IC for Control of Lithium-ion Betteries Charging Monolithic IC MM1438

Outline

This IC is used to control charging of lithium-ion batteries consisting of a single cell. It is a modification of the previous MM1332 charging-control IC, with improved charging voltage accuracy and a smaller package.

Features

Charging voltage accuracy (Ta=25°C) ±25mV/cell
Charging voltage accuracy (Ta=0 to 50°C) ±30mV/cell
Consumption current (charging on) 250μA typ.
Consumption current (charging off) 2μA typ.
Low-voltage detection 2.15V typ.
Leakage current between CEL and CS 1μA max.

Package

VSOP-8B

Applications

IC for control of lithium-ion batteries charging.

Pin Assignment

GND
LV
SW2
SW1
Vcc
EXT
CEL
CS

Block Diagram

Pin Description

Pin No.	Pin name	I/O	Pin Description			
1	GND	Input	Ground pin			
2	LV	Output	Low voltage detection circuit output pin			
			ON with NPN-Tr open collector output at low voltage			
3	SW2	SW2 Input	Low voltage detection circuit ON/OFF control input pin			
3	3 3W2	IIIput	SW2 = Vcc: OFF, SW2 = GND: ON			
4	4 SW1	CW/1	CW1	CW/1	Innut	ON/OFF control input pin for the IC
4		Input	SW1 = Vcc: OFF, SW1 = GND: ON			
5	Vcc	Input	Power supply input pin			
6	EXT	Output	Charging control output pin Controls external PNP-Tr to control charging.			
7	CEL	Innut	Battery voltage input pin			
l l CE	CEL	EL Input	Detects battery voltage and controls rated voltage to the prescribed voltage value.			
			Current detection pin			
8	CS	Input	Detects current by drop in external resistor voltage and controls rated current.			
			Current value can be set at 0.1V/R1 typ.			

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Unit
Storage temperature	Tstg	-40~+125	°C
Operating temperature	Topr	-20~+70	°C
Power supply voltage	Vcc max.	-0.3~+18	V
CFL pin input voltage	Vcel max.	-0.3~+13	V
SW input voltage	Vsw	-0.3~Vcc+0.3	V
Allowable loss	Pd	300	mW

Recommended Operating Conditions

Item	Symbol	Ratings	Unit
Operating temperature	Topr	-20~+70	°C
Charging control operating voltage	Vopr	2.5~+17	V

Note: Operating voltage minimum value is during rated current control.

Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=5V, SW3 : A, SW6 : A, SW7 : A)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
Consumption current 1	Icc1	VSW1=VSW2=0V (Charge : ON)		250	400	μA
Consumption current 2	Icc2	VSW1=VSW2=Vcc (Charge : OFF)		2	10	μA
Output voltage 1	Vo ₁	Ta=25°C	4.100	4.125	4.150	V
Output voltage 2	V_{O2}	Ta=0~50°C	4.095	4.125	4.155	V
Current limit	Vcl		90	100	110	mV
Inflow current between	т		0.0	F 0	7.0	Δ.
CEL-CS during operation	Icel1		3.0	5.0	7.0	μA
Leak current between CEL-CS	ICEL2	Vcc=0V or OPEN		0.01	1	μA
SW1 input current	Isw1			20	30	μA
SW1 input voltage L	V_{L1}	Charge : ON	-0.3		2.0	V
SW1 input voltage H	$V_{\rm H1}$	Charge : OFF	Vcc-0.1		Vcc+0.3	V
Low voltage detection voltage	Lv		2.0	2.15	2.3	V
SW2 input current	Isw2			20	30	μA
SW2 input current L	V_{L2}	Low voltage detection circuit: ON	-0.3		2.0	V
SW2 input current H	$V_{\rm H2}$	Low voltage detection circuit: OFF	Vcc-1.0		Vcc+0.3	V
Low voltage detection	т				0.5	Δ.
output leak current	Ilv				0.5	μA
Low voltage detection	77	I 1 A		0.0	0.4	17
output saturation voltage	V_{LV}	Isink=1mA		0.2	0.4	V
EXT pin inflow current	IEXT		10	20		mA
EXT pin output voltage	Vext	For no load	0.3		Vcc-0.3	V

Note 1: Please insert a capacitor of several µF between power supply and ground when using.

Note 2: Be sure that CS pin potential does not fall below -0.5V.

Note 3: If the IC is damaged and control is no longer possible, its safety can not be guaranteed. Please protect with something other than this IC.

Measuring Circuit

Measurement Procedures (Except where noted otherwise, Ta=25°C, Vcc=5V, SW3 : A, SW6 : A, SW7 : A)

Item	Measurement Procedures		
Concumption or went 1	V3 = Vcc, V4 = 0V. Next, measure A5 current value Icc1 when V3 is changed		
Consumption current 1	from $Vcc \rightarrow 0V$.		
Consumption current 2	ent 2 V3 = Vd = Vcc. Measure A6 current value Icc2 at this time.		
Output voltage	V3 = Vcc, V4 = 0V. Measure T7 voltage Vo at this time.		
Current limit	V3 = Vcc, V4 = 0V. Set V7 voltage 1V lower than T7 (output voltage) potential		
Current mint	and set SW7 to B. Measure T8 voltage VcL at this time.		
Inflow current between	V3 = Vcc, V4 = 0V, SW6: C. V7 = 4.5V, SW7: B. Measure A7 current value		
CEL-CS during operation	ICEL1 at this time.		
Leak current between CEL-CS	V3 = V4 = Vcc = 0V, SW6: C. V7 = 4.5V, SW7: B. Measure A7 current value		
Leak current between GEL-GS	ICEL2 at this time.		
SW1 input current	Measure A4 current value Isw ₁ when V4 = 0V.		
SW1 input voltage	V3 = Vcc. Charge: ON (VL1) when V4 potential is varied and T7 voltage is the		
Swi input voitage	prescribed output voltage; Charge OFF (VH1) when 0 ~ 0.05V.		
	V3 = V4 = 0V. Set V7 voltage 1V lower than T7 (output voltage) potential, and		
Low voltage detection voltage	SW7: B.		
Low voltage detection voltage	Next gradually lower V7 voltage; V7 voltage is Lv when A7 current value is		
	within ±10μA.		
SW2 input current	Measure A3 current value Isw2 when V3 = 0V.		
	V4 = 0V, V7 = 1V, SW7: B. Low voltage detection circuit: ON (V ₁₂) when V3		
SW2 input voltage	voltage is varied and A7 current value is within ±10μA; low voltage detection		
	circuit: OFF (VH2) otherwise.		
Low voltage detection	V3 = Vcc, V4 = 0V. Measure A2 current value I _{LV} when V3 is changed from		
output leak current	Vcc 0V.		
Low voltage detection	V2 V4 OV CW2. D CW7. D Monager To reliance Very whom V7 reliance is OV		
output saturation voltage	V3 = V4 = 0V. SW3: B, SW7: B. Measure T2 voltage V _{LV} when V7 voltage is 0V.		
EXT pin inflow current	V3 = V4 = 0V. SW6: B, SW7: B, V6 = 4V, V7 = 3V. Measure A6 current value Iext.		
EXT pin output voltage	V3 = V4 = 0V. SW6: C, SW7: B. T6 voltage when V7 = 3V and V7 = 5V is Vext.		

Timing Chart

(SW2:L)

Application Circuit

Characteristics

Output voltage vs Power supply voltage

CS pin voltage vs Power supply voltage

LV pin voltage vs LV pin inflow current

■ EXT pin voltage vs EXT pin inflow current

Output voltage vs Ambient temperature

CS pin voltage vs Ambient temperature

CS pin voltage vs Output voltage

