
MIPS64™ 5Kf™ Processor Core Datasheet November 19, 2001

RISC
tor
offers

long with

signers
ging
quired.

fetch,
s a high

add
c
cle in
d their

sizes,
al.

ytes/
, 3-way,
lls on

single-
ints. An
ication
The MIPS64™ 5Kf™ processor core from MIPS Technologies is a synthesizable, highly-integrated 64-bit MIPS®
microprocessor core designed for high-performance, low-power, low-cost embedded applications. To semiconduc
manufacturing companies and system OEMs who are building complex System-On-Chip ASIC devices, the 5Kf core
the long-awaited benefits of an easy-to-integrate, synthesizable core that provides 64-bit address and data paths a
the 64-bit computing power of an R5000-class processor. The 5Kf core is portable across processes, is highly
configurable, and is easily integrated into standard design flows, thereby reducing time to market and allowing de
to focus their attention on end-user products. The 5Kf core is ideally positioned to support new products for emer
segments of the digital consumer, network, and office automation markets where floating point performance is re
The power-management features of the 5Kf core make it ideally suited for use in battery-powered applications.

The 5Kf core implements the MIPS64 Architecture. It contains special multiply-accumulate, conditional move, pre
wait, leading zero/one detect instructions, and the 64-bit privileged resource architecture. The 5Kf core also feature
performances IEEE 754 compliant Floating Point Unit (FPU). The FPU supports both single and double precision
instructions. It includes the multiply add instruction, which can issue every cycle, whereby both a multiply and an 
single precision operation can be performed in every cycle. The 5Kf core can dual issue a floating point arithmeti
instruction with a floating point load/store or integer instruction, whereby two instructions can be executed every cy
floating point applications. A coprocessor interface is also provided, which allows designers a way to easily exten
architectures by addition of custom functionality, such as network, or graphics coprocessors.

The memory management unit contains a configurable 16, 32, or 48 dual-entry Joint TLB (JTLB) with variable page
a 4-entry Instruction micro TLB (ITLB), and a 4-entry Data micro TLB (DTLB). Using a TLB with the 5Kf core is option
The alternative is to use a far simpler Fixed Mapping Translation (FMT) scheme.

Optional instruction and data caches are fully configurable from 0 - 64 KBytes in size, with a maximum size of 16 KB
way in a 4-way set associative implementation. In addition, each cache can be organized as direct-mapped, 2-way
or 4-way set associative. The 5Kf core supports an instruction scheduling mechanism that eliminates pipeline sta
cache misses, and a load scheduling slot is also supported.

To ease software debugging, the EJTAG debug solution in the 5Kf core includes instruction software breakpoints, a
step feature, and a dedicated Debug Mode. Optional hardware breakpoints include 4 instruction and 2 data breakpo
optional Test Access Port (TAP) forms the interface to an external debug host and provides a dedicated commun
channel for debugging of an embedded system.

Figure 1 shows a block diagram of the 5Kf core. The core is divided intorequired andoptional blocks as shown.

Figure 1  5Kf Core Block Diagram

Mul/Div

Execution Core

System
Coprocessor

MMU

TLB

EJTAG

Cache
Control

Instruction
Cache

Data
Cache

B
IU

EC interface

Fixed/Required Optional

Power
Mgmt.

5Kf Core

Breakpoints
TAP Ctrl

COP interface

FMT
Floating Point

Unit (FPU) Unit

Dual issue capability
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



Features

a

.
n

ta

f

Features

• 64-bit Data and Address Path
(42-bit virtual and 36-bit physical address space)

• MIPS64 Compatible Instruction Set

– Based on MIPS V™ Instruction Set Architecture
– Multiply-Accumulate and Multiply-Subtract

Instructions (MADD, MADDU, MSUB, MSUBU)
– Targeted Multiply Instruction (MUL)
– Zero/One Detect Instructions (CLZ, CLO, DLCO,

DCLZ)
– Wait Instruction (WAIT) for low power control
– Conditional Move Instructions (MOVZ, MOVN)
– Prefetch Instructions (PREF, PREFX)

• Dual-issue Floating Point Unit / Coprocessor 1

– Fully pipelined IEEE 754 compliant floating point unit
with both single and double precision instructions

– Includes multiply add instruction
– Maximum issue rate of one multiply add single

(MADD.S) instruction every clock
– Maximum issue rate of one multiply add double

(MADD.D) instruction every other clock
– FPU executes independently of integer pipeline
– Fast flush-to-zero mode to optimize performance

• Dual-issue superscalar micro-architecture capable of
executing:

– 1 integer and 1 arithmetic floating point instruction
– 1 floating point arithmetic and 1 floating point load/

store instruction

• General Purpose Coprocessor Interface

– Supports all MIPS V instructions
– Supports COP2 coprocessors
– Utilizes high-performance features of the integer unit
– Dual-issue capability as for floating point instructions

• Multiply/Divide Unit

– Maximum issue rate of one 32x16 multiply per clock
– Maximum issue rate of one 32x32 multiply every other

clock
– Maximum issue rate of one 64x64 multiply every 9 clocks
– 37 clock latency on 32/32 divides
– 69 clock latency on 64/64 divide
– Early-in feature for divides allows results sooner for

smaller dividend values

• MIPS64 privileged resource architecture

– Count/Compare registers for real-time timer interrupts
– Instruction and Data watch registers for software

breakpoints
– Separate interrupt exception vector
– Supervisor Mode operation
– Performance Monitoring logic for analyzing application

speed

• Memory Management Unit

– 16, 32, or 48 dual-entry JTLB with variable page sizes
or a simple Fixed Mapping Translation (FMT)
mechanism (optional)

– 4-entry instruction micro TLB
– 4-entry data micro TLB
– Support for 8-bit ASID
– Support for 4 KB - 16 MB page sizes

• Programmable Cache Sizes

– Individually configurable instruction and data caches
– Sizes from 0 - 16 KBytes/way (64 KBytes maximum)
– Direct Mapped, 2-, 3-, or 4-Way Set Associative
– Non-blocking loads
– 32-byte cache line size, doubleword sectored
– Virtually indexed, physically tagged
– Support for locking cache lines
– Non-blocking prefetches
– Optional parity protection

• Simple Bus Interface Unit (BIU)

– All I/Os fully registered
– Separate, unidirectional 36-bit address and 64-bit dat

buses
– 32-byte write buffer (4 doublewords)
– 1-line (32-byte) eviction buffer

• Power Control

– Minimum frequency: 0 MHz
– Power-down mode (triggered by WAIT instruction)
– Support for software controlled clock divider
– Sleep mode: During this mode the clocks are shut off

Sleep mode is entered automatically from power-dow
mode after all bus activity stops.

• EJTAG Debug Support

– Software Debug Breakpoint Instruction (SDBBP)
– Single-step feature
– Debug Mode
– Optional hardware breakpoints (4 instruction and 2 da

breakpoints)
– Optional Test Access Port (TAP) interface to debug

host, including fast data download/upload feature

• Testability for Production Test:

– Muxed-FF fullscan design with configurable number o
scan chains. ATPG test coverage can exceed 99%
(library and configuration dependent).

– Optional memory BIST, either through integrated
memory test (March C+ or IFA-13 algorithm) or by use
of industry standard memory BIST CAD tools.
2 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



Architectural Overview

t

.

r

Architectural Overview

The 5Kf core contains both required and optional blocks.
Optional blocks can be added to the 5Kf core based on the
needs of the implementation. The required blocks are as
follows:

• Execution Unit

• Floating Point Unit (FPU)

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Translation Lookaside Buffer (TLB) or
Fixed Mapping Translation (FMT)

• Cache Controllers

• Bus Interface Unit (BIU)

• Basic EJTAG debug features

• Power Management

Optional blocks include:

• Instruction Cache

• Data Cache

• EJTAG Debug Test Access Port (TAP)

• EJTAG Hardware Breakpoints

• Memory BIST module

The section entitled"5Kf Core Required Logic Blocks" on
page 4 discusses the required blocks. The section entitled
"5Kf Core Optional Logic Blocks" on page 16 discusses
the optional blocks.

Pipeline Flow

The 5Kf core implements a high-performance 6-stage
pipeline:

• Instruction fetch (I stage)

• Dispatch (D stage)

• Register read (R stage)

• Execution (E stage)

• Memory access (M stage)

• Writeback (W stage)

The 5Kf core implements a bypass mechanism that allows
the result of an operation to be forwarded directly to the

instruction that needs it without having to write the resul
to the register and then read it back.

Figure 2 shows a timing diagram of the 5Kf core pipeline

Figure 2   5Kf Core Pipeline

I Stage: Instruction Fetch

During the Instruction Fetch stage:

• The Translation Lookaside Buffer (TLB) or the Fixed
Mapping Translation (FMT) performs the virtual-to-
physical address translation for instruction fetch
addresses.

• An instruction is fetched from instruction cache.

D Stage: Dispatch

During the Dispatch stage:

• Branch decode and prediction is performed.

• An instruction is dispatched to the coprocessor/intege
unit.

R Stage: Register Read

During the Register Read stage:

• The General Purpose Register (GPR) file is read.

• The instruction is decoded.

E Stage: Execution

During the Execution stage:

• The Arithmetic Logic Unit (ALU) computes the
arithmetic or logical operation for register-to-register
instructions.

• The ALU determines whether the branch condition is
true.

I D R E M W

I$ Data

I$ Tag

Ta
g

 C
m

p
.

ITLB W
a

y 
S

e
le

ct

Dispatch

Branch Tgt

GPR Read

Decode

GPR WriteB
yp

Low
Addr

ALU/Addr

D$ Tag

DTLB Ta
g

 C
m

p
.

D$ Data

W
a

y 
S

e
le

ct

L
o

a
d

 A
lig

n

Bypass

Bypass

Bypass
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 3

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



Modes of Operation

-
s

d

r

• All multiply and divide operations begin.

• The ALU calculates the full virtual address for load
and store instructions.

• The cache look-up starts for loads and stores.

M Stage: Memory Access

During the memory access stage:

• The Data Translation Lookaside Buffer (DTLB) or the
Fixed Mapping Translation (FMT) performs the
virtual-to-physical address translation for data load/
store addresses.

• The data cache lookup completes.

• Load data is aligned.

W Stage: Writeback

During the writeback stage:

• For register-to-register or load instructions, the
instruction result is written back to the register file.

Modes of Operation

The 5Kf core supports four modes of operation: User
Mode, Supervisor Mode, Kernel Mode, and Debug Mode.
User Mode is most often used for applications programs.

Kernel and Supervisor Modes are typically used for
handling exceptions and operating system functions,
including CP0 management and I/O device accesses.
Debug Mode is used for EJTAG software debugging and is
similar to Kernel Mode, but also allows programming of
debug resources and has special handling of exceptions and
other debug related issues.

The processor enters Kernel Mode both at reset and when
an exception is taken. While in Kernel Mode, software has
access to the entire address space as well as all CP0
registers. User Mode accesses are limited to a subset of the
virtual address space and can be inhibited from accessing
CP0 functions.

5Kf Core Required Logic Blocks

The 5Kf core consists of the following required logic
blocks as shown inFigure 1. These logic blocks are defined
in the following subsections:

• Execution Unit

• Floating Point Unit (FPU) / Coprocessor 1

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Cache Controllers

• Memory Management Unit (MMU)

• Translation Lookaside Buffer (TLB) or
Fixed Mapping Translation (FMT)

• Bus Interface Control (BIU)

• Basic EJTAG debug features

• Power Management

Execution Unit

The 5Kf core execution unit implements a load/store
architecture with single-cycle ALU operations (logical,
shift, add, subtract). The 5Kf core contains thirty-two 64
bit general-purpose registers used for integer operation
and address calculation. The register file consists of two
read ports and two write ports and is fully bypassed to
minimize operation latency in the pipeline.

 The execution unit includes:

• 64-bit adder used for calculating arithmetic results an
the data addresses

• Program counter the next instruction address

• Logic for branch determination and branch target
address calculation

• Load and store aligner

• Bypass multiplexers used to avoid stalls when
executing instructions streams where data producing
instructions are followed closely by consumers of thei
results.

• Instruction buffer that eliminates penalties to the
pipeline when branches are predicted correctly, and
reduces the penalty to one pipeline bubble when a
branch is mispredicted.

• Zero/One detect unit for implementing the CLZ,
DCLZ, CLO, and DCLO instructions.

• Logic unit for performing bitwise logical operations
4 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks

he

t

d
y’

e

Floating Point Unit (FPU) / Coprocessor 1

The 5Kf core Floating Point Unit (FPU) implements the
MIPS64 ISA (Instruction Set Architecture) for floating-
point computation. The implementation supports the
ANSI/IEEE Standard 754 (IEEE Standard for Binary
Floating-Point Arithmetic) for single and double precision
data formats. The FPU contains thirty-two 64-bit floating-
point registers used for floating point operations.

The performance is optimized for single precision formats.
Most instructions have a 1 cycle throughput and 4 cycle
latency. The FPU can dual issue arithmetic and load/store
instructions, whereby arithmetic operations can operate
continuously, while data is provided and retrieved.

The FPU implements the MIPS64 multiply-add (MADD)
and multiply-sub (MSUB) instructions with intermediate
rounding after the multiply function. The result is
guaranteed to be the same as executing a MUL and an ADD
instruction separately, but the instruction latency,
instruction fetch, dispatch bandwidth, and the total number
of register accesses are improved.

IEEE denormalized input operands and results are
supported by hardware for some instructions. IEEE
denormalized results are not supported by hardware in
general, but a fast flush-to-zero mode is provided to
optimize performance. The fast flush-to-zero mode is
enabled through the FCCR register, and use of this mode is
recommended for best performance when denormalized
results are generated.

The FPU has a separate pipeline for floating point
instruction execution. This pipeline operates in parallel
with the integer unit (IU) pipeline and does not stall when
the IU pipeline stalls. This allows long-running FPU
operations, such as divides or square root, to be partially
masked by system stalls and/or other integer unit
instructions. Arithmetic instructions are always dispatched
and completed in order, but loads and stores can complete
out of order. The exception model is ‘precise’ at all times.
The FPU is also denoted coprocessor 1.

FPU Pipeline

The FPU implements a high-performance 7-stage pipeline:

• Decode, register read and unpack (FR stage)

• Multiply tree - double pumped for double (M1 stage)

• Multiply complete (M2 stage)

• Addition first step (A1 stage)

• Addition second and final step (A2 stage)

• Packing to IEEE format (FP stage)

• Register writeback (FW stage)

The FPU implements a bypass mechanism that allows t
result of an operation to be forwarded directly to the
instruction that needs it without having to write the resul
to the FPU register and then read it back.

Figure 3 shows the FPU pipeline with dispatch from the
integer pipeline.

Figure 3   FPU Pipeline

FPU Instruction Latencies and Repeat Rates

Table 1contains the floating point instruction latencies an
repeat rates for the common cases. In this table ‘Latenc
refers to the number of cycles necessary for the first
instruction to produce the result needed by the second
instruction. The ‘Repeat Rate’ refers to the maximum rat
at which an instruction can be executed.

Table  1    5Kf Core FPU Latency and Repeat Rate

Opcode* Latency
(cycles)

Repeat
Rate

(cycles)

ABS.[S,D], NEG.[S,D], ADD.[S,D],
SUB.[S,D], MUL.S, MADD.S,
MSUB.S, NMADD.S, NMSUB.S

4 1

MUL.D, MADD.D, MSUB.D,
NMADD.D, NMSUB.D

5 2

RECIP.S 13 10

RECIP.D 25 21

RSQRT.S 17 14

RSQRT.D 35 31

DIV.S, SQRT.S 17 14

DIV.D, SQRT.D 32 29

C.cond.[S,D] to FPU inst. / other inst. 1 / 2 1

CVT.D.S, CVT.[S,D].[W,L] 4 1

* Format: S = Single, D = Double, W = Word, L = Longword

I D R

FR

E

M1

M

M2

W

A1 A2 FP FWFPU Pipeline

Bypass

Bypass

Bypass

Integer Pipeline
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 5

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks

is

r

c.

he
r

a
s

of

r

k
n
l

ts
r
of

s
.

FPU Control Registers

The FPU contains a number of control register, and these
are listed in Table 2

Multiply/Divide Unit (MDU)

The 5Kf core contains a Multiply/Divide Unit (MDU) with
a separate pipeline for multiply and divide operations. This
pipeline operates in parallel with the Integer Unit (IU)

pipeline and does not stall when the IU pipeline stalls. Th
allows long-running MDU operations, such as divides, to
be partially masked by system stalls and/or other intege
unit instructions.

The MDU consists of a 32x16 booth recoded multiplier,
result/accumulation registers (HI and LO), a divide state
machine, and all necessary multiplexers and control logi
The first number shown (‘32’ of 32x16) represents thers
operand. The second number (‘16’ of 32x16) represents t
rt operand. The 5Kf core only checks the value of the latte
(rt) operand to determine how many times the operation
must pass through the multiplier. The 16x16 and 32x16
operations pass through the multiplier once, allowing for
multiply operation every clock. A 32x32 operation passe
through the multiplier twice, allowing for a multiply
operation every other clock. A 64x64 operation passes
through the multiplier nine times, allowing for a multiply
operation every nine clocks.

Appropriate interlocks are implemented to stall the issue
back-to-back 32x32 and 64x64 multiply operations.
Multiply operand size is automatically determined by logic
built into the MDU.

Divide operations are implemented with a simple 1 bit pe
clock iterative algorithm. A 32-bit divide requires 37 clock
cycles to complete, while a 64-bit divide requires 69 cloc
cycles. Any attempt to issue a subsequent MDU instructio
while a divide is still active causes an IU pipeline stall unti
the divide operation is completed.

However, the divider has an early-in feature which detec
the size of the dividend in 8-bit increments. When a smalle
dividend is detected, the algorithm reduces the number 
iterations accordingly.

Table 3lists the latencies (number of cycles until a result i
available) for the 5Kf core multiply and divide instructions

CVT.S.D 6 1

CVT.[W,L].[S,D],
CEIL.[W,L].[S,D],
FLOOR.[W,L].[S,D],
ROUND.[W,L].[S,D],
TRUNC.[W,L].[S,D]

5 1

MOV.[S,D], MOVF.[S,D],
MOVN.[S,D], MOVT.[S,D],
MOVZ.[S,D]

4 1

LWC1, LDC1, LDXC1, LUXC1,
LWXC1

3 1

MTC1, DMTC1, MFC1, DMFC1 2 1

Table  2   Coprocessor 1 Registers in Numerical Order

Register
Number

Register
Name

Function

0 FIR Floating Point Implementation
Register. Identifies the capabilities
of the floating point unit.

25 FCCR Floating Point Condition Codes
Register. Alternate way of reading
the FP condition codes in the FCSR.

26 FEXR Floating Point Exceptions Register.
Alternate way of reading the
exception condition codes in the
FCSR.

28 FENR Floating Point Enables Register.
Alternate way of reading the
Enables field in the FCSR.

31 FCSR Floating Point Control and Status
Register.

Table  1    5Kf Core FPU Latency and Repeat Rate

Opcode* Latency
(cycles)

Repeat
Rate

(cycles)

* Format: S = Single, D = Double, W = Word, L = Longword

Table 3 5Kf Core Integer Multiply/Divide Unit Latencies

Opcode Operand
Size

Latency
(cycles)

MULT/MULTU,

MADD/MADDU,

MSUB/MSUBU,

DMULT/DMULTU

16 bit 1

32 bit 2

64 bit 9

MUL 16 bit 2

32 bit 3
6 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks

B

The MIPS architecture defines that the results of a multiply
or divide operation be placed in the HI and LO registers.
Using the move-from-HI (MFHI) and move-from-LO
(MFLO) instructions, these values can be transferred to the
general purpose register file.

The 5Kf core implements an additional multiply
instruction, MUL, which specifies that multiply results be
placed in the general purpose register file instead of the HI/
LO register pair. This instruction avoids the explicit MFLO
instruction, normally required in order to use the results of
multiply operations.

Two other instructions, multiply-add (MADD) and
multiply-subtract (MSUB), are used to perform multiply-
accumulate operations. The MADD instruction multiplies
two numbers and then adds the product to the current
contents of the HI and LO registers. Similarly, the MSUB
instruction multiplies two operands and then subtracts the
product from the HI and LO registers. The MADD and
MSUB operations are commonly used in DSP algorithms.

The DMULT/DMULTU and DDIV/DDIVU instructions
are used to support 64-bit operands.

Exception Logic

The Exception block contains the logic for identifying and
managing exceptions. Exceptions can be caused by a
variety of sources, including boundary cases in data, TL
misses, external events, or program errors.

DIV/DIVU,
DDIV/DDIVU

8 bit 11

16 bit 19

24 bit 27

32 bit 35

DDIV/DDIVU 40 bit 43

48 bit 51

56 bit 59

64 bit 67

Table 3 5Kf Core Integer Multiply/Divide Unit Latencies

Opcode Operand
Size

Latency
(cycles)

Table 4    5Kf Core Exception Types

Exception Description

Reset Assertion of SI_ColdReset signal.

Soft Reset Assertion of SI_Reset signal.

DSS Debug Single Step.

DINT Debug Interrupt.

DDBLImpr Debug Data Break on Load Imprecise.

NMI Assertion of EB_NMI signal.

Cache Error -
Data Access

A cache error occurred on a load or store
data reference (imprecise).

Machine Check TLB write that conflicts with an existing
entry.

DBE Load or store bus error.

Interrupt Assertion of unmasked HW or SW
interrupt signal.

Deferred Watch Deferred Watch.

DIB Debug Instruction Hardware Break.

Watch -
Instruction Fetch

A watch address match was detected on
an instruction fetch.

AdEL Instruction fetch address alignment error.

Instruction fetch reference to protected
address.

TLB Refill -
Instruction Fetch

Instruction Fetch TLB miss.

TLB Invalid -
Instruction Fetch

The valid bit was zero in the TLB entry
matching the address referenced by a
load or store instruction.

Cache Error -
Instruction Fetch

A cache error occurred on an instruction
fetch.

IBE Instruction fetch bus error.

SDBBP Software Debug Breakpoint. Execution
of the SDBBP instruction.
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 7

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks

,
he
P0
System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-
to-physical address translation and cache protocols, the

exception control system, the processor’s diagnostics
capability, and the operating modes (Kernel, Supervisor
User, and Debug). Configuration information such as cac
size and set associativity is available by accessing the C
registers.

Execution
Exceptions

CpU, MDMX: Execution of a
coprocessor instruction for a coprocessor
that is not enabled.

RI: Execution of a Reserved Instruction.

Execution of a 64-bit instruction causes a
reserved instruction exception if
executed in User Mode when PX and UX
are both 0.

Bp: Execution of BREAK instruction.

SC: Execution of SYSCALL instruction.

Ov: Execution of an arithmetic
instruction that overflowed.

Tr: Execution of a trap (when trap
condition is true).

FPE: Floating Point Exception

C2E: COP2 Exception

DDBL / DDBS Debug Data Break on Load (address
only).

Debug Data Break on Store (address only
or address + data value).

Watch -
Data Access

A reference to an address in one of the
watch registers (data).

AdEL Load Address Alignment Error.

Load reference to protected address.

AdES Store Address Alignment Error.

Store to a protected address.

TLB Refill - Data
Access

TLB miss occurred on a data access.

TLB Invalid -
Data Access

The valid bit was zero in the TLB entry
matching the address referenced by a
load or store instruction.

TLB Modified -
Data Access

The dirty bit was zero in the TLB entry
matching the address referenced by a
store instruction.

Cache Error -
instruction cache

Cache error detected in the instruction
cache by the CACHE instruction.

Table 4    5Kf Core Exception Types (Continued)

Exception Description

Table 5    Coprocessor 0 Registers

Register
Number

Register
Name

Function

0 Index1 Index into the TLB array.

1 Random1 Randomly generated index into
the TLB array.

2 EntryLo01 Low-order portion of the TLB
entry for even-numbered virtual
pages.

3 EntryLo11 Low-order portion of the TLB
entry for odd-numbered virtual
pages.

4 Context1 Pointer to page table entry in
memory.

5 PageMask1 Control for variable page size in
TLB entries.

6 Wired1 Controls the number of fixed
(“wired”) TLB entries.

7 Reserved Reserved.

8 BadVAddr Reports the address for the most
recent address-related exception.

9 Count Processor cycle count.

10 EntryHi1 High-order portion of the TLB
entry.

11 Compare Timer interrupt control.

12 Status Processor status and control.

13 Cause Cause of last general exception.

14 EPC Program counter at last
exception.

15 PRId Processor identification and
revision.

16 Config/
Config1

Config register (Select = 0).
Config register 1 (Select = 1).

17 Reserved Reserved.

18 WatchLo Low-order watchpoint address.

19 WatchHi High-order watchpoint address.
8 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks

n,

to
s.

es
n

9

g
f

Cache Controllers

The 5Kf core instruction and data cache controllers support
caches of various sizes, organizations, and set-associativity.
For example, the data cache can be 8 KBytes in size and 2-
way set associative, while the instruction cache can be 16
KBytes in size and 4-way set associative. Each cache can
be accessed in a single processor cycle. In addition, each
cache has its own 64-bit data path. Both caches can be
accessed in the same pipeline clock cycle.Table 6 shows
the cache options in the 5Kf.

The 5Kf supports the following cache protocols.

• Uncached (write around)

• Cacheable, noncoherent, write through, no write
allocate

• Cacheable, noncoherent, write through, write allocate

• Cacheable, noncoherent, write-back (write allocate)

• Uncached accelerated

Refer to"5Kf Core Optional Logic Blocks" on page 16for
more information on instruction and data cache
organization.

Memory Management Unit (MMU)

The 5Kf core contains a fully functional MMU that
translates virtual addresses to physical addresses.

With support for 64-bit operations and address calculatio
the MIPS64 architecture implicitly defines and provides
support for a 64-bit virtual address space, sub-divided in
four segments selected by bits 63:62 of the virtual addres
To provide compatibility for 32-bit programs and
MIPS32™ processors, a 232-byte Compatibility address
space is defined, separated into two non-contiguous rang
in which the upper 32 bits of the 64-bit address are the sig
extension of bit 31. The Compatibility address space is
similarly sub-divided into segments selected by bits 31:2
of the virtual address.

Figure 4shows the layout of the address spaces, includin
the Compatibility address space and the segmentation o
each address space.

20 XContext1 Extended Addressing Page Table
Context.

21 - 22 Reserved Reserved.

23 Debug Debug control and exception
status.

24 DEPC Program counter at last debug
exception.

25 PerfCount Performance counter interface.

26 ErrCtl Parity/ECC error control and
status.

27 CacheErr Cache parity error control and
status.

28 TagLo/
DataLo

Low-order portion of cache tag
interface (Select = 0).

Low-order portion of cache data
interface (Select = 1).

29 TagHi/
DataHi

High-order portion of cache tag
interface (Select = 0).

High-order portion of cache data
interface (Select = 1).

30 ErrorEPC Program counter at last error.

31 DESAVE Debug handler scratch pad
register.

1. Registers used only with a TLB-based MMU.

Table 5    Coprocessor 0 Registers (Continued)

Register
Number

Register
Name

Function

Table 6    5Kf Processor Cache Options

Cache Size
(KBytes)

Associativity Way Size
(KBytes)

Number
of Sets

0 NA 0 0

4 Direct Mapped 4 128

8 2-way 4 128

Direct Mapped 8 256

12 3-way 4 128

16 4-way 4 128

2-way 8 256

Direct Mapped 16 512

24 3-way 8 256

32 4-way 8 256

2-way 16 512

48 3-way 16 512

64 4-way 16 512
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 9

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks
Figure 4  Virtual Address Spaces

Kernel
Mapped

User
Mapped

Supervisor
Mapped

Kernel
Unmapped
Uncached

Kernel
Unmapped

Supervisor
Mapped

0x0000 0000 0000 0000

User
Mapped

Kernel
Mapped

0x4000 0000 0000 0000

0x8000 0000 0000 0000

0xFFFF FFFF FFFF FFFF

64-bit Virtual Memory Address Space 32-bit Compatibility Address Space

0xFFFF FFFF FFFF FFFF

0xFFFF FFFF E000 00000

0xFFFF FFFF C000 0000

0xFFFF FFFF A000 0000

0xFFFF FFFF 8000 0000

0x0000 0000 7FFF FFFF

0x0000 0000 0000 0000

Kernel
Unmapped

0xC000 0000 0000 0000

2 31
-byte C

om
patibility S

egm
ent

2
31

-b
yt

e 
C

om
pa

tib
ili

ty
 S

eg
m

en
t

xkseg

xkphys

xsseg

xuseg

useg

kseg0

kseg1

sseg

kseg3
10 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks

;

If
d.
Each Segment of an Address Space is classified as
“Mapped” or “Unmapped”. A “Mapped” address is one
that is translated through the TLB or other memory
management translation unit. An “Unmapped” address is
one which is not translated through the TLB and which
provides a window into the lowest portion of the physical
address space, starting at physical address zero, and with a
size corresponding to the size of the unmapped Segment.

Additionally, the kseg1 Segment is classified as
“Uncached”. References to this Segment bypass all levels
of the cache hierarchy and allow direct access to memory
without any interference from the caches.

Table 7lists some of the same information in tabular form
as shown inFigure 4.

Translation Lookaside Buffers (TLB)

This and the following sections assumes a 5Kf core with
the TLB option. Later sections deal with a 5Kf core with
the FMT option.

The MMU consists of three translation lookaside buffers

• 16, 32, or 48 dual-entry fully associative Joint TLB
(JTLB)

• 4-entry fully associative Instruction TLB (ITLB)

• 4-entry fully associative Data TLB (DTLB)

When an instruction address is calculated, the virtual
address is compared to the contents of the 4-entry ITLB.
the address is not found in the ITLB, the JTLB is accesse

Table  7   Virtual Memory Address Spaces

VA63..62 Segment
Name(s)

Maximum Address Range Reference
Legal from

Mode(s)

Actual Segment
Size

112 kseg3 0xFFFF FFFF FFFF FFFF
through

0xFFFF FFFF E000 0000

Kernel, Debug 229 bytes

sseg
ksseg

0xFFFF FFFF DFFF FFFF
through

0xFFFF FFFF C000 0000

Supervisor,
Kernel, Debug

229 bytes

kseg1 0xFFFF FFFF BFFF FFFF
through

0xFFFF FFFF A000 0000

Kernel, Debug 229 bytes

kseg0 0xFFFF FFFF 9FFF FFFF
through

0xFFFF FFFF 8000 0000

Kernel, Debug 229 bytes

xkseg 0xFFFF FFFF 7FFF FFFF
through

0xC000 0000 0000 0000

Kernel, Debug (240 - 231) bytes

102 xkphys 0xBFFF FFFF FFFF FFFF
through

0x8000 0000 0000 0000

Kernel, Debug eight 236

byte regions

012 xsseg
xksseg

0x7FFF FFFF FFFF FFFF
through

0x4000 0000 0000 0000

Supervisor,
Kernel, Debug

240 bytes

002 xuseg
xsuseg
xkuseg

0x3FFF FFFF FFFF FFFF
through

0x0000 0000 8000 0000

User,
Supervisor,

Kernel, Debug

240 bytes

useg
suseg
kuseg

0x0000 0000 7FFF FFFF
through

0x0000 0000 0000 0000

User,
Supervisor,

Kernel, Debug

231 bytes
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 11

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks

B.

he
d
d

.

to
he
e

by
he

the

e

If the entry is found in the JTLB, that entry is then written
into the ITLB. If the entry is not found in the JTLB, a TLB
refill exception is taken.

When a load/store address is calculated, the virtual address
is compared to the contents of the 4-entry DTLB. If the
address is not found in the DTLB, the JTLB is accessed. If
the entry is found in the JTLB, that entry is then written into
the DTLB. If the entry is not found in the JTLB, a TLB
refill exception is taken.

Figure 5 shows how the DTLB, ITLB, and JTLB are
implemented in the 5Kf core.

Figure 5   Address Translation During a Cache Access

Joint TLB

The 5Kf core implements a 16, 32, or 48 dual-entry, fully
associative JTLB that maps 32, 64, or 96 virtual pages to
their corresponding physical addresses. The JTLB is
organized in pairs of even and odd entries containing pages
that range in size from 4-KBytes to 16-MBytes. The
purpose of the TLB is to translate virtual addresses and
their corresponding ASID into a physical memory address.
The translation is performed by comparing the upper bits of
the virtual address (along with the ASID) against each of
the entries in thetag portion of the joint TLB structure.

The JTLB is organized in page pairs to minimize the
overall size. Eachtag entry corresponds to 2-data entries,
an even page entry and an odd page entry. The highest order
virtual address bit not participating in the tag comparison is
used to determine which of the data entries is used. Since
page size can vary on a page-pair basis, the determination
of which address bits participate in the comparison and
which bit is used to make the even-odd determination is

decided dynamically during the TLB lookup. The JTLB
may be considered backup storage for the ITLB and DTL

Instruction TLB

The ITLB is a 4-entry, fully associative TLB dedicated to
performing translations for the instruction stream. The
ITLB only maps 4-KByte pages/sub-pages.

The ITLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing store for t
ITLB. If an instruction fetch address cannot be translate
by the ITLB, an ITLB miss is issued, and the JTLB is use
to attempt to translate it in the following clock cycle. If
successful, the translation information is copied into the
ITLB for future use. A second ITLB lookup is performed,
this time hitting in the ITLB. This ITLB miss sequence has
a penalty of two extra clock cycles.

Data TLB

The DTLB is a small 4-entry, fully associative TLB
dedicated to performing translations for the data stream
The DTLB only maps 4-KByte pages/sub-pages.

The DTLB is managed by hardware and is transparent 
software. The larger JTLB is used as a backing store for t
DTLB. If a load/store address cannot be translated by th
DTLB, a DTLB miss is issued, and the JTLB is used to
attempt to translate it in the following clock cycle. If
successful, the translation information is copied into the
DTLB for future use. As for the ITLB, this DTLB miss
sequence has a penalty of two extra clock cycles.

If there are simultaneous ITLB and DTLB misses, the
DTLB gets first priority when accessing the JTLB, giving
a total of three latency cycles.

Virtual to Physical Address Translation

Converting a virtual address to a physical address begins
comparing the virtual address from the processor with t
virtual addresses in the TLB. A match occurs when the
virtual page number (VPN) of the address is the same as
VPN field of the entry, and either:

• The Global (G) bit of both the even and odd pages of
the TLB entry is set, or

• The ASID field of the virtual address is the same as th
ASID field of the TLB entry.

This match is referred to as a TLBhit. If there is no match,
a TLB refill exception is taken by the processor and

Instruction
Address
Calculator

ITLB

DTLB
Data
Address
Calculator

Comparator

Comparator

Instruction
Cache
Tag RAM

Data
Cache
RAM

Virtual Address

Virtual
Address Entry

Virtual Address

Instruction
Hit/Miss

Data
Hit/Miss

(ITLB Miss)

JTLB

Virtual
Address Entry

(DTLB Miss)
12 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks

e
l

P0

e

e
p a

w

m

software is allowed to refill the TLB from a page table of
virtual/physical addresses in memory.

Figure 6 shows a flow diagram of the address translation
process. The 5Kf processor uses a 64-bit virtual address
with 40-bit virtual segments. Physical addresses are 36 bits
wide. The top portion ofFigure 6 shows a virtual address
for a 4-KByte page size. The width of theOffsetin Figure
6 is defined by the page size. The remaining upper bits of
the address represent the virtual page number (VPN).

The bottom portion ofFigure 6 shows the virtual address
for a 16-Mbyte page size. The remaining upper bits of the
address represent the VPN.

In this figure, the virtual address is supplemented by a
unique 8-bit address space identifier (ASID), which
eliminates TLB flushing during a context switch. The
ASID contains the number assigned to that process and is
stored in the CP0EntryHi register.

Hits, Misses, and Multiple Matches

Each TLB entry contains a tag portion and a data portion.
If a match is found, the upper bits of the virtual address are
replaced with the page frame number (PFN) stored in the
corresponding entry in the data array of the TLB. If no
match occurs (TLB miss), an exception is taken and
software refills the TLB from the page table resident in
memory.

The 5Kf core implements a TLB write compare mechanism
to ensure that multiple TLB matches do not occur. On th
TLB write operation, the write value is compared with al
other entries in the TLB. If a match occurs, the 5Kf core
takes a machine check exception, sets the TS bit in the C
Status register, and aborts the write operation.

Page Sizes and Replacement Algorithm

To assist in controlling both the amount of mapped spac
and the replacement characteristics of various memory
regions, the 5Kf core provides two mechanisms. First, th
page size can be configured, on a per entry basis, to ma
page size of 4 KBytes to 16 Mbytes (in multiples of 4).

The CP0PageMask register is loaded with the mapping
page size, which is then entered into the TLB when a ne
entry is written. Thus, operating systems can provide
special purpose mappings. For example, a typical frame
buffer can be memory mapped with only one TLB entry.

The second mechanism controls the replacement algorith
when a TLB miss occurs. To select a TLB entry to be
written with a new mapping, the 5Kf core provides a
random replacement algorithm. However, the processor
also provides a mechanism whereby a programmable
number of mappings can be locked into the TLB via the
Wired register, thus avoiding random replacement.

Figure 6  Virtual Address Translation

11 0

   28 12

63

VPN Offset

07

 8

Virtual Address with 256M (228) 4-KByte pages

23 0

   24
24

Offset

Virtual Address with 64K (216)16-Mbyte pages

28 bits = 256M pages12

VPN

24

Virtual-to-physical
translation in TLB

Bit [63:62] of the virtual
address selects user and
kernel address spaces.

Offset passed unchanged to
physical memory

Virtual-to-physical
translation in TLB

 TLB

 TLB

   35 0
PFN Offset

Offset passed unchanged to
physical memory

36-bit Physical Address

6261 40 39

   24

636261 4039

   16

ASID

07

8

ASID
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 13

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks

l
in
Fixed Mapping Translation (FMT)

The 5Kf core provides a simple fixed mapping translation
(FMT) mechanism that is smaller than the TLB in the
MIPS64 5Kf core and more easily synthesized. Like the
TLB, the FMT performs virtual-to-physical address
translation and provides attributes for the different
segments. Those segments that are unmapped in the 5Kf
core’s TLB implementation (kseg0 and kseg1) are
translated identically by the FMT and TLB.

With the FMT, only 32-bit addresses can be translated.

Figure 7 shows how the FMT is implemented in the 5Kf
core.

Figure 7   Address Translation During a Cache Access

The FMT also determines the cacheability of each segment.
These attributes are controlled via bits in the Config
register.Table 8 shows the encoding for the K23 (bits
30:28), KU (bits 27:25), and K0 (bits 2:0) fields of the
Config register.

In the 5Kf core, no translation exceptions can be taken,
although address errors are still possible.

The FMT performs a simple translation to map from virtua
addresses to physical addresses. This mapping is shown
Figure 8.

Figure 8   FMT Memory Map (ERL=0) in the 5Kf Core

Table 8    Cache Coherency Attributes

Config Register Fields
K23, KU, and K0

Cache Coherency Attribute

0 Cacheable, noncoherent, write
through, no write allocate

1 Cacheable, noncoherent, write
through, write allocate

2 Uncached (write around)

3, 4, 5, 6 Cacheable, noncoherent, write
back (write allocate)

7 Uncached accelerated

Instruction
Address
Calculator

FMT

Data
Address
Calculator

Comparator

Comparator

Instruction
Cache
Tag RAM

Data
Cache
RAM

Virtual Address

Virtual Address

Instruction
Hit/Miss

Data
Hit/Miss

Table 9    Cacheability of Segments with FMTa

a.Only 32-bit addresses.

Segment Virtual
Address
Range

Cacheability

useg/
kuseg

0x0000_0000-
0x7FFF_FFFF

Controlled by the KU field
(bits 27:25) of the Config
register. SeeTable 8 for
mapping. This segment is
always uncached when ERL
= 1.

kseg0 0x8000_0000-
0x9FFF_FFFF

Controlled by the K0 field
(bits 2:0) of the Config
register. SeeTable 8 for
mapping.

kseg1 0xA000_0000-
0xBFFF_FFFF

Always uncacheable

sseg 0xC000_0000-
0xDFFF_FFFF

Controlled by the K23 field
(bits 30:28) of the Config
register. SeeTable 8 for
mapping.

kseg3 0xE000_0000-
0xFFFF_FFFF

Controlled by the K23 field
(bits 30:28) of the Config
register. SeeTable 8 for
mapping.

useg/suseg/kuseg

kseg0

kseg3

sseg/ksseg

kseg1

Virtual Address

0x8000_0000

0x0000_0000

0xA000_0000

0xC000_0000

0xE000_0000

Physical Address

0x0000_0000

0xC000_0000

0xE000_0000

0x2000_0000

0x4000_0000

reserved
14 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Required Logic Blocks

p

g
 is
e

f

ta

ss

e
n.
n
nd
er

l

re
e.
P

ge
When ERL = 1, useg and kuseg become unmapped and
uncached. This behavior is the same as if there was a TLB.
This mapping is shown inFigure 9.

Figure 9   FMT Memory Map (ERL=1) in the 5Kf Core

Bus Interface (BIU)

The Bus Interface Unit (BIU) controls the external
interface signals and contains three buffers for managing
the flow of read and write data onto the external bus.

Figure 10   Bus Interface Unit Buffers

The write buffer is used during store transactions to the
BIU and consists of a 32-byte write buffer and 1-line
eviction buffer. The 32-byte buffer is used to buffer (and
combine for Uncached Accelerated) write-through and
uncached store transactions before issuing them at the
external interface. When accessing with a write-through
cache policy, the write buffer significantly reduces the
amount of stalling in the core caused by the issuance of
multiple writes in a short period of time. The 1-line eviction
buffer is used on cache-line write backs.

The 32-byte read buffer is essentially a 4-doubleword dee
FIFO. This buffer is required in order to allow cache line
refills from the BIU to start immediately, even if the data
cache controller must complete a line eviction before bein
able to receive data. If the bus latency is short and data
returned to the 5Kf core before the eviction is complete, th
incoming data is buffered until the eviction is complete. I
the cache controller is ready to accept the data as it is
returned from the BIU, the FIFO is bypassed and the da
is forwarded directly from the BIU to the data cache
controller.

Uncached Accelerated Stores

For uncached accelerated stores, the write buffer:

• Attempts to merge consecutive word stores into a
single doubleword store.

• Attempts to gather four doublewords into a burst
transaction.

Note that the first doubleword of a burst must have addre
bits 4:0 equal to zero.

Power Management

The 5Kf processor cores offer a number of power
management features, including low-power design, activ
power management and power-down modes of operatio
The core is a static design that supports a WAIT instructio
designed to signal the rest of the system that execution a
clocking should be halted, thereby reducing system pow
consumption during idle periods.

The 5Kf core provides two mechanisms for system-leve
low-power support:

• Register-controlled power management

• Instruction-controlled power management

Register Controlled Power Management

The RP bit in the CP0 Status register provides a softwa
mechanism for placing the system into a low power stat
The state of the RP bit is available externally via the SI_R
signal. Two additional bits, EXL and ERL, support the
power management function by allowing the user to chan
the power state if an exception or error occurs while the
5Kf core is in a low power state. The EXL bit is available
externally via the SI_EXL signal. The ERL bit is available
externally via the SI_ERL signal.

useg/suseg/kuseg

kseg0

kseg3

sseg/ksseg

kseg1

Virtual Address Physical Address

reserved

0x8000_0000

0x0000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x8000_0000

0x0000_0000

0xC000_0000

0xE000_0000

Write
Buffer

Eviction
Buffer

Read
Buffer

Data
Cache
Control

Instruction
Cache
Control

EC interface

Bus
Interface
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 15

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Optional Logic Blocks

r

ta

r

ion

k

These 3 power down signals are part of the system interface
and change state as the corresponding bits in the CP0Status
register are set or cleared.

• The SI_RP signal represents the state of the RP bit (27)
in the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit
(1) in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit
(2) in the CP0 Status register.

Instruction Controlled Power Management

The second mechanism for invoking power down mode is
through execution of the WAIT instruction. If the bus is idle
at the time the WAIT instruction reaches the M stage of the
pipeline, the internal clocks are suspended and the pipeline
is frozen. However, the internal timer and some of the input
pins (SI_Int[5:0], SI_NMI, SI_Reset, SI_ColdReset, and
EJ_DINT) continue to run. If the bus is not idle at the time
the WAIT instruction reaches the M stage of the pipeline
stalls until the bus becomes idle, at which time the clocks
are stopped.

Execution of the WAIT instruction causes the 5Kf core to
assert the SI_Sleep signal, thereby indicating to external
agents that the device is in low-power mode.

Once the CPU is in instruction controlled power
management mode, any enabled interrupt, NMI or debug
interrupt (through EJ_DINT) causes the CPU to exit this
mode. The device re-enters instruction controlled power
management mode once the next WAIT instruction is
executed.

Coprocessor Interface

This interface allows a single coprocessor to be connected
to the 5Kf processor core. This interface has the following
features:

• It is easy to understand. By keeping the interface as
simple as possible, designers will be able to
concentrate on the coprocessor functionality, not its
interface.

• Minimal interface logic is required. This reduces area
and power overhead.

• Performance is not compromised. This interface is
compatible with all high-performance features of the
5Kf microprocessor core.

All MIPS64 compliant coprocessor instructions are
supported. This includes COP1, COP2, MDMX, and
COP1X instructions.

This interface is pipeline independent. That is to say, the
pipeline microarchitecture of the coprocessor need not
match that of the 5Kf integer unit. This allows for great
flexibility in the type and construction of the coprocesso
logic.

To fully execute all coprocessor instructions, several da
transfers must happen. The Coprocessor interface
implements simple transfers for each of these required
items:

• Instruction Dispatch. Starts coprocessor instructions

• To COP Data. Transfers data to the coprocessor

• From COP Data. Transfers data from the coprocesso

• Coprocessor Condition Code Check. Transfers
coprocessor condition check result to the integer unit

• GPR Data. Transfers additional data from the integer
unit general-purpose register file to the coprocessor

• Coprocessor Exceptions. Notifies the integer unit if
any coprocessor exceptions happened for an instruct

• Instruction Nullification . Notifies coprocessor if
instructions are nullified or not (due to the delay slot
instruction of a branch likely not taken)

• Instruction Killing . Notifies coprocessor when
instructions can commit state or not.

5Kf Core Optional Logic Blocks

The 5Kf core contains the following optional logic blocks,
as shown in the block diagram inFigure 1.

• Instruction Cache

• Data Cache

• EJTAG Debug Support

Instruction Cache

The instruction cache is an optional on-chip memory bloc
of up to 64 KBytes (16 KBytes/way in a 4-way set
associative implementation). The instruction cache
consists of three on-chip RAMs:

• Instruction Tag RAM (I-Tag RAM)

• Instruction Data RAM (I-Data RAM)

• Instruction Way Selection RAM (I-WS RAM)
16 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Optional Logic Blocks

ta
is.

iss.

ta

n.

ta
ex
e

U

re

r
 be

s

The I-Tag RAM contains 24 bits of physical address, 1
valid bit, an optional parity bit, and a lock bit. The I-WS
RAM contains a 6-bit status for the way selection
algorithm. The I-Data RAM contains the data from main
memory as well as 8 optional parity bits.

As the instruction cache is virtually indexed, the virtual-to-
physical address translation occurs in parallel with the
cache access rather than having to wait for the physical
address translation.

The instruction cache block also contains and manages the
instruction line fill buffer. Instruction fetches that reference
instructions being refilled are streamed whenever possible,
or returned as a hit after the refill has completed.

The 5Kf core supports instruction cache-locking. Cache
locking allows critical code or data segments to be locked
into the cache on a “per-line” basis, enabling the system
programmer to maximize the efficiency of the system
cache. The cache locking function is always available on all
instruction cache entries. Entries can then be marked as
locked or unlocked on a per entry basis using the CACHE
instruction.

During an instruction cache lookup, the virtual address of
the instruction fetch is made available prior to the I-stage
and is used to index the I-Data and I-Tag RAMs. These
RAMs are read at the beginning of the I-stage to determine
if the required instruction resides in the cache. The physical
address from the MMU is compared with up to 4 tags from
the I-Tag RAM, depending on the associativity of the
cache. The I-WS RAM is updated when a fetch returns as
a hit.

Data Cache

The data cache is an optional on-chip memory block of up
to 64 KBytes (16 KBytes/way in a 4-way set associative
implementation). The data cache consists of three on-chip
RAMs:

• Data Tag RAM (D-Tag RAM)

• Data Data RAM (D-Data RAM)

• Data Way Selection RAM (D-WS)

The D-Tag RAM contains 24 bits of physical address, 1
valid bit, an optional parity bit, and a lock bit. The D-WS
RAM contains (in a 4-way set associative configuration) a
6-bit status for the way selection algorithm, 4 dirty bits and
optional 4 parity bits (one dirty bit and one parity bit per
way). The D-Data RAM contains the data from main
memory as well as 8 optional parity bits.

The 5Kf core also supports a data cache locking
mechanism identical to the instruction cache. Critical da
segments can be locked into the cache on a “per-line” bas
The locked contents can be updated on a store hit, but
cannot be selected for replacement on a load or store m

The cache locking function is always available on all da
cache entries. Entries can then be marked as locked or
unlocked on a per entry basis using the CACHE instructio

During a data cache lookup, the virtual address of the da
load is made available in the E-stage and is used to ind
the D-Data and D-Tag RAMs. These RAMs are read in th
E-stage and M-stage to determine if the required data
resides in the cache. The physical address from the MM
is compared with up to 4 tags from the D-Tag RAM,
depending on the associativity in the cache. The D-WS
RAM is updated when a load returns as a hit, or on a sto
to the cache.

Cache Memory Configuration

The 5Kf core incorporates on-chip instruction and data
caches that can each be accessed in a single processo
cycle. Each cache has its own 64-bit data path and can
accessed in the same pipeline clock cycle.Table 10lists the
5Kf core instruction and data cache attributes:

Table 10 5Kf Core Instruction and Data Cache Attribute

Parameter Instruction Data

Size 0 - 64 KBytes 0 - 64 KBytes

Organization 1 - 4 way set
associative

1 - 4 way set
associative

Line Size 32 bytes 32 bytes

Read Unit 64 bits 64 bits

Write Policy na 1) Uncached

2) Write-through, no
write-allocate

3) Write-through
with write-allocate

4) Write-back, write-
allocate

5) Uncached
accelerated

Cache
Locking

per line  per line
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 17

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Optional Logic Blocks

ug
y

e
he
n
he
s

his

)
de

re.
re

de

e

n
ed

s

es.
e of
Cache Protocols

The 5Kf core supports the following cache protocols:

• Uncached:Addresses in a memory area indicated as
uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without
changing cache contents.

• Write-through, No Write Allocate: Loads and
instruction fetches first search the cache, reading main
memory only if the desired data does not reside in the
cache. On data store operations, the cache is first
searched to see if the target address is cache resident. If
it is resident, the cache contents are updated, and main
memory is also written. If the cache lookup misses,
only main memory is written.

• Write-through, Write Allocate: Loads and instruction
fetches first search the cache, reading main memory
only if the desired data does not reside in the cache. On
data store operations the cache is searched to determine
if the target address is cache-resident. If it is resident,
the cache contents are updated and the data is written
to main memory. If the cache lookup misses, the line is
refilled into the cache. The data is written to the cache
and to main memory.

• Write-back, Write Allocate: Loads and instruction
fetches first search the cache, reading main memory
only if the desired data does not reside in the cache. On
data store operations the cache is searched to determine
if the target address is cache-resident. If it is resident,
the cache contents are updated and the line is marked
as dirty (store operation). If the cache lookup misses,
the line is refilled into the cache, marked as dirty, and
the cache contents are updated with the store data. If a
line to be replaced is marked as dirty, it is evicted from
the cache before the new line is read into the cache.
The line can only be marked as dirty on a store to a
Write-back Write Allocate line.

• Uncached Accelerated:Same as uncached except that
the processor will attempt to merge consecutive stores
into a burst write transaction on the bus, thus
optimizing bus utilization.

EJTAG Debug Support

The 5Kf core provides EJTAG debug support for use in
development of application code. The EJTAG debug
support introduces a Debug Mode of operation, which is
similar to Kernel Mode in some aspects, but also allows for
programming of the debug resources and has special
handling characteristics for managing exceptions and other

debug related issues. Debug Mode is entered after a deb
exception is taken. A debug exception can be caused b
several sources.

• The Software Debug Breakpoint (SDBBP) instruction
which is used as an instruction breakpoint.

• The single-step feature after the execution of one
instruction (two instructions for jump, branch, and
delay slot) in Non-Debug Mode.

• A debug interrupt requested by assertion of the
EJ_DINT signal or through the Test Access Port
(TAP).

• Hardware breakpoints, either on instruction or data
access.

Three debug registers (DEBUG, DEPC, and DESAVE) ar
included in the MIPS Coprocessor 0 (CP0) register set. T
DEBUG register shows the cause of the debug exceptio
and is used for the setting up of single step operations. T
Debug Exception Program Counter (DEPC) register hold
the address on which the debug exception was taken. T
is used to resume program execution after the debug
operation finishes. Finally, the Debug Exception Save
(DESAVE) register enables the saving of all general
purpose registers used during execution of the debug
exception handler.

To exit Debug Mode, a Debug Exception Return (DERET
instruction is executed. Execution is resumed in the mo
in which the debug exception occurred. This allows for
nonintrusive execution of the debug handler.

Hardware Breakpoints

Hardware breakpoints are provided as an optional featu
Four instruction breakpoints and two data breakpoints a
supported. The hardware breakpoints compare all
instruction fetches and data accesses in Non-Debug Mo
with the programmed breakpoints. A debug exception is
taken when a hardware breakpoint matches, whereby th
normal application is suspended and Debug Mode is
entered.

Instruction hardware breakpoints are set on the instructio
virtual address and can also compare the ASID value us
by the MMU. A bit mask can apply to the virtual address to
set a breakpoints on a range of instructions.

Data hardware breakpoints are set on the virtual addres
and ASID value, similar to the instruction breakpoint.
These breakpoints can match explicit load/store access
Data breakpoints can also be set based on the data valu
18 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Reset

h

r
e

.

rd

e

the load/store operation. Finally, masks can be applied to
both the virtual address and the load/store data value.

Test Access Port Interface

The 5Kf core provides optional Test Access Port (TAP)
logic that forms a dedicated interface to the debug host. The
TAP allows the debug host to provide the debug handler
through the EJTAG debug memory area. Therefore, no
integration of the debug handler in system memory is
necessary. The debug host can also force the core into
Debug Mode through the TAP by generating a debug
interrupt request.

5Kf Core Reset

The 5Kf core has two types of reset input signals: SI_Reset
and SI_ColdReset.

The SI_ColdReset signal must be asserted on either a
power-on reset or a cold reset. In a typical application, a
power-on reset occurs when the machine is first turned on.
A cold reset (also called a hard reset) typically occurs when
the machine is already on and the system is rebooted.
However, a cold reset has the same overall effect as a
power-on reset in that it completely initializes the internal
state machines of the 5Kf core without saving any state
information.

The SI_Reset and SI_ColdReset signals determine the type
of reset operation as shown inTable 11.

The assertion of the SI_Reset signal causes a warm reset. A
warm reset restarts the 5Kf core, but preserves some of the
processors internal state. The assertion of SI_Reset causes
a soft reset exception within the 5Kf core.

In addition to the normal hard and soft resets, the 5Kf core
supports EJTAG boot, where the core performs the
initialization of a reset exception and takes a Debug
Interrupt exception. This allows debug software to
initialize the processor debug resources before the target

software starts to run without adding debug code to the
target software.

No instruction fetches are performed from the reset
exception vector for EJTAG boot. The first instruction fetch
is from the debug exception vector.

Testability for Production Test

The design supports testability for production test throug
internal scan and memory BIST.

Internal Scan

Muxed flip-flop fullscan design is supported for maximum
coverage, with a configurable number of scan chains.
ATPG test coverage can exceed 99% (library and
configuration dependent).

Memory BIST

Memory BIST is optional, but can be implemented eithe
through use of integrated memory BIST provided with th
5Kf core, or inserted with an industry standard memory
BIST CAD tool.

Integrated Memory BIST

The 5Kf core provides an integrated memory BIST
solution for test of cache RAMs using a memory BIST
controller integrated in the cache system of the 5Kf core
The inclusion of the integrated memory BIST controller is
optional and several parameters including algorithm
(March C+ or IFA-13) is configurable.

Memory BIST Inserted by CAD Tool

Memory BIST can also be inserted by an industry standa
memory BIST CAD tool. Wrapper modules and signal
busses of configurable width are provided in the 5Kf cor
for easy adaptation to the provided BIST controller.

Table 11    5Kf Reset Types

SI_Reset SI_ColdReset Action

0 0 Normal Operation, no reset.

1 0 Warm or Soft reset.

x 1 Cold or Hard reset.
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 19

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Instructions

base
5Kf Core Instructions

The 5Kf core instruction set complies with the MIPS64 instruction set architecture. The instructions are divided into
instructions and floating point instructions.

5Kf Core Base Instructions

Table 12 provides a summary of the base instructions implemented by the 5Kf core.

Table  12   5Kf Core Base Instruction Set

Instruction Description Function

ADD Add Rd = Rs + Rt

ADDI Add Immediate Rt = Rs + Immed

ADDIU Unsigned Add Immediate Rt = (uns)Rs + Immed

ADDU Unsigned Add Rd = (uns)Rs + Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (0 48 || Immed)

BC2F Branch On Coprocessor 2 False if COP2_condition == 0
PC += offset

BC2FL Branch On Coprocessor 2 False Likely if COP2_condition == 0
PC += offset
else
  Ignore Next Instruction

BC2T Branch On Coprocessor 2 True if COP2_condition == 1
 PC += offset

BC2TL Branch On Coprocessor 2 True Likely if COP2_condition == 1
 PC += offset
else
  Ignore Next Instruction

BEQ Branch On Equal if Rs == Rt
 PC += offset

BEQL Branch On Equal Likely if Rs == Rt
  PC += offset
else
  Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[63]
  PC += offset

BGEZAL Branch on Greater Than or Equal To Zero And
Link

if !Rs[63]
  GPR[31] = PC + 8
   PC += offset

BGEZALL Branch on Greater Than or Equal To Zero And
Link Likely

if !Rs[63]
  GPR[31] = PC + 8
   PC += offset
else
  Ignore Next Instruction
20 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Instructions
BGEZL Branch on Greater Than or Equal To Zero
Likely

if !Rs[63]
  PC += offset
else
  Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[63] && Rs != 0
  PC += offset

BGTZL Branch on Greater Than Zero Likely if !Rs[63] && Rs != 0
  PC += offset
else
  Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[63] || Rs == 0
  PC += offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[63] || Rs == 0
  PC += offset
else
  Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[63]
  PC += offset

BLTZAL Branch on Less Than Zero And Link if Rs[63]
  GPR[31] = PC + 8
  PC += offset

BLTZALL Branch on Less Than Zero And Link Likely if Rs[63]
  GPR[31] = PC + 8
  PC += offset
else
  Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[63]
  PC += offset
else
  Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
  PC += offset

BNEL Branch on Not Equal Likely if Rs != Rt
  PC += offset
else
  Ignore Next Instruction

BREAK Breakpoint Breakpoint Exception

CACHE Cache Operation See MIPS64 5K Processor Core Family Software
User's Manual

CFC2 Control From Coprocessor 2 Rt = CCR[2, Rd]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs[31:0])

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs[31:0])

CTC2 Control To Coprocessor 2 CCR[2, Rd] = Rt

DADD Doubleword Add Rd = Rs + Rt

DADDI Doubleword Add Immediate Rt = Rs + Immed

Table  12   5Kf Core Base Instruction Set (Continued)

Instruction Description Function
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 21

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Instructions
DADDIU Unsigned Doubleword Add Immediate Rt = Rs + Immed

DADDU Unsigned Doubleword Add Rd = Rs + Rt

DCLO Doubleword Count Leading Ones Rd = NumLeadingOnes(Rs)

DCLZ Doubleword Count Leading Zeros Rd = NumLeadingZeroes(Rs)

DDIV Doubleword Divide LO = Rs / Rt
HI = Rs % Rt

DDIVU Unsigned Doubleword Divide LO = (uns)Rs / Rt
HI = (uns)Rs % Rt

DERET Debug Exception Return PC = DEPC
Exit Debug Mode

DIV Divide LO = Rs / Rt
HI = Rs % Rt

DIVU Unsigned Divide LO = (uns)Rs / Rt
HI = (uns)Rs % Rt

DMFC0 Doubleword Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

DMFC2 Doubleword Move From Coprocessor 2 Rt = CPR[2, Rd]

DMTC0 Doubleword Move To Coprocessor 0 CPR[0, Rd, sel] = Rt

DMTC2 Doubleword Move To Coprocessor 2 CPR[2, Rd] = Rt

DMULT Doubleword Multiply HI|LO = Rs * Rd

DMULTU Unsigned Doubleword Multiply HI|LO = (uns)Rs * Rd

DSLL Doubleword Shift Left Logical Rd = Rt << sa

DSLLV Doubleword Shift Left Logical Variable Rd = Rt << Rs[4:0]

DSLL32 Doubleword Shift Left Logical Plus 32 Rd = Rt << sa+32

DSRA Doubleword Shift Right Arithmetic Rd = Rt >> sa

DSRAV Doubleword Shift Right Arithmetic Variable Rd = Rt >> Rs[4:0]

DSRA32 Doubleword Shift Right Arithmetic Plus 32 Rd = Rt >> sa+32

DSRL Doubleword Shift Right Logical Rd = (uns)Rt >> sa

DSRLV Doubleword Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

DSRL32 Doubleword Shift Right Logical Plus 32 Rd = (uns)Rt >> sa+32

DSUB Doubleword Subtract Rd = Rs - Rt

DSUBU Unsigned Doubleword Subtract Rd = (uns)Rs - Rt

Table  12   5Kf Core Base Instruction Set (Continued)

Instruction Description Function
22 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Instructions
ERET Return from Exception if SR[2]
  PC = ErrorEPC
else
  PC = EPC
SR[1] = 0
SR[2] = 0
LL = 0

J Unconditional Jump PC = PC[63:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[63:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JR Jump Register PC = Rs

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte)Mem[Rs+offset]

LD Load Doubleword Rt = Mem[Rs+offset]

LDC2 Load Doubleword to Coprocessor 2 CPR[2,Rt] = Mem[Rs+offset]

LDL Load Doubleword Left See MIPS64 5K Processor Core Family Software
User's Manual

LDR Load Doubleword Right See MIPS64 5K Processor Core Family Software
User's Manual

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word Rt = (word)Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LLD Load Linked Doubleword Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = (word)Mem[Rs+offset]

LWC2 Load Word to Coprocessor 2 CPR[2,Rt] = (word)Mem[Rs+offset]

LWL Load Word Left See MIPS64 5K Processor Core Family Software
User's Manual

LWR Load Word Right See MIPS64 5K Processor Core Family Software
User's Manual

LWU Load Word Unsigned Rt = (uword)Mem[Rs+offset]

MADD Multiply-Add HI|LO += Rs * Rt

MADDU Multiply-Add Unsigned HI|LO += (uns)Rs * Rt

Table  12   5Kf Core Base Instruction Set (Continued)

Instruction Description Function
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 23

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Instructions
MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

MFC2 Move From Coprocessor 2 Rt = CPR[2, Rd]

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVF Move Conditional on Floating Point False if cc[i] = = 0 then
   GPR[rd] = GPR[rs]

MOVN Move Conditional on Not Zero if Rt != 0 then
   Rd = Rs

MOVT Move Conditional on Floating Point True if cc[i] == 1 then
   GPR[rd] = GPR[rs]

MOVZ Move Conditional on Zero if Rt == 0 then
   Rd = Rs

MSUB Multiply-Subtract HI|LO -= Rs * Rt

MSUBU Multiply-Subtract Unsigned HI|LO -= (uns)Rs * Rt

MTC0 Move To Coprocessor 0 CPR[0, Rd, sel] = Rt

MTC2 Move To Coprocessor 2 CPR[2, Rd] = Rt

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI|LO = Unpredictable
Rd = Rs * Rd

MULT Integer Multiply HI|LO = Rs * Rd

MULTU Unsigned Multiply HI|LO = (uns)Rs * Rd

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Prefetch data from memory

PREFX Prefetch Indexed Prefetch data from memory using (GPR+GPR)
addressing

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word if LL == 1
   (word)Mem[Rs+offset] = Rt
Rt = LL

SCD Store Condition Doubleword if LL == 1
   Mem[Rs+offset] = Rt
Rt = LL

SD Store Doubleword Mem[Rs+offset] = Rt

SDBBP Software Debug Breakpoint Debug breakpoint exception

Table  12   5Kf Core Base Instruction Set (Continued)

Instruction Description Function
24 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Instructions
SDC2 Store Doubleword from Coprocessor 2 Mem[Rs+offset] = CPR[2,Rt]

SDL Store Doubleword Left See MIPS64 5K Processor Core Family Software
User's Manual

SDR Store Doubleword Right See MIPS64 5K Processor Core Family Software
User's Manual

SH Store Half (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if Rs < Rt
  Rd = 1
else
  Rd = 0

SLTI Set on Less Than Immediate if Rs < Immed
  Rt = 1
else
  Rt = 0

SLTIU Unsigned Set on Less Than Immediate if (uns)Rs < Immed
  Rt = 1
else
  Rt = 0

SLTU Unsigned Set on Less Than if (uns)Rs < Rt
  Rd = 1
else
  Rd = 0

SRA Shift Right Arithmetic Rd = Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation See MIPS64 5K Processor Core Family Software
User's Manual

SUB Subtract Rd = Rs - Rt

SUBU Unsigned Subtract Rd = (uns)Rs - Rt

SW Store Word (word)Mem[Rs+offset] = Rt

SWC2 Store Word from Coprocessor 2 (word)Mem[Rs+offset] = CPR[2,Rt]

SWL Store Word Left See MIPS64 5K Processor Core Family Software
User's Manual

SWR Store Word Right See MIPS64 5K Processor Core Family Software
User's Manual

SYNC Synchronize Memory See MIPS64 5K Processor Core Family Software
User's Manual

Table  12   5Kf Core Base Instruction Set (Continued)

Instruction Description Function
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 25

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Instructions
SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
  TrapException

TEQI Trap if Equal Immediate if Rs == Immed
  TrapException

TGE Trap if Greater Than or Equal if Rs >= Rt
  TrapException

TGEI Trap if Greater Than or Equal Immediate if Rs >= Immed
  TrapException

TGEIU Unsigned Trap if Greater Than or Equal
Immediate

if (uns)Rs >= Immed
  TrapException

TGEU Unsigned Trap if Greater Than or Equal if (uns)Rs >= Rt
  TrapException

TLBWI Write Indexed TLB Entry See MIPS64 5K Processor Core Family Software
User's Manual

TLBWR Write Random TLB Entry See MIPS64 5K Processor Core Family Software
User's Manual

TLBP Probe TLB for Matching Entry See MIPS64 5K Processor Core Family Software
User's Manual

TLBR Read Indexed TLB Entry See MIPS64 5K Processor Core Family Software
User's Manual

TLT Trap if Less Than if Rs < Rt
  TrapException

TLTI Trap if Less Than Immediate if Rs < Immed
  TrapException

TLTIU Unsigned Trap if Less Than Immediate if (uns)Rs < Immed
  TrapException

TLTU Unsigned Trap if Less Than if (uns)Rs < Rt
  TrapException

TNE Trap if Not Equal if Rs != Rt
  TrapException

TNEI Trap if Not Equal Immediate if Rs != Immed
  TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

Table  12   5Kf Core Base Instruction Set (Continued)

Instruction Description Function
26 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Instructions
5Kf Core Floating Point Instructions

Table 13 provides a summary of the floating point instructions implemented by the 5Kf core.

Table  13   5Kf Floating Point Instruction Set

Instruction Format* Description Function

ABS.fmt S, D Floating Point Absolute Value Fd = abs(Fs)

ADD.fmt S, D Floating Point Add Fd = Fs + Ft

BC1F Branch on Floating Point False if (cc[i] == 0) then PC += (int)offset

BC1FL Branch on Floating Point False Likely if (cc[i] == 0) then

    PC += (int)offset

else

     NullifyCurrentInstruction()

BC1T Branch on Floating Point True if (cc[i] == 1) then PC += (int)offset

BC1TL Branch on Floating Point True Likely if (cc[i] == 1) then

    PC += (int)offset

else

     NullifyCurrentInstruction()

C.cond.fmt S, D Floating Point Compare cc[i] = Fs compare_cond Ft

CEIL.L.fmt S, D Floating Point Ceiling to Long Fixed Point Fd = convert_and_round(Fs)

CEIL.W.fmt S, D Floating Point Ceiling to Word Fixed Poin Fd = convert_and_round(Fs)

CFC1 Copy Word from Floating Point Control Register Rt = FP_Control[Fs]

CTC1 Copy Word to Floating Point Control Register FP_Control[Fs] = Rt

CVT.D.fmt S, W, L Floating Point Convert to Double Floating Point Fd = convert_and_round(Fs)

CVT.L.fmt S, D Floating Point Convert to Long Fixed Point Fd = convert_and_round(Fs)

CVT.S.fmt W, D, L Floating Point Convert to Single Floating Point Fd = convert_and_round(Fs)

CVT.W.fmt S, D Floating Point Convert to Word Fixed Point Fd = convert_and_round(Fs)

DIV.fmt S, D Floating Point Divide Fd = Fs / Ft

DMFC1 Move Doubleword from FPR Rt = Fs

DMTC1 Move Doubleword to FPR Fs = Rt

FLOOR.L.fmt S, D Floating Point Floor to Long Fixed Point Fd = convert_and_round(Fs)

FLOOR.W.fmt S, D Floating Point Floor to Word Fixed Point Fd = convert_and_round(Fs)

LDC1 Load Doubleword to Floating Point Ft = memory[base+offset]

LDXC1 Load Doubleword Indexed to Floating Point Fd = memory[base+index]

LUXC1 Load Doubleword Indexed Unaligned to Floating Point Fd = memory[(base+index)psize-1..3]

LWC1 Load Word to Floating Point Ft = memory[base+offset]

LWXC1 Load Word Indexed to Floating Point Fd = memory[base+index]

MADD.fmt S, D Floating Point Multiply Add Fd = Fs * Ft + Fr

MFC1 Move Word from FPR Rt = Fs

MOV.fmt S, D Floating Point Move Fd = Fs

MOVF.fmt S, D Floating Point Conditional Move on Floating Point False if (cc[i] == 0) then Fd = Fs

* Instruction Format Type: S = Single, D = Double, W = Word, L = Longword
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 27

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Instructions
MOVN.fmt S, D Floating Point Conditional Move on Non-Zero if (Rt != 0) then Fd = Fs

MOVT.fmt S, D Floating Point Conditional Move on Floating Point True if (cc[i] = 1) then Fd = Fs

MOVZ.fmt S, D Floating Point Conditional Move on Zero if (Rt == 0) then Fd = Fs

MSUB.fmt S, D Floating Point Multiply Subtract Fd = Fs * Ft - Fr

MTC1 Move Word to FPR Fs = Rt

MUL.fmt S, D Floating Point Multiply Fd = Fs * Ft

NEG.fmt S, D Floating Point Negate Fd = neg(Fs)

NMADD.fmt S, D Floating Point Negative Multiply Add Fd = neg(Fs * Ft + Fr)

NMSUB.fmt S, D Floating Point Negative Multiply Subtract Fd = neg(Fs * Ft - Fr)

RECIP.fmt S, D Floating Point Reciprocal Approximation Fd = recip(Fs)

ROUND.L.fmt S, D Floating Point Round to Long Fixed Point Fd = convert_and_round(Fs)

ROUND.W.fmt S, D Floating Point Round to Word Fixed Point Fd = convert_and_round(Fs)

RSQRT.fmt S, D Floating Point Reciprocal Square Root Approximation Fd = rsqrt(Fs)

SDC1 Store Doubleword to Floating Point memory[base+offset] = Ft

SDXC1 Store Doubleword Indexed to Floating Point memory[base+index] = Fs

SQRT.fmt S, D Floating Point Square Root Fd = sqrt(Fs)

SUB.fmt S, D Floating Point Subtract Fd = Fs - Ft

SUXC1 Store Doubleword Indexed Unaligned to Floating Point memory[(base+index)psize-1..3] = Fs

SWC1 Store Word to Floating Point memory[base+offset] = Ft

SWXC1 Store Word Indexed to Floating Point memory[base+index] = Fs

TRUNC.L.fmt S, D Floating Point Truncate to Long Fixed Point Fd = convert_and_round(Fs)

TRUNC.W.fmt S, D  Floating Point Truncate to Word Fixed Point Fd = convert_and_round(Fs)

Table  13   5Kf Floating Point Instruction Set (Continued)

Instruction Format* Description Function

* Instruction Format Type: S = Single, D = Double, W = Word, L = Longword
28 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions

wn in
5Kf Core Signal Descriptions

This section describes the signal interface of the 5Kf core. The pin direction key for the signal descriptions is sho
Table 14 below.

The 5Kf core signals are listed by function inTable 15.

Table  14   5Kf Core Signal Direction Key

Dir Description

I Input to the 5Kf core, unless otherwise noted, sampled on the rising edge of the appropriate clock signal.

O Output of the 5Kf core, unless otherwise noted, driven at the rising edge of the appropriate clock signal.

A Asynchronous input that is synchronized by the core.

S Static input to the 5Kf core. These signals are normally tied to either power or ground and should not
change state while SI_ColdReset is deasserted.

Table  15   5Kf Signal Descriptions

Signal Name Type Description

System Interface

SI_ClkIn I Clock input. All inputs and outputs, except a few of the EJTAG signals, are
sampled and/or asserted relative to the rising edge of this signal.

SI_ClkOut O Reference clock for the external bus interface. This clock signal is intended to
provide a reference for de-skewing any clock insertion delay created by the
internal clock buffering in the 5Kf core.

SI_ColdReset A Hard reset signal. This signal must be asserted during either a power-on reset
or a cold reset. The assertion of SI_ColdReset completely initializes the
internal state machines of the 5Kf core without saving any state information.
To get predictable results during a reset operation, the power supply must be
stable and the SI_ClkIn input clock to the 5Kf core running before
SI_ColdReset is deasserted. When SI_ColdReset is deasserted, a reset
exception is taken by the 5Kf core.

SI_Endian S Indicates the base endianess of the 5Kf core.

SI_Endian Base Endian Mode

0 Little Endian

1 Big Endian
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 29

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
SI_SimpleBE[1:0] S The state of these signals can constrain the core to only generate certain byte
enables on ECTM interface transactions. This eases connection to some
existing bus standards.

SI_ERL O This signal represents the state of the ERL bit in the CP0 Status register and
indicates the error level. The 5Kf core asserts SI_ERL whenever any
exception other than a Reset, Soft Reset, NMI, or Cache Error exception is
taken.

SI_EXL O This signal represents the state of the EXL bit in the CP0 Status register and
indicates the exception level. SI_EXL is asserted when an exception is taken
and this exception is not a Reset, Soft Reset, NMI, Cache Error, or debug
exception.

SI_Int[5:0] I When asserted, these signals indicate the corresponding interrupt request to
the 5Kf core.

SI_NMI I When sampled asserted, this signal causes the 5Kf core to take an NMI
exception. After the NMI exception is taken, SI_NMI must be deasserted
before it can cause another NMI exception.

SI_PRIdOpt[7:0] I This signals is used as the upper 8 bits of the CP0 PrID register.

SI_Reset A Warm reset signal. This signal must be asserted for a warm reset. When
asserted, a soft reset exception is asserted to the 5Kf core. A warm reset
operation restarts the 5Kf core and initializes almost all the CP0 state
initialized by hard reset.

SI_RP O This signal represents the state of the RP bit in the CP0 Status register.

SI_Sleep O This signal is asserted by the 5Kf core whenever the WAIT instruction is
executed. The assertion of this signal indicates that the clock has stopped and
that the 5Kf core is in power-down mode.

SI_TimerInt O This signal is asserted when the Count and Compare registers first match and
is deasserted when the compare register is written.

EC™ Interface

EB_A[35:3] O Address bus. Only valid when EB_AValid is asserted.

EB_ARdy I Assertion of this signal indicates whether the external logic is ready for a new
address. The 5K core does not complete the address phase until the clock
cycle after EB_ARdy is sampled asserted.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description

SI_SimpleBE[1:0] Byte Enable Mode

0 Byte enable patterns that match the
patterns generated by load and store

instuctions.

1 Naturally aligned bytes, half-words,
words and dwords only

2 Reserved

3 Reserved
30 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
EB_AValid O Assertion of this signal indicates that the values on the address bus and access
type lines are valid (signifying an address phase is ongoing). EB_AValid is
always valid and cannot be deasserted between address phases within a burst.

EB_BE[7:0] O Indicates which bytes of the EB_RData or EB_WData buses are involved in
the data phase corresponding to the current address phase. If an EB_BE signal
is asserted, the associated byte is being read or written. EB_BE lines are only
valid while EB_AValid is asserted.

During bursts all lines must be asserted.

The tables below lists the values that EB_BE can take in default mode and in
SimpleBE mode.

EB_BFirst O Assertion of this signal indicates the address phase is the first address phase
of a burst. EB_BFirst is always valid.

EB_BLast O Assertion of this signal indicates the address phase is the last address phase of
a burst. Note that the time for assertion of EB_BLast is determined by use of
EB_Burst, EB_BFirst, and EB_BLen. EB_BLast is always valid.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description

Byte enables supported, SI_SimpleBE[1:0]=0

00000001 00000010 00000100 00001000

00010000 00100000 01000000 10000000

11000000 00110000 00001100 00000011

11100000 01110000 00001110 00000111

11110000 00001111 11111000 00011111

11111100 00111111 11111110 01111111

11111111

Byte enables supported, SI_SimpleBE[1:0]=1

00000001 00000010 00000100 00001000

00010000 00100000 01000000 10000000

00000011 00001100 00110000 11000000

00001111 11110000 11111111

EB_BE
Signal

Read Data Bits
Sampled

Write Data Bits
Driven Valid

EB_BE[0] EB_RData[7:0] EB_WData[7:0]

EB_BE[1] EB_RData[15:8] EB_WData[15:8]

EB_BE[2] EB_RData[23:16] EB_WData[23:16]

EB_BE[3] EB_RData[31:24] EB_WData[31:24]

EB_BE[4] EB_RData[39:32] EB_WData[39:32]

EB_BE[5] EB_RData[47:40] EB_WData[47:40]

EB_BE[6] EB_RData[55:48] EB_WData[55:48]

EB_BE[7] EB_RData[63:56] EB_WData[63:56]
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 31

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
EB_BLen[1:0] O EB_BLen[1:0] indicate the length (number of address/data phases) of the
burst. This signal is an implementation-specific static output.

EB_Burst O Assertion of this signal indicates that the current address phase is for a cache
fill or a write burst. EB_Burst is always valid.

EB_BusClkActive I Must be driven HIGH.

EB_EWBE I Indicates that all external write buffers are empty. The external write buffers
must deassert EB_EWBE in the cycle following the assertion of the
corresponding EB_WDRdy and keep EB_EWBE deasserted until the
external write buffers are empty.

EB_Instr O Assertion of this signal indicates that the address is for an instruction fetch as
opposed to a data read. EB_Instr is only valid when EB_AValid is asserted.

EB_RBErr I Bus error indicator for read transactions. EB_RBErr is always valid. Only
assert it in the same cycle that the corresponding EB_RdVal is asserted.

EB_RData[63:0] I Read data bus. Valid at the end of a read data phase (on the rising clock edge
where EB_RdVal is sampled asserted).

EB_RdVal I Assertion of this signal indicates that the external logic is driving read data on
EB_RData (it ends a read data phase). EB_RdVal must always be valid.
EB_RdVal must never be asserted until after the corresponding EB_ARdy is
sampled asserted.

EB_SBlock SI When this signal is asserted, sub-block ordering is used for addressing bursts.
When this signal is deasserted, sequential addressing is used.

EB_WBErr I Bus error indicator for write transactions. EB_WBErr is always valid. Only
assert it in the cycle following an asserted sample of the corresponding
EB_WDRdy.

EB_WData[63:0] O Write data bus. Kept unchanged and stable during a write data phase until the
write data phase ends (the positive clock edge following an asserted sample
of EB_WDRdy).

EB_WDRdy I Assertion of this signal indicates that the external logic is ready to process a
write; it ends a write data phase and the EB_WData can change after the
positive clock edge that follows the positive clock edge where EB_WDRdy is
sampled asserted. EB_WDRdy is not sampled until the rising edge where the
corresponding EB_ARdy is sampled asserted.

EB_Write O Assertion of this signal indicates that the address phase is for a write.
Deassertion of this signal indicates that the address phase is for a read. This
signal is only valid when EB_AValid is asserted.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description

EB_BLength[1:0] Burst Length

0 reserved

1 4

2 reserved

3 reserved
32 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
EB_WWBE O Assertion of this signal indicates that the 5K core is waiting for external write
buffers to empty. EB_WWBE can be asserted when EB_EWBE is asserted,
but if EB_EWBE is deasserted and EB_WWBE is asserted, EB_EWBE must
be asserted eventually.

Coprocessor Interface: Instruction Dispatch

CP2_as_0 O Coprocessor 2 Arithmetic Instruction Strobe

Asserted in the cycle after an arithmetic coprocessor 2 instruction is available
on CP2_ir_0. If CP2_abusy_0 was asserted in the previous cycle, this signal
will not be asserted.

CP2_abusy_0 I Coprocessor 2 Arithmetic Busy

When asserted, a coprocessor 2 arithmetic instruction will not be dispatched.
CP2_as_0 will not be asserted in the cycle after this signal is asserted.

CP2_ts_0 O Coprocessor 2 To Strobe

Asserted in the cycle after a To COP2 Op instruction is available on CP2_ir_0.
If CP2_tbusy_0 was asserted in the previous cycle, this signal will not be
asserted.

CP2_tbusy_0 I To Coprocessor 2 Busy

When asserted, a To COP2 Op will not be dispatched. CP2_ts_0 will not be
asserted in the cycle after this signal is asserted.

CP2_fs_0 O Coprocessor 2 From Strobe

Asserted in the cycle after a From COP2 Op instruction is available on
CP2_ir_0. If CP2_fbusy_0 was asserted in the previous cycle, this signal will
not be asserted.

CP2_fbusy_0 I From Coprocessor 2 Busy

When asserted, a From COP2 Op will not be dispatched. CP2_fs_0 will not
be asserted in the cycle after this signal is asserted.

CP2_ir_0[31:0] O Coprocessor Instruction Word

Valid in the cycle before CP2_as_0, CP2_ts_0, or CP2_fs_0 is asserted.

CP2_irenable_0 O Enable Instruction Registering

When deasserted, no instruction strobes will be asserted in the following
cycle. When asserted, there may be an instruction strobe asserted in the
following cycle. Instruction strobes include CP2_as_0, CP2_ts_0, and
CP2_fs_0.

CP2_order_0[2:0] O Coprocessor Dispatch Order

Since the 5Kf core is a single-issue machine, the value of this signal will
always be 3’b0. Valid when CP2_as_0, CP2_ts_0, or CP2_fs_0 is asserted.

CP2_inst32_0 O MIPS32 Compatibility Mode - Instructions

When asserted, the dispatched instruction is restricted to the MIPS32 subset
of instructions. Please refer to the MIPS64 ISA specification for a complete
description of MIPS32 compatibility mode. Valid the cycle before CP2_as_0,
CP2_fs_0, or CP2_ts_0 is asserted.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 33

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
CP2_endian_0 O Big-Endian Byte Ordering

When asserted, the processor is using big-endian byte ordering for the
dispatched instruction. When deasserted, the processor is using little-endian
byte ordering. Valid the cycle before CP2_as_0, CP2_fs_0, or CP2_ts_0 is
asserted.

CP2_as_1 O Coprocessor 2 Arithmetic Instruction Strobe

Asserted in the cycle after an arithmetic coprocessor 2 instruction is available
on CP2_ir_1. If CP2_abusy_1 was asserted in the previous cycle, this signal
will not be asserted.

CP2_abusy_1 I Coprocessor 2 Arithmetic Busy

When asserted, a coprocessor 2 arithmetic instruction will not be dispatched.
CP2_as_1 will not be asserted in the cycle after this signal is asserted.

CP2_ir_1[31:0] O Coprocessor Instruction Word

Valid in the cycle before CP2_as_1 is asserted.

CP2_irenable_1 O Enable Instruction Registering

When deasserted, no instruction strobes will be asserted in the following
cycle. When asserted, there may be an instruction strobe asserted in the
following cycle. Instruction strobe is CP2_as_1.

CP2_order_1[2:0] O Coprocessor Dispatch Order

Since the 5Kf core is a single-issue machine, the value of this signal will
always be 3’b0. Valid when CP2_as_1 is asserted.

CP2_adisable_1 S Inhibit Arithmetic Dispatch

When asserted, arithmetic instructions are dispatched using Issue Group 0.
When deasserted, arithmetic instructions are dispatched using Issue Group 1.

CP2_inst32_1 O MIPS32 Compatibility Mode - Instructions

When asserted, the dispatched instruction is restricted to the MIPS32 subset
of instructions. Please refer to the MIPS64 architecture specification for a
complete description of MIPS32 compatibility mode. Valid the cycle before
CP2_as_1 is asserted.

CP2_endian_1 O Big-Endian Byte Ordering

When asserted, the processor is using big-endian byte ordering for the
dispatched instruction. When deasserted, the processor is using little-endian
byte ordering. Valid the cycle before CP2_as_1 is asserted.

Coprocessor Interface: To Coprocessor Data (For all To COP Ops)

CP2_tds_0 O Coprocessor To Data Strobe

Asserted when To COP Op data is available on CP2_tdata_0.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description
34 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
CP2_torder_0[2:0] O Coprocessor To Order

Specifies which outstanding To COP Op the data is for. The 5Kf core will
never drive this signal to a value greater than 3’b1. Valid only when
CP2_tds_0 is asserted.

CP2_tordlim_0[2:0] S To Coprocessor Data Out-of-Order Limit

This signal forces the integer processor core to limit how much it can reorder
To COP Data. The value on this signal corresponds to the maximum allowed
value to be used on CP2_torder_0[2:0].

CP2_tdata_0[63:0] O To Coprocessor Data

Data to be transferred to the coprocessor. For single-word transfers, data is
valid on CP2_tdata_0[31:0]. Valid when CP2_tds_0 is asserted.

Coprocessor Interface: From Coprocessor Data (For all From COP Ops)

CP2_fds_0 I Coprocessor From Data Strobe

Asserted when From COP Op data is available on CP2_fdata_0.

CP2_forder_0[2:0] O Coprocessor From Order

Specifies which outstanding From COP Op the data is for. The 5Kf core does
not support values greater than 3’b1. Valid only when CP2_fds_0 is asserted.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description

CP2_torder_0 Order

3’b000 Oldest outstanding
To COP Op data transfer

3’b001 2nd oldest
To COP Op data transfer

3’b010 Reserved

3’b011 Reserved

3’b100 Reserved

3’b101 Reserved

3’b110 Reserved

3’b111 Reserved

CP2_forder_0 Order

3’b000 Oldest outstanding
From COP Op data transfer

3’b001 2nd oldest
From COP Op data transfer

3’b010 Reserved

3’b011 Reserved

3’b100 Reserved

3’b101 Reserved

3’b110 Reserved

3’b111 Reserved
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 35

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
CP2_fordlim_0[2:0] O From Coprocessor Data Out-of-Order Limit

This signal forces the coprocessor to limit how much it can reorder From COP
Data. The value on this signal corresponds to the maximum allowed value to
be used on CP2_forder_0[2:0]. The 5Kf core drives this signal to 3’b001 as a
static output.

CP2_fdata_0[63:0] I From Coprocessor Data

Data to be transferred from coprocessor. For single-word transfers, data is
valid on CP2_fdata_0[31:0]. Valid when CP2_fds_0 is asserted.

Coprocessor Interface: Coprocessor Condition Code Check (Only for BC1, MOVCI, BC2 Ops)

CP2_cccs_0 I Coprocessor Condition Code Check Strobe

Asserted when condition code check results are available on CP2_ccc_0.

CP2_ccc_0 I Coprocessor Condition Code Check

Valid when CP2_cccs_0 is asserted. When asserted, the instruction checking
the condition code should proceed with its execution. (i.e. branch or move
data) When deasserted, the instruction should not execute its conditional
operation. (i.e. do not branch and do not move data)

CP2_cccs_1 I Coprocessor Condition Code Check Strobe

Asserted when condition code check results are available on CP2_ccc_1.

CP2_ccc_1 I Coprocessor Condition Code Check

Valid when CP2_cccs_1 is asserted. When asserted, the instruction checking
the condition code should proceed with its execution. (i.e. branch or move
data) When deasserted, the instruction should not execute its conditional
operation. (i.e. do not branch and do not move data)

Coprocessor Interface: Coprocessor Exceptions

CP2_excs_0 I Coprocessor Exception Strobe

Asserted when coprocessor exception signalling is available on CP2_exc_0.

CP2_exc_0 I Coprocessor Exception

When deasserted, the coprocessor is not causing an exception. When asserted,
signifies that the coprocessor is causing an exception. The type of exception
is encoded on the signal CP2_exccode_0[4:0]. Valid when CP2_excs_0 is
asserted.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description
36 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
CP2_exccode_0[4:0] I Coprocessor Exception Code

Valid when CP2_excs_0 is asserted and CP2_exc_0 is asserted.

CP2_excs_1 I Coprocessor Exception Strobe

Asserted when coprocessor exception signalling is available on CP2_exc_1.

CP2_exc_1 I Coprocessor Exception

When deasserted, the coprocessor is not causing an exception. When asserted,
signifies that the coprocessor is causing an exception. The type of exception
is encoded on the signal CP2_exccode_1[4:0]. Valid when CP2_excs_1 is
asserted.

CP2_exccode_1[4:0] I Coprocessor Exception Code

Valid when CP2_excs_1 is asserted and CP2_exc_1 is asserted.

Coprocessor Interface: Instruction Nullification

CP2_nulls_0 O Coprocessor Null Strobe

Asserted when a nullification signal is available on CP2_null_0.

CP2_null_0 O Nullify Arithmetic or To/From Coprocessor Instruction

When deasserted, the integer processor core is signalling that the instruction
is not nullified. When asserted, the integer processor core is signalling that the
instruction is nullified. Valid when CP2_nulls_0 is asserted.

CP2_nulls_1 O Coprocessor Null Strobe

Asserted when a nullification signal is available on CP2_null_1.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description

CP2_exccode_0 Exception

5’b01010 Reserved Instruction Exception

5’b01111 Floating Point Exception

5’b10000 Available for implementation-specific use

5’b10001 Available for implementation-specific use

5’b10010 COP2 Exception

other values Reserved
If other values are signalled, the operation
of the integer processor core is
UNPREDICTABLE.

CP2_exccode_1 Exception

5’b01010 Reserved Instruction Exception

5’b01111 Floating Point Exception

5’b10000 Available for implementation-specific use

5’b10001 Available for implementation-specific use

5’b10010 COP2 Exception

other values Reserved
If other values are signalled, the operation
of the integer processor core is
UNPREDICTABLE.
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 37

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
CP2_null_1 O Nullify Arithmetic Coprocessor Instruction

When deasserted, the integer processor core is signalling that the instruction
is not nullified. When asserted, the integer processor core is signalling that the
instruction is nullified. Valid when CP2_nulls_1 is asserted.

Coprocessor Interface: Instruction Killing

CP2_kills_0 O Coprocessor Kill Strobe

Asserted when kill signalling is available on CP2_kill_0.

CP2_kill_0[1:0] O Kill Coprocessor Instruction

Valid when CP2_kills_0 is asserted.

CP2_kills_1 O Coprocessor Kill Strobe

Asserted when kill signalling is available on CP2_kill_1.

CP2_kill_1[1:0] O Kill Coprocessor Instruction

Valid when CP2_kills_1 is asserted.

Coprocessor Interface: Miscellaneous

CP2_reset O Coprocessor Reset

Asserted when a hard or soft reset is performed by the integer processor core.
At a minimum, this signal will be asserted for 1 cycle.

CP2_present S COP2 Present

Must be asserted when COP2 hardware is connected to the Coprocessor
Interface.

CP2_idle I Coprocessor Idle

Asserted when the coprocessor logic is idle. Enables the integer processor
core to go into sleep mode and shut down the internal integer processor core
clock. Valid only if CP2_present is asserted.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description

CP2_kill_0[1:0] Type of Kill

00 Instruction is not killed and can commit its
results01

10 Instruction is killed.
(not due to CP2_exc_0)

11 Instruction is killed
(due to CP2_exc_0)

CP2_kill_1[1:0] Type of Kill

00 Instruction is not killed and can commit its
results01

10 Instruction is killed.
(not due to CP2_exc_1)

11 Instruction is killed
(due to CP2_exc_1)
38 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
CP2_tx32 I Coprocessor 32-bit Transfers

When asserted, the integer unit will signal an RI exception for 64bit COP2 TF
instructions. This is a static input and must always be valid.

EJTAG Interface

EJ_DebugM O This signal is asserted by the 5Kf core whenever it is in Debug Mode.

EJ_DINT I Debug exception request when this signal is asserted in a CPU clock period
after being deasserted in the previous CPU clock period. The request is
cleared when Debug Mode is entered. Requests when in Debug Mode are
ignored.

EJ_DINTsup S Indicates if debug interrupts requested from the probe through the assertion
of EJ_DINT are supported.

EJ_ManufID[10:0] S Value of the ManufID[10:0] field in the EJTAG TAP Device ID register.

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the EJTAG TAP Device ID register.

EJ_PerRst O Implementation-dependent peripheral reset. Has no effect on the core.

EJ_PrRst O Implementation-dependent processor reset. Has no effect on the core.

EJ_SRstE O Implementation-dependent soft reset enable. Has no effect on the core.

EJ_TCK I Test Clock Input for the EJTAG TAP.

EJ_TDI I Test Data Input for the EJTAG TAP.

EJ_TDO O Test Data Output for the EJTAG TAP.

EJ_TDOzstate O Output drive indication for the chip pin outputting the EJ_TDO signal. When
asserted, the chip pin outputting EJ_TDO must be 3-stated.

EJ_TMS I Test Mode Select Input for the EJTAG TAP.

EJ_TRST_N I Test Reset Input for the EJTAG TAP. The EJ_TRST_N must be asserted at
power-up of the 5Kf core to reset the test access port.

EJ_Version[3:0] S Value of the Version[3:0] field in the EJTAG TAP Device ID register.

Performance Monitoring Interface

PM_DCacheHit O This signal is asserted whenever there is a data cache hit.

PM_DCacheMiss O This signal is asserted whenever there is a data cache miss.

PM_DTLBHit O This signal is asserted whenever there is a data TLB hit.

PM_DTLBMiss O This signal is asserted whenever there is a data TLB miss.

PM_ICacheHit O This signal is asserted whenever there is an instruction cache hit.

PM_ICacheMiss O This signal is asserted whenever there is an instruction cache miss.

PM_InstnComplete O This signal is asserted each time an instruction completes in the pipeline.

PM_ITLBHit O This signal is asserted whenever there is an instruction TLB hit.

PM_ITLBMiss O This signal is asserted whenever there is an instruction TLB miss.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 39

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf Core Signal Descriptions
PM_JTLBHit O This signal is asserted whenever there is a joint TLB hit.

PM_JTLBMiss O This signal is asserted whenever there is a joint TLB miss.

Production Test Interface for Internal Scan and Memory Built-In Self Test (BIST)

BistIn[] I Configurable width signal bus for user implemented BIST of internal RAMs.

BistOut[] O Configurable width signal bus for user implemented BIST of internal RAMs.

MemBistInvoke I Invoke signal for integrated memory BIST of internal cache RAMs.

MemBistDone O Done signal for integrated memory BIST of internal cache RAMs.

MemBistFail O Fail indication signal for integrated memory BIST of internal cache RAMs.

ScanEnable I This signal should be asserted while scanning vectors into or out of the core.
The ScanEnable signal must be deasserted during normal operation and
during capture clocks in test mode.

ScanIn[] I Configurable width signal bus used for scan chain input.

ScanMode I This signal should be asserted during all scan testing, both while scanning and
during capture clocks. The ScanMode signal must be deasserted during
normal operation.

ScanOut[] O Configurable width signal bus used for scan chain output.

Table  15   5Kf Signal Descriptions (Continued)

Signal Name Type Description
40 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf EC Interface Transactions

ry

l

f
id
d

ata
d
ile

a

5Kf EC Interface Transactions

The 5Kf core implements unidirectional data buses:
EB_RData[63:0] for read operations and EB_WData[63:0]
for write operations. It can cause a maximum number of 16
outstanding bus transactions. The following sections
describe four basic bus transactions: single read, single
write, burst read, and burst write.

Single Read

Figure 11 shows the basic timing relationships of signals
during a single read transaction. During a single read cycle,
the 5Kf core drives address onto EB_A[35:3] and byte
enable information onto EB_BE[7:0]. The EB_ARdy input
signal is driven by external logic and controls the
generation of addresses on the bus.

The address is driven whenever it becomes available,
regardless of the state of EB_ARdy. However, the 5Kf core
always continues to drive the address until the clock after
EB_ARdy is sampled asserted. For example, at the rising
edge of the clock 2 inFigure 11, the EB_ARdy signal is
sampled low, indicating that external logic is not ready to
accept the new address.

Figure 11   Single Read Transaction Timing Diagram

However, the 5Kf core still drives EB_A[35:3] in this clock
as shown. At the rising edge of the clock 3 the 5Kf core
samples EB_ARdy asserted and continues to drive the
address until the rising edge of clock 4.

The EB_Instr signal is only asserted during a single read
cycle if there is an instruction fetch from non-cacheable
memory space. The EB_AValid signal is asserted in each

clock that EB_A[35:3], EB_BE[7:0]. EB_Instr, and
EB_Write are valid on the bus. The 5Kf core drives the
EB_Write signal low to indicate a read transaction.

The EB_RData[63:0] and EB_RdVal signals are first
sampled at the rising edge of clock 4, one clock after
EB_ARdy is sampled asserted. Data is sampled on eve
clock thereafter until EB_RdVal is sampled asserted.

If a bus error occurs during the data transaction, externa
logic asserts the EB_RBErr signal in the same clock as
EB_RdVal.

Single Write

Figure 12 shows a typical write transaction. The 5Kf core
drives address and control information onto the
EB_A[35:3] and EB_BE[7:0] signals at the rising edge o
clock 2. As in the single read cycle, these signals are val
until the clock edge after the EB_ARdy signal is sample
asserted. The 5Kf core asserts the EB_Write signal to
indicate that a valid write cycle is on the bus, and
EB_AValid to indicate that a valid address is on the bus.

Figure 12   Single Write Transaction Timing Diagram

The 5Kf core drives write data onto EB_WData[63:0] in
the same clock as the address and continues to drive d
until the clock edge after the EB_WDRdy signal is sample
asserted. If a subsequent write transaction is started wh
the 5Kf core is waiting for EB_WDRdy to be asserted by
external logic, the corresponding data will not be driven
until the clock after EB_WDRdy is sampled asserted. If 
bus error occurs during a write operation, external logic
asserts the EB_WBErr signal one clock after asserting
EB_WDRdy.

EB_Clk

EB_A[35:3]

EB_Instr,

EB_AValid

EB_RData[63:0]

EB_RdVal

EB_RBErr

EB_ARdy
Addr
Wait

Address and Control held until clock after

Valid

Valid

Valid

EB_BE[7:0],

Driven by system logic

Clock # 1 2 3 4 5 6 7 8

EB_ARdy is sampled asserted

EB_Write

EB_Clk

EB_A[35:3]

EB_BE[7:0]

EB_AValid

EB_WData[63:0]

EB_WDRdy

EB_WBErr

EB_Write

EB_ARdy

Address and Control held until clock after

Valid

Valid

Valid

Driven by system logi

Data is Driven until clock after EB_WDRdy

Addr
Wait

Clock # 1 2 3 4 5 6 7 8

 EB_ARdy sampled asserted
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 41

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf EC Interface Transactions

ait

er.

te

e

t,
.

o
e

s

Burst Read

The 5Kf core is capable of generating burst transactions on
the bus. A burst transaction is used to transfer multiple data
items in one transaction.

Figure 13 shows an example of a burst read transaction.
Burst read transactions initiated by the 5Kf core always
contain four data transfers in sequence. In addition, the data
requested is always a 32 byte-aligned block.

The order of words within this 32-byte block varies
depending on which of the words in the block is being
requested by the execution unit and the ordering protocol
selected. The burst starts with the word requested by the
execution unit and proceeds in a predetermined address
order as shown inTable 16.

The 5Kf core drives address and control information onto
the EB_A[35:3] and EB_BE[7:0] signals at the rising edge
of clock 2. As in the single read cycle, these signals are
valid until the clock edge after the EB_ARdy signal is
sampled asserted. The 5Kf core continues to drive
EB_AValid as long as a valid address is on the bus.

The EB_Instr signal is asserted if the cycle is an instruction
fetch. The EB_Burst signal is asserted throughout the cycle
to indicate that a burst transaction is in progress. The 5Kf
core asserts the EB_BFirst signal in the same clock as
address 1 is driven to indicate the start of a burst cycle. The
EB_Last signal is asserted along with the last address of the
burst.

The processor samples EB_RData[63:0] on the next rising
edge after EB_ARdy is sampled asserted, which in this
example is the rising edge of clock 3. However, since
EB_RDVal is deasserted in clock 3, data is sampled again
at the rising edge of clock 4. External logic asserts
EB_RdVal to indicate that valid data is on the bus. The 5Kf

core latches data internally whenever EB_RdVal is
sampled asserted.

Note that at the rising edge of clocks 3 and 6 inFigure 13,
the EB_RdVal signal is sampled deasserted, causing a w
state before Data 1 and between Data 2 and Data 3.
External logic asserts the EB_RBErr signal in the same
clock as data if a bus error occurs during that data transf

Figure 13   Burst Read Transaction Timing Diagram

Burst Write

Burst write transactions are used to empty one of the wri
buffers. A burst transaction is only performed if the write
buffer contains 32 bytes of data associated with the sam
aligned memory block, otherwise individual write
transactions are performed.Figure 14 shows a timing
diagram of a burst write transaction. Unlike the read burs
a write burst always begins with EB_A[4:3] equal to 00b

The 5Kf core drives address and control information ont
the EB_A[35:3] and EB_BE[7:0] signals at the rising edg
of clock 2. As in the single read cycle, these signals are
valid until the clock edge after the EB_ARdy signal is
sampled asserted. The 5Kf core continues to drive
EB_AValid as long as a valid address and control signal
are on the bus.

Table 16    Address Ordering Protocols

Starting
Address

EB_A[4:3]

Sequential
Addressing

EB_A[4:3]

(EB_SBlock = 0)

Subblock
Addressing
EB_A[4:3]

(EB_SBlock = 1)

00 00, 01, 10, 11 00, 01, 10, 11

01 01, 10, 11, 00 01, 00, 11, 10

10 10, 11, 00, 01 10, 11, 00, 01

11 11, 00, 01, 10 11, 10, 01, 00

EB_Clk

EB_A[35:3]

EB_AValid

EB_RData[63:0]

EB_RdVal

EB_RBErr

EB_BFirst

EB_ARdy

EB_Instr

Adr1 Adr2

Valid

EB_Burst

Adr3 Adr4

EB_BE[7:0]

Data1 Data2 Data3 Data4

Read
Wait

EB_BLast

Driven by system logic

Clock # 1 2 3 4 5 6 7 8

EB_Write

Read
Wait
42 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf EC Interface Transactions
The 5Kf core asserts the EB_Write, EB_Burst, and
EB_AValid signals during the time the address is driven.
EB_Write indicates that a write operation is in progress.
The assertion of EB_Burst indicates that the current
operation is a burst.

The 5Kf core asserts the EB_BFirst signal in the same
clock as address 1 is driven to indicate the start of a burst
cycle. In the clock that the last address is driven, the 5Kf
core asserts EB_BLast to indicate the end of the burst
transaction.

In Figure 14, the first doubleword of data (Data1) is driven
in clocks 2 and 3. The EB_WDRdy signal is sampled
deasserted at the rising edge of clock 2, causing the
processor to continue to drive data in clock 3. When
EB_WDRdy is sampled asserted at the rising edge of clock
3, the 5Kf core responds by driving the second doubleword
(Data2) in clock 4.

External logic drives the EB_WBErr signal one clock after
the corresponding assertion of EB_WDRdy if a bus error
has occurred as shown by the arrows inFigure 14.

Figure 14   Burst Write Transaction Timing Diagram

EB_Clk

EB_A[35:3]

EB_AValid

EB_WData[63:0]

EB_WDRdy

EB_WBErr

EB_BFirst

EB_ARdy

Adr1 Adr2 Adr3 Adr4

EB_BE[7:0]

Write
Wait

Data1 Data2 Data3 Data4

EB_BLast

EB_Burst

Write
Wait

Clock # 1 2 3 4 5 6 7 8

EB_Write

Driven by
system logic
MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03 43

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



5Kf EC Interface Transactions
44 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.



Copyright © 1999-2001 MIPS Technologies, Inc. All rights reserved.

Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, reproducing, modifying, or use of this information (in whole or in part) which is not expressly permitted
in writing by MIPS Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this
information is protected under unfair competition and copyright laws. Violations thereof may result in criminal
penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information
contained in this document to improve function, design or otherwise. MIPS Technologies does not assume any
liability arising out of the application or use of this information, or of any error of omission in such information.
Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties
of merchantability or fitness for a particular purpose, are excluded. Any license under patent rights or any other
intellectual property rights owned by MIPS Technologies or third parties shall be conveyed by MIPS Technologies
or any contractually-authorized third party in a separate license agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in
violation of any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer
software, commercial computer software documentation or other commercial items. If the user of this information,
or any related documentation of any kind, including related technical data or manuals, is an agency, department, or
other entity of the United States government (“Government”), the use, duplication, reproduction, release,
modification, disclosure, or transfer of this information, or any related documentation of any kind, is restricted in
accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition
Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions
covering this information from MIPS Technologies or any contractually-authorized third party.

MIPS®, R3000®, R4000®, R5000® and R10000® are among the registered trademarks of MIPS Technologies, Inc.
in the United States and certain other countries, and MIPS16™, MIPS16e™,MIPS32™, MIPS64™, MIPS-3D™,
MIPS-based™, MIPS I™, MIPS II™, MIPS III™, MIPS IV™, MIPS V™, MDMX™, SmartMIPS™, 4K™,
4Kc™, 4Km™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KEp™, 4KS™, 4KSc™, 5K™, 5Kc™, 5Kf™, 20K™,
20Kc™, R20K™, R4300™, ATLAS™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, SEAD™, SEAD-2™,
SOC-it™ and YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Document Number: MD00109
01.03-2B

45 MIPS64™ 5Kf™ Processor Core Datasheet, Revision 01.03

Copyright © 1999-2001 MIPS Technologies Inc. All right reserved.


	Features
	Architectural Overview
	Pipeline Flow
	I Stage: Instruction Fetch
	D Stage: Dispatch
	R Stage: Register Read
	E Stage: Execution
	M Stage: Memory Access
	W Stage: Writeback

	Modes of Operation
	5Kf Core Required Logic Blocks
	Execution Unit
	Floating Point Unit (FPU) / Coprocessor 1
	FPU Pipeline
	FPU Instruction Latencies and Repeat Rates
	FPU Control Registers

	Multiply/Divide Unit (MDU)
	Exception Logic
	System Control Coprocessor (CP0)
	Cache Controllers
	Memory Management Unit (MMU)
	Translation Lookaside Buffers (TLB)

	Fixed Mapping Translation (FMT)
	Bus Interface (BIU)
	Uncached Accelerated Stores

	Power Management
	Register Controlled Power Management
	Instruction Controlled Power Management

	Coprocessor Interface

	5Kf Core Optional Logic Blocks
	Instruction Cache
	Data Cache
	Cache Memory Configuration
	Cache Protocols
	EJTAG Debug Support
	Hardware Breakpoints
	Test Access Port Interface


	5Kf Core Reset
	Testability for Production Test
	Internal Scan
	Memory BIST
	Integrated Memory BIST
	Memory BIST Inserted by CAD Tool


	5Kf Core Instructions
	5Kf Core Base Instructions
	5Kf Core Floating Point Instructions

	5Kf Core Signal Descriptions
	5Kf EC Interface Transactions
	Single Read
	Single Write
	Burst Read
	Burst Write


