroring is enabled (CD_E=1), CIN will output the column shift register start bit when CTL1=0, and will be tri-stated when CTL1 = 1. See pin CTL1/CIN2.                                                                                          |  |
| 11    | CONV                               | Out  | Column transfer signal. This signal is used to transfer data in the column driver storage registers to the driver's analog outputs.                                                                                                                                                                                                                                 |  |
| 75    | RCK                                | Out  | The row clock. Each rising edge shifts the row shift register one bit.                                                                                                                                                                                                                                                                                              |  |
| 73    | RIN                                | Out  | Row shift register start bit. Provides an input bit to the row shift register to start a vertical scan.                                                                                                                                                                                                                                                             |  |
| 74    | ROE                                | Out  | Output enable for the row drivers. For most row drivers, when ROE is low row outputs are enabled, when ROE is high all row outputs are held low.                                                                                                                                                                                                                    |  |
| 12    | POL                                | Out  | The polarity control signal. This signal controls the polarity switching circuits that minimize the DC bias across the liquid crystal.                                                                                                                                                                                                                              |  |
| 15    | /POL                               | Out  | Inverted POL control signal. This pin is only accessible when W48 is LOW.                                                                                                                                                                                                                                                                                           |  |
| 71    | CTL1/CDIR                          | Out  | General output control signal 1. If mirroring is enabled (CD_E=1), CTL1 dynamically selects the direction of the column driver shift register by alternately sending the shift register output bit between outputs CIN and CIN2. The CTL1 output is then used for the direction input to the column drivers. In W48=1 mode, the VSYNC signal comes out of this pin. |  |
| 72    | CTL2/CIN2                          | Out  | General output control signal 2. If mirroring is enabled (CD_E=1) CIN2 will output the column driver start bit when CTL1=1, and will be tri-stated when CTL1=0.                                                                                                                                                                                                     |  |

## **Configuration Pin Description**

| Pin # | Pin Name  | Туре | Description                                                                                                      |
|-------|-----------|------|------------------------------------------------------------------------------------------------------------------|
| 3     | ROFF_T[2] | In   | Row Off Timing. Selects the time interval between row clock and column output                                    |
| 4     | ROFF_T[1] |      | transitions.                                                                                                     |
| 5     | ROFF_T[0] |      |                                                                                                                  |
| 6     | ROE_T[1]  | In   | Row Output Enable Pulse. Selects the time that the row output is blanked.                                        |
| 7     | ROE_T[0]  |      |                                                                                                                  |
| 25    | PL_T      | In   | Polarity Timing. If low the polarity bit is toggled before the CONV signal is asserted.                          |
|       |           |      | If high the polarity bit is toggled after the CONV pulse.                                                        |
|       |           |      | This pin is only accessible when W48 is LOW. When W48 is HIGH, this pin is                                       |
|       |           |      | internally set LOW.                                                                                              |
| 61    | DINV      | In   | Output data inversion. When this pin is tied LOW the output data (CDTA) bits are not                             |
|       |           |      | inverted. When it is tied HIGH the output data is inverted. This pin is only accessible                          |
|       |           |      | when W48 is LOW. When W48 is HIGH, this pin is internally set HIGH.                                              |
| 62    | ST        | In   | Output drive strength. When this pin is tied LOW it sets the data and clock outputs of                           |
|       |           |      | the SiI 201C for low drive strength. When it is tied high, the outputs are at maximum                            |
|       |           |      | drive strength. This pin is only accessible when W48 is LOW. When W48 is                                         |
| 50    | DIV O     | T.   | HIGH, this pin is internally set HIGH.                                                                           |
| 53    | PIX_O     | In   | Output Pixel Select option. A low level indicates that output data is one pixel (24-bits)                        |
|       |           |      | per clock and a high level indicates two pixels (36/48-bits) per clock.                                          |
|       |           |      | This pin is only accessible when W48 is LOW. When W48 is HIGH, this pin is internally set HIGH.                  |
| 1     | W48       | In   | Select 48 bit output mode. When this pin is set LOW the data output is set for 36 bit                            |
| 1     | VV 40     | 111  | mode. In this mode many of the programming pins are accessible. When this pin is                                 |
|       |           |      | set HIGH the data path is set to 48 bit output. In this mode the programming pins that                           |
|       |           |      | were previously accessible are set to their default state. See "Section 3.6: W48 Mode."                          |
| 45    | CK_P      | In   | Output Clock Polarity. If $CK_P = 0$ the output clock latches data on the negative edge,                         |
| 15    | CIX_I     |      | if $CK_P = 1$ , the output data is latched on the positive edge.                                                 |
|       |           |      | This pin is only accessible when W48 is LOW. When W48 is HIGH, this pin is                                       |
|       |           |      | internally set LOW.                                                                                              |
| 76    | CK_B      |      | Output Clock Blank enable. If high the output clock is blanked between valid data                                |
|       |           |      | loads.                                                                                                           |
| 34    | CK_D      |      | Dual Edge Clocking. When this signal is HIGH the column clock latches column data                                |
|       |           |      | on both clock edges, halving the frequency of the column clock.                                                  |
|       |           |      | This pin is only accessible when W48 is LOW. When W48 is HIGH, this pin is                                       |
|       |           |      | internally set LOW.                                                                                              |
| 33    | CK_T      |      | Column Clock Timing. When this signal is LOW the output setup and hold time is                                   |
|       |           |      | nearly symmetric. When HIGH, the minimum hold time is long.                                                      |
|       |           |      | This pin is only accessible when W48 is LOW. When W48 is HIGH, this pin is                                       |
| 42    | CV_W      | In   | <b>internally set LOW.</b><br>Conversion Pulse Width. If low the CONV pulse is set to minimum width, if high the |
| 72    |           |      | conversion pulse is set to the maximum width.                                                                    |
|       |           |      | This pin is only accessible when W48 is LOW. When W48 is HIGH, this pin is                                       |
|       |           |      | internally set LOW.                                                                                              |
| 10    | CV P      |      | Conversion Pulse Polarity. If low the conversion pulse is active high, if high the                               |
|       |           |      | conversion pulse is active low.                                                                                  |
| 52    | CD_E      | In   | Enable Software Mirroring. If low, software switching is disabled. If high the                                   |
|       |           |      | direction of the column driver loading is set according to the state of CTL1 of SiI100                           |
|       |           |      | transmitter.                                                                                                     |
|       |           |      | This pin is only accessible when W48 is LOW. When W48 is HIGH this pin is                                        |
|       |           |      | internally set LOW.                                                                                              |
| 2     | SCALE_IN  | In   | Timing Scale. If SCALE_IN is low, preset timing registers are not scaled. If                                     |
|       |           |      | SCALE_IN is high timing registers are scaled by a factor of two.                                                 |

### Power Management Pin Description

| Pin # | Pin Name | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14    | SCDT     | Out  | Sync Detect. Output is high if HSYNC is <u>active</u> . If the HSYNC signal is not detected then SCDT is driven low. SCDT can be externally connected to PD/O                                                                                                                                                                                                                                                                                                                           |
|       |          |      | pin. In this configuration, all data (CDTA[47:0]), general output control signals, and row and column outputs are driven low when SCDT is low.                                                                                                                                                                                                                                                                                                                                          |
| 96    | PD       | In   | Power Down mode (active low). A high level indicates normal operation and a low level indicates power down mode. During power down mode, all data (CDTA[47:0]), general output control signals, and row and column outputs are driven low. The internal clock is also stopped and all analog logic is powered down. This pin is effective during both normal operation and test modes.                                                                                                  |
| 98    | PDO      | In   | Output driver Power Down mode (active low). A high level indicates normal operation and a low level indicates output driver power down mode. During power down mode, all data (CDTA[47:0]), general output control signals, and row and column outputs are driven low. If the operation of SCDT signal is verified, PD/O can be externally connected to SCDT. In this configuration, all data (CDATA[47:0]), general output control signals, and row and column outputs are driven low. |

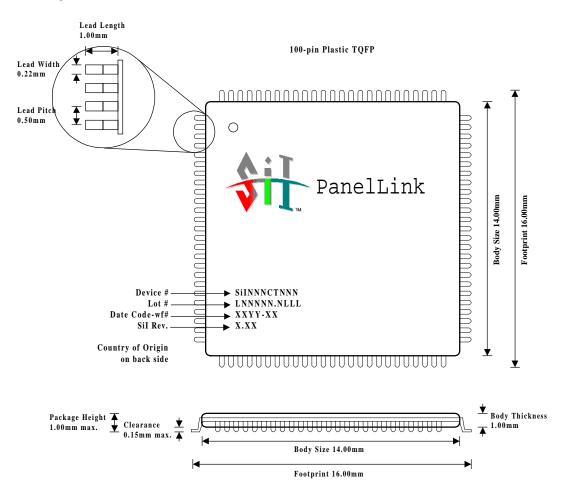
## Differential Signal Data Pin Description

| Pin # | Pin Name | Туре  | Description                                                                                         |
|-------|----------|-------|-----------------------------------------------------------------------------------------------------|
| 87    | RX0+     | Analo | Low voltage swing differential input data pairs.                                                    |
| 88    | RX0-     | g     |                                                                                                     |
| 84    | RX1+     |       |                                                                                                     |
| 85    | RX1-     |       |                                                                                                     |
| 81    | RX2+     |       |                                                                                                     |
| 82    | RX2-     |       |                                                                                                     |
| 90    | RXC+     | Analo | Low voltage swing differential input clock pair.                                                    |
| 91    | RXC-     | g     |                                                                                                     |
| 92    | EXT_RES  | Analo | Impedance Matching Control. Resistor value should be ten times the characteristic                   |
|       |          | g     | impedance of the cable. In the common case of $50\Omega$ transmission line, an external $500\Omega$ |
|       |          |       | resistor must be connected between AVCC and this pin.                                               |

## **Reserved Pin Description**

| Pin # | Pin Name | Туре | Description                                                |
|-------|----------|------|------------------------------------------------------------|
| 17    | RESERVED | In   | This pin should be left unconnected. If connected, it must |
|       |          |      | be connect HIGH.                                           |
| 24    | RESERVED | In   | This pin should be left unconnected when W48 is LOW.       |
|       |          |      | If connected, it must be connect LOW.                      |
| 95    | RESERVED | In   | This signal must be tied high (3.3V) for normal            |
|       |          |      | operation.                                                 |
|       |          |      |                                                            |
| 97    | RESERVED | Out  | This pin should be left unconnected.                       |

#### **Power and Ground Pin Description**


| Pin # | Pin Name | Туре   | Description                                                                 |
|-------|----------|--------|-----------------------------------------------------------------------------|
| 86    | AVCC     | Power  | Receiver Analog VCC.                                                        |
| 80    | AVCC     |        |                                                                             |
| 83    | AGND     | Ground | Receiver Analog GND.                                                        |
| 89    | AGND     |        |                                                                             |
| 93    | PVCC     | Power  | PLL Analog VCC.                                                             |
| 94    | PGND     | Ground | PLL Analog GND.                                                             |
| 8     | VCC      | Power  | Core VCC. This pin supplies power for input buffers and the core digital    |
| 68    | VCC      |        | logic and must be set to 3.3 V.                                             |
| 99    | VCC      |        |                                                                             |
| 77    | VCC      |        |                                                                             |
| 9     | GND      | Ground | Digital GND                                                                 |
| 38    | GND      |        |                                                                             |
| 79    | GND      |        |                                                                             |
| 100   | GND      |        |                                                                             |
| 16    | OVCC     | Power  | Output VCC. This OVCC pin supplies power for output buffers and for         |
| 32    | OVCC     |        | input pin protection devices. This pin must be set to 5 V if output signals |
| 78    | OVCC     |        | are at 5 V and can be set to 3.3 V if output signals are at 3.3 V.          |
| 13    | OGND     | Ground | Output GND. This OGND is for output buffers and for input pin               |
| 44    | OGND     |        | protection devices. This OGND pin is separated from the digital GND pin     |
| 60    | OGND     |        | for isolating the noisy output GND from the clean core digital GND.         |

### **Application Information**

To obtain the most updated Application Notes and other useful information for your design application, please visit the Silicon Image web site at **www.siimage.com**, or contact your local Silicon Image sales office.

#### **Package Dimensions**

100-pin TQFP Package Dimensions



#### **Copyright Notice**

This manual is copyrighted by Silicon Image, Inc. Do not reproduce, transform to any other format, or send/transmit any part of this documentation without the express written permission of Silicon Image, Inc.

#### **Trademark Acknowledgment**

Silicon Image, the Silicon Image logo, PanelLink, and the PanelLink Digital logo are trademarks or registered trademarks of Silicon Image, Inc. All other trademarks are the properties of their respective owners.

#### Disclaimer

This document provides technical information for the user. Silicon Image, Inc. reserves the right to modify the information in this document as necessary. The customer should make sure that they have the most recent data sheet version. Silicon Image, Inc. holds no responsibility for any errors that may appear in this document. Customers should take appropriate action to ensure their use of the products does not infringe upon any patents. Silicon Image, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to infringe upon such rights.

© 1999 Silicon Image, Inc. 3/99 SiI/DS-0005-B

Silicon Image, Inc. 1060 E. Arques Ave. Sunnyvale, CA 94086 USA Tel:408-616-4000Fax:408-830-9530E-Mail:salessupport@siimage.comWeb:www.siimage.comwww.panellink.com

