MIPS

TECHNOLOGIES

MIPS32™ M4K™ Processor Core Datasheet January 8, 2003

The MIPS32™ M4K™ core from MIPS® Technologies is a high-performance, low-power, 32-bit MIPS RISC core
designed for custom system-on-silicon applications. The core is designed for semiconductor manufacturing
companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and
peripherals with a high-performance RISC processor. It is highly portable across processes, and can be easily
integrated into full system-on-silicon designs, allowing developers to focus their attention on end-user products. The
M4K core is ideally positioned to support new products for emerging segments of the routing, network access,
network storage, residential gateway, and smart mobile device markets. It is especially well-suited for applications
requiring multiple cores, or even a single core, when high performance density is critical.

The M4K core implements the MIPS32 Release 2 Architecture with the MIPS16e™ ASE, and the 32-bit privileged
resource architecture. The Memory Management Unit (MMU) consists of a simple, Fixed Mapping Translation
(FMT) mechanism for applications that do not require the full capabilities of a Translation Lookaside Buffer- (TLB-
) based MMU.

The synthesizable M4K core includes two different Multiply/Divide Unit (MDU) implementations, selectable at
build-time, allowing the implementor to trade off performance and area. The high-performance MDU option
implements single cycle MAC instructions, which enable DSP algorithms to be performed efficiently. It allows 32-
bit x 16-bit MAC instructions to be issued every cycle, while a 32-bit x 32-bit MAC instruction can be issued every
2 cycles. The area-efficient MDU option handles multiplies with a one-bit-per-clock iterative algorithm.

The M4K core is cacheless; in lieu of caches, it includes a simple interface to SRAM-style devices. This interface
may be configured for independent instruction and data devices or combined into a unified interface. The SRAM
interface allows deterministic response, while still maintaining high performance.

An optional Enhanced JTAG (EJTAG) block allows for single-stepping of the processor as well as instruction and
data virtual address/value breakpoints. Additionally, real-time tracing of instruction program counter, data address,
and data values can be supported.

Figure 1shows a block diagram of the M4K core. The core is divided@nfoiredandoptional blocks as shown.

EJTAG Off/On-Chip
Trace I/F
Trace
MDU — Off-Chip
Debug I/F
UDI [« Execution a
Core - MMU SRAM S <§E
(RF/ALU/Shift) Interface Dual or c %
Unified ©
Cp2 | ! SRAM I/F
System
Coprocessor FMT E/I(;Vr‘:]etr
On-Chip | Fixed/Required | Optional |

Coprocessor 2

Figure 1 M4K Core Block Diagram

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01Document Number: MD00247

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.1 Features

» 5-stage pipeline

» 32-bit Address and Data Paths

* MIPS32-Compatible Instruction Set
— Multiply-Accumulate and Multiply-Subtract Instructions (MADD, MADDU, MSUB, MSUBU)
— Targeted Multiply Instruction (MUL)
— Zero/One Detect Instructions (CLZ, CLO)
— Wait Instruction (WAIT)
— Conditional Move Instructions (MOVZ, MOVN)

» MIPS32 Enhanced Architecture (Release 2) Features
— Vectored interrupts and support for external interrupt controller
— Programmable exception vector base
— Atomic interrupt enable/disable

— GPR shadow registers (optionally, one or three additional shadows can be added to minimize latency for interrupt
handlers)

— Bit field manipulation instructions
* MIPS16e™ Code Compression
— 16 bit encodings of 32 bit instructions to improve code density
— Special PC-relative instructions for efficient loading of addresses and constants
— SAVE & RESTORE macro instructions for setting up and tearing down stack frames within subroutines
— Improved support for handling 8 and 16 bit datatypes
* Memory Management Unit
— Simple Fixed Mapping Translation (FMT) mechanism
» Simple SRAM-Style Interface
— Cacheless operation enables deterministic response and reduces size
— 32-bit address and data; input byte enables enable simple connection to narrower devices
— Single or multi-cycle latencies
— Configuration option for dual or unified instruction/data interfaces
— Redirection mechanism on dual I/D interfaces permits D-side references to be handled by I-side
— Transactions can be aborted
» CorExtend™ User Defined Instruction Set Extensions (available in M4K Pro™ core)
— Allows user to define and add instructions to the core at build time
— Maintains full MIPS32 compatibility
— Supported by industry standard development tools
— Single or multi-cycle instructions

— Separately licensed; a core with this feature is known as the M4K Pro™ core

2 MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.2 Architecture Overview

* Multi-Core Support
— External lock indication enables multi-processor semaphores based on LL/SC instructions
— External sync indication allows memory ordering
— Reference design provided for cross-core debug triggers
* Multiply/Divide Unit (high-performance configuration)
— Maximum issue rate of one 32x16 multiply per clock
— Maximum issue rate of one 32x32 multiply every other clock
— Early-in iterative divide. Minimum 11 and maximum 34 clock latency (divides)dsign extension-dependent)
* Multiply/Divide Unit (area-efficient configuration)
— 32 clock latency on multiply
— 34 clock latency on multiply-accumulate
— 33-35 clock latency on divide (sign-dependent)
» Coprocessor 2 interface
— 32 bit interface to an external coprocessor
» Power Control
— Minimum frequency: 0 MHz
— Power-down mode (triggered by WAIT instruction)
— Support for software-controlled clock divider
— Support for extensive use of local gated clocks
« EJTAG Debug
— Support for single stepping
— Virtual instruction and data address/value breakpoints
— PC and data tracing
— TAP controller is chainable for multi-CPU debug
— Cross-CPU breakpoint support
» Testability

— Full scan design achieves test coverage in excess of 99% (dependent on library and configuration options)

1.2 Architecture Overview

The M4K core contains both required and optional blocks. Required blocks are the lightly shaded areas of the block
diagram inFigure land must be implemented to remain MIPS-compliant. Optional blocks can be added to the M4K
core based on the needs of the implementation.
The required blocks are as follows:
» Execution Unit
* Multiply/Divide Unit (MDU)
» System Control Coprocessor (CPO)
* Memory Management Unit (MMU)
MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 3

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

» Fixed Mapping Translation (FMT)
* SRAM Interface

* Power Management

Optional blocks include:

» Coprocessor 2 interface

» CorExtend™ User Defined Instruction (UDI) support
* MIPS16e support

» Enhanced JTAG (EJTAG) Controller

The section entitled "M4K Core Required Logic Blocks" on page 6 discusses the required blocks. The section entitled
"M4K Core Optional Logic Blocks" on page 18 discusses the optional blocks.

1.3 Pipeline Flow

The M4K core implements a 5-stage pipeline with performance similar to the RBpip@line. The pipeline allows the
processor to achieve high frequency while minimizing device complexity, reducing both cost and power consumption.
The M4K core pipeline consists of five stages:

* Instruction (I Stage)

» Execution (E Stage)

* Memory (M Stage)

Align (A Stage)

Writeback (W stage)

The M4K core implements a bypass mechanism that allows the result of an operation to be forwarded directly to the
instruction that needs it without having to write the result to the register and then read it back.

Figure 1-1 shows a timing diagram of the M4K core pipeline.

Bypass

| ! |

I [E M i A [w
I ! I
\ Bypass \

|

|
|
I-SRAM__Regrd _ALUOp | : |
| Dec D»AC! D-SRAM _| Align RegW :

! I
|
I-AL | ' |
\ ~ | Bypass \ : |
T N |
[[Mul-16x16, 32x16 | Acc | [Regw] l
: W ! Bypass | : !
| t Iy T !
\ |Mu|—3l2><32 // [Acc | [Regw] :

/L 1

: | Div l I/I/ | Acc | lReng :
[1

Figure 1-1 M4K Core Pipeline

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.3 Pipeline Flow

| Stage: Instruction Fetch

During the Instruction fetch stage:
¢ An instruction is fetched from instruction SRAM.

* MIPS16e instructions are expanded into MIPS32-like instructions

E Stage: Execution

During the Execution stage:
» Operands are fetched from register file.
» The arithmetic logic unit (ALU) begins the arithmetic or logical operation for register-to-register instructions.

» The ALU calculates the data virtual address for load and store instructions, and the MMU performs the fixed virtual-
to-physical address translation.

» The ALU determines whether the branch condition is true and calculates the virtual branch target address for branch
instructions.

« Instruction logic selects an instruction address.

 All multiply and divide operations begin in this stage.

M Stage: Memory Fetch

During the Memory fetch stage:

» The arithmetic ALU operation completes.

The data SRAM access is performed for load and store instructions.
* A 16x16 or 32x16 multiply calculation completes (high-performance MDU option).
» A 32x32 multiply operation stalls the MDU pipeline for one clock in the M stage (high-performance MDU option).

A multiply operation stalls the MDU pipeline for 31 clocks in the M stage (area-efficient MDU option).

A multiply-accumulate operation stalls the MDU pipeline for 33 clocks in the M stage (area-efficient MDU option).

A divide operation stalls the MDU pipeline for a maximum of 34 clocks in the M stage. Early-in sign extension
detection on the dividend will skip 7, 15, or 23 stall clocks (only the divider in the fast MDU option supports early-in
detection).

A Stage: Align

During the Align stage:
» Load data is aligned to its word boundary.

» A 16x16 or 32x16 multiply operation performs the carry-propagate-add. The actual register writeback is performed
in the W stage.

» A MUL operation makes the result available for writeback. The actual register writeback is performed in the W
stage.

W Stage: Writeback

During the Writeback stage:

« For register-to-register or load instructions, the instruction result is written back to the register file.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 5

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.4 M4K Core Required Logic Blocks

The M4K core consists of the following required logic blocks, showhigure 1 These logic blocks are defined in the
following subsections:

+ Execution Unit

» Multiply/Divide Unit (MDU)

» System Control Coprocessor (CPO0)
* Memory Management Unit (MMU)
* Fixed Mapping Translation (FMT)

* SRAM Interface

* Power Management

1.4.1 Execution Unit

The M4K core execution unitimplements a load/store architecture with single-cycle ALU operations (logical, shift, add,
subtract) and an autonomous multiply/divide unit. The M4K core contains thirty-two 32-bit general-purpose registers
used for integer operations and address calculation. Optionally, one or three additional register file shadow sets (each
containing thirty-two registers) can be added to minimize context switching overhead during interrupt/exception
processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation
latency in the pipeline.

The execution unit includes:

» 32-bit adder used for calculating the data address

» Address unit for calculating the next instruction address

* Logic for branch determination and branch target address calculation

* Load aligner

* Bypass multiplexers used to avoid stalls when executing instructions streams where data producing instructions are
followed closely by consumers of their results

* Leading Zero/One detect unit for implementing the CLZ and CLO instructions
* Arithmetic Logic Unit (ALU) for performing bitwise logical operations
« Shifter & Store Aligner

1.4.2 Multiply/Divide Unit (MDU)

The M4K core includes a multiply/divide unit (MDU) that contains a separate pipeline for multiply and divide
operations. This pipeline operates in parallel with the integer unit (1U) pipeline and does not stall when the U pipeline
stalls. This allows the long-running MDU operations to be partially masked by system stalls and/or other integer unit
instructions.

Two configuration options exist for the MDU: an area efficient, iterative block and a higher performance 32x16 array.
The selection of the MDU style allows the implementor to determine the appropriate trade-off for his/her application.

6 MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.4 M4K Core Required Logic Blocks

1.4.2.1 Area-Efficient MDU Option

With the area-efficient option, multiply and divide operations are implemented with a simple 1 bit per clock iterative
algorithm. Any attempt to issue a subsequent MDU instruction while a multiply/divide is still active causes an MDU
pipeline stall until the operation is completed.

Table 1lists the latency (humber of cycles until a result is available) for the M4K core multiply and divide instructions.
The latencies are listed in terms of pipeline clocks.

Table 1 M4K Core Area-Efficient Integer Multiply/

Divide Unit Operation Latencies

Operand
Opcode Sign Latency
MUL, MULT, MULTU any 32
MADD, MADDU,
any 34
MSUB, MSUBU
DIVU any 33
pos/pos 33
DIV any/neg 34
neg/pos 35

The MIPS architecture defines that the results of a multiply or divide operation be placed in the HI and LO registers.
Using the move-from-HI (MFHI) and move-from-LO (MFLO) instructions, these values can be transferred to the
general-purpose register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which
places the least significant results in the primary register file instead of the HI/LO register pair.

Two other instructions, multiply-add (MADD) and multiply-subtract (MSUB), are used to perform the multiply-
accumulate and multiply-subtract operations, respectively. The MADD instruction multiplies two numbers and then
adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two
operands and then subtracts the product from the Hl and LO registers. The MADD and MSUB operations are commonly
used in DSP algorithms.

1.4.2.2 High-Performance MDU

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (Hl and LO), a
divide state machine, and the necessary multiplexers and control logic. The first number shown (‘32" of 32x16)
represents thes operand. The second number (‘16’ of 32x16) representd thygerand. The M4K core only checks the
value of the latterrf) operand to determine how many times the operation must pass through the multiplier. The 16x16
and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations
can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back
32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the
sign extension of the dividends) operand. If rs is 8 bits wide, 23 iterations are skipped. For a 16-bit-wide rs, 15
iterations are skipped, and for a 24-bit-wide rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU
instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 7

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

Table 2lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles
until a result is available) for the M4K core multiply and divide instructions. The approximate latency and repeat rates
are listed in terms of pipeline clocks. For a more detailed discussion of latencies and repeat rates, refer to Chapter 2 of
theMIPS32 M4K™ Processor Core Family Software User’'s Manual

Table2 M4K Core High-Performance Integer Multiply/
Divide Unit Latencies and Repeat Rates

Operan
d Size
(mul rt) Repeat
Opcode (divrs) | Latency Rate
MULT/MULTU, 16 bits 1 1
MADD/MADDU, _
MSUB/MSUBU 32 bits 2 2
16 bits 2 1
MUL
32 bits 3 2
8 bits 12 11
16 bits 19 18
DIV/DIVU
24 bits 26 25
32 bits 33 32

The MIPS architecture defines that the result of a multiply or divide operation be placed in the Hl and LO registers. Using
the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the general-
purpose register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which
places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit
MFLO instruction, required when using the LO register, and by supporting multiple destination registers, the throughput
of multiply-intensive operations is increased.

Two other instructions, multiply-add (MADD) and multiply-subtract (MSUB), are used to perform the multiply-
accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product
to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then
subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP
algorithms.

1.4.3 System Control Coprocessor (CPO0)

Inthe MIPS architecture, CPO is responsible for the virtual-to-physical address translation, the exception control system,
the processor’s diagnostics capability, the operating modes (kernel, user, and debug), and whether interrupts are enabled
or disabled. Configuration information, such as presence of build-time options like MIPS16e or coprocessor 2 interface,

is also available by accessing the CPO registers, listed in Table 3.

8 MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01
Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.4 M4K Core Required Logic Blocks

Table 3 Coprocessor 0 Registers in Numerical Order

Registe
r
Numbe | Register
r Name Function
0-6 Reserved Reserved in the M4K core.
Enables access via the RDHWR
7 HWREnNa | instruction to selected hardware
registers.
8 BadVAdd? Reports the address for the m_ost
recent address-related exception|.
9 Count Processor cycle count.
10 Reserved Reserved in the M4K core.
11 Compar& | Timer interrupt control.
12 Statud Processor status and control.
12 IntCti: Interrupt system status and contr
12 srsci Shadow register set status and
control.
12 SRSMaﬂJ _Prowdes mapping from vectored
interrupt to a shadow set.
13 Causé Cause of last general exception.
14 EPG Program counter at last exceptio
15 PRId Pro_cgssor identification and
revision.
15 EBASE Exception vector base register.
16 Config Configuration register.
16 Configl Configuration register 1.
16 Config2 Configuration register 2.
16 Config3 Configuration register 3.
17-22 Reserved Reserved in the M4K core.
23 Debué Debug control and exception
status.
23 Trace PC/Data trace control register.
Controf
23 Trace Additional PC/Data trace control.
ControlZ
User Trace .
23 Datz User Trace control register.
23 TraceBP& | Trace breakpoint control.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

Table 3 Coprocessor 0 Registers in Numerical Order

Registe
r

Numbe | Register
r Name Function

Program counter at last debug

24 DEPG ;
exceptlon.

25-29 Reserved Reserved in the M4K core.

30 ErrorEPCG Program counter at last error.

31 DESAVE? | Debug handler scratchpad register.

Note: 1. Registers used in exception processing.

Note: 2. Registers used during debug.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety
of sources, including boundary cases in data, external events, or program errors. Table 4 shows the exception types in
order of priority.

Table 4 MA4K Core Exception Types

Exception Description
Assertion ofSI_ColdReseatr SI_Reset
Reset)
signals.
DSS EJTAG Debug Single Step.
EJTAG Debug Interrupt. Caused by the
DINT assertion of the externBU_DINT
input, or by setting the EjtagBrk bit in
the ECR register.
NMI Assertion ofEB_NMIsignal.
Assertion of unmasked hardware or
Interrupt . X
software interrupt signal.
EJTAG debug hardware instruction
DIB
break matched.
Fetch address alignment error.
AdEL
Fetch reference to protected address.
IBE Instruction fetch bus error.
DB EJTAG Breakpoint (execution of
P SDBBP instruction).
Sys Execution of SYSCALL instruction.
Bp Execution of BREAK instruction.

RI Execution of a Reserved Instruction.
CoU Execution of a coprocessor instruction
P for a coprocessor that is not enabled

Execution of an arithmetic instruction
Ov
that overflowed.
10 MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.4 M4K Core Required Logic Blocks

Table 4 MA4K Core Exception Types (Continued)

Exception Description

Execution of a trap (when trap

i condition is true).

EJTAG Data Address Break (address
DDBL / DDBS only) or EJTAG Data Value Break on
Store (address+value).

Load address alignment error.

AdEL
Load reference to protected address
Store address alignment error.
AdES
Store to protected address.
DBE Load or store bus error.
DDBL EJTAG data hardware breakpoint

matched in load data compare.

1.4.3.1 Interrupt Handling

The M4K core includes support for six hardware interrupt pins, two software interrupts, and a timer interrupt. These
interrupts can be used in any of three interrupt modes, as defined by Release 2 of the MIPS32 Architecture:

* Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architecture.

» Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to that
interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is denoted
by the VInt bit in theConfig3register. This mode is architecturally optional; but it is always present on the M4K core,
so the VInt bit will always read as a 1 for the M4K core.

» External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This presence of this
mode denoted by the VEIC bit in tl@onfig3register. Again, this mode is architecturally optional. On the M4K core,
the VEIC bit is set externally by the static inp&, EICPresentto allow system logic to indicate the presence of an
external interrupt controller.

The reset state of the processor is to interrupt compatibility mode such that a processor supporting Release 2 of the
Architecture, like the M4K core, is fully compatible with implementations of Release 1 of the Architecture.

VI or EIC interrupt modes can be combined with the optional shadow registers to specify which shadow set should be
used upon entry to a particular vector. The shadow registers further improve interrupt latency by avoiding the need to
save context when invoking an interrupt handler.

1.4.3.2 GPR Shadow Registers

Release 2 of the MIPS32 Architecture optionally removes the need to save and restore GPRs on entry to high priority
interrupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, callattadow setsand allowing privileged software to associate a shadow set with entry

to kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option on the M4K core. Although Release 2 of the Architecture defines
a maximum of 16 shadow sets, the core allows one (the normal GPRSs), two, or four shadow sets. The highest number
actually implemented is indicated by the SR{Edlfield. If this field is zero, only the normal GPRs are implemented.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 11

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

12

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. Once a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly as
one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may need
to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode. The
RDPGPR and WRPGPR instructions are used for this purpose. The CSS fiel $&3i@tegister provides the number

of the current shadow register set, and the PSS field ddRf@Cttegister provides the number of the previous shadow
register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
theSRSMapegister. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific shadow
set is provided by the external interrupt controller, and is configured in an implementation-dependent way. Binding of
an exception or non-vectored interrupt to a shadow set is done by writing to the ESS fiel &&Si@tregister. When

an exception or interrupt occurs, the value of SR8&4ls copied to SRSGtlsg and SRSCHggis set to the value taken

from the appropriate source. On an ERET, the value of SRgGH copied back into SRSGihsto restore the shadow

set of the mode to which control returns.

1.4.4 Modes of Operation

The M4K core supports three modes of operation: user mode, kernel mode, and debug mode. User mode is most often
used for applications programs. Kernel mode is typically used for handling exceptions and operating system kernel
functions, including CP0O management and I/O device accesses. An additional Debug mode is used during system bring-
up and software development. Refer to the EJTAG section for more information on debug mode.

OXFFFFFFFF
Fixed Mapped

0xFF400000

OxFF3!
JxFFZZ'E)BEE Memory/EJTAG?! kseg3

OXF1FFFFFF

Fixed Mapped
0XE0000000

OXDFFFFFFF

Kernel virtual address space

Fixed Mapped, 512 MB | <5¢92
0xC0000000
OXBFFFFFFF [Kernel virtual address space
Unmapped, 512 MB kseg1
0xA0000000 Uncached
OXOFFFFFFR Kernel virtual address space
Unmapped, 512 MB kseg0
0x80000000
OX7FFFFFFF
User virtual address space kuseg

Fixed Mapped, 2048 MB

0x00000000

1. This space is mapped to memory in user or kernel mode,
and by the EJTAG module in debug mode.

Figure 1-2 M4K Core Virtual Address Map

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.4 M4K Core Required Logic Blocks

1.4.5 Memory Management Unit (MMU)

The M4K core contains an MMU that interfaces between the execution unit and the SRAM controller. The M4K core
provides a simple Fixed Mapping Translation (FMT) mechanism that is smaller and simpler than a full Translation
Lookaside Buffer (TLB) found in other MIPS cores, like the MIPS32 4KEc™ core. Like a TLB, the FMT performs
virtual-to-physical address translation and provides attributes for the different segments. Those segments that are
unmapped in a TLB implementation (kseg0 and ksegl) are translated identically by the FMT.

Figure 1-3 shows how the FMT is implemented in the M4K core.

_ Virtual Physical
Instruction | Addresg Address
Address > Insti
Calculator > Snlgl?M
SRAM
FMT interface|
Data
Data < » SrAM
Address ' 2 ical
Calculator | Virtual igﬁ?écsa}sl
Address

Figure 1-3 Address Translation During SRAM Access

In general, the FMT also determines the cacheability of each segment. These attributes are controlled via bits in the
Config register. Table 5 shows the encoding for the K23 (bits 30:28), KU (bits 27:25), and KO (bits 2:0) fields of the
Config register. Since the M4K core does not contain caches, these Config fields are read-only and contain a fixed value
that is always interpreted as uncacheable by the core. Table 6 shows how the cacheability of the virtual address segments
is controlled by these fields.

Table 5 Cache Coherency Attributes

Config Register
Fields
K23, KU, and KO Cache Coherency Attribute

Uncached. No other values are

2 possible in the M4K core.

In the M4K core, no translation exceptions can be taken, although address errors are still possible.

Table 6 Cacheability of Segments with Fixed Mapping
Translation

Virtual
Address
Segment Range Cacheability

Controlled by the KU field
(bits 27:25) of the Config
0x0000_0000- | register. See Table 5 for
OX7FFF_FFFF| mapping. This segment is
always uncached when
ERL=1.

useg/kuseg

Controlled by the KO field
0x8000_0000- | (bits 2:0) of the Config

ksegO OX9FFF_FFFF | register. See Table 5 for
mapping.
kseql 0xA000_0000- | Always uncacheable.
9% | oxBFFF_FFFF
MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 13

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

Table 6 Cacheability of Segments with Fixed Mapping

Translation
Virtual
Address
Segment Range Cacheability
Controlled by the K23 field
kseq?2 0xCO000_0000- | (bits 30:28) of the Config
9 OXDFFF_FFFF| register. See Table 5 for
mapping.
kseg3 0XE000_0000{ Controlled by the K23 field
OXFFFF_FFFF| (bits 30:28) of the Config
register. See Table 5 for
mapping.

The FMT performs a simple translation to map from virtual addresses to physical addresses. This mapping is shown in
Figure 1-4.

Virtual Address

kseg3
0xE000 0000

Physical Address

kseg3

o [0xE000_0000

kseg2
0xC000 0000

kseg2
0xC000_0000

ksegl
0xA000 0000

ksegO
0x8000 0000

useg/kuseg

0x0000_0000

When ERL=1, useg and kuseg become unmapped (virtual address is identical to the physical address) and uncached.

useg/kuseg

0x4000_0000

reserved
0x2000_0000

ksegO/ksegl
0x0000_0000

Figure 1-4 FMT Memory Map (ERL=0) in the M4K Core

This behavior is the same as if there was a TLB. This mapping is shown in Figure 1-5.

14

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.4 M4K Core Required Logic Blocks

Virtual Address Physical Address
kseg3 kseg3
0xE000_0000 0xE000_0000
kseg2 kseg2
0xC000_0000 0xC000_0000
ksegl
0xA000_0000
reserved
kseg0
0x8000_0000 0x8000_0000
useg/kuseg
useg/kuseg
ksegO/ksegl
0x0000_0000 0x0000_0000

Figure 1-5 FMT Memory Map (ERL=1) in the M4K Core

1.4.6 SRAM Interface Controller

Instead of caches, the M4K core contains an interface to SRAM-style memories that can be tightly coupled to the core.
This permits deterministic response time with less area than is typically required for caches. The SRAM interface
includes separate unidirectional 32-bit buses for address, read data, and write data.

1.4.6.1 Dual or Unified Interfaces
The SRAM interface includes a build-time option to select either dual or unified instruction and data interfaces.

The dual interface enables independent connection to instruction and data devices. It generally yields the highest
performance, since the pipeline can generate simultaneous | and D requests which are then serviced in parallel.

For simpler or cost-sensitive systems, it is also possible to combine the | and D interfaces into a common interface that
services both types of requests. If | and D requests occur simultaneously, priority is given to the D side.

1.4.6.2 Backstalling

Typically, read or write transactions will complete in a single cycle. If multi-cycle latency is desired, however, the
interface can be stalled to allow connection to slower devices.

1.4.6.3 Redirection

When the dual I/D interface is present, a mechanism exists to divert D-side references to the I-side, if desired. The
redirection is employed automatically in the case of PC-relative loads in MIPS16e mode. The mechanism can be
explicitly invoked for any other D-side references, as well. WheD®eRedirsignal is asserted, a D-side request is
diverted to the I-side interface in the following cycle, and the D-side will be stalled until the transaction is completed.

1.4.6.4 Transaction Abort

The core may request a transaction (fetch/load/store/sync) to be aborted. This is particularly useful in case of interrupts.
Since the core does not know whether transactions are re-startable, it cannot arbitrarily interrupt a request which has
been initiated on the SRAM interface. However, cycles spent waiting for a multi-cycle transaction to complete can

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 15

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

directly impact interrupt latency. In order to minimize this effect, the interface supports an abort mechanism. The core
requests an abort whenever an interrupt is detected and a transaction is pending (abort of an instruction fetch may also
be requested in other cases). The external system logic can choose to acknowledge the abort or can choose to ignore the
abort request.

1.4.6.5 MIPS16e Execution

When the core is operating in MIPS16e mode, instruction fetches only require 16-bits of data to be returned. For
improved efficiency, however, the core will fetch 32-bits of instruction data whenever the address is word-aligned. Thus
for sequential MIPS16e code, fetches only occur for every other instruction, resulting in better performance and reduced
system power.

1.4.6.6 Connecting to Narrower Devices

The instruction and data read buses are always 32-bits in width. To facilitate connection to narrower memories, the
SRAM interface protocol includes input byte enables that can be used by system logic to signal validity as partial read
data becomes available. The input byte enables conditionally register the incoming read data bytes within the core, and
thus eliminate the need for external registers to gather the entire 32-bits of data. External muxes are required to redirect
the narrower data to the appropriate byte lanes.

1.4.6.7 Lock Mechanism

The SRAM interface includes a protocol to identify a locked sequence, and is used in conjunction with the LL/SC atomic
read-modify-write semaphore instructions.

1.4.6.8 Sync Mechanism

The interface includes a protocol that externalizes the execution of the SYNC instruction. External logic might choose
to use this information to enforce memory ordering between various elements in the system.

1.4.6.9 SimpleBE Mode

To aid in attaching the M4K core to structures which cannot easily handle arbitrary byte enable patterns, there is a mode
that generates only “simple” byte enables. Only byte enables representing naturally aligned byte, half, and word
transactions will be generated. Legal byte enable patterns are shown in Table 7.

Table 7 Valid SimpleBE Byte Enable Patterns

EB_BE[3:0]

0001

0010

0100

1000

0011

1100

1111

16

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.4 M4K Core Required Logic Blocks

The only case where a read can generate “non-simple” byte enables is on an uncached tri-byte load (LWL/LWR). Since
external logic can easily convert a tri-byte read into a full word read if desired, no conversion is done by the core for this
case in SimpleBE mode.

Writes with non-simple byte enable patterns can arise from uncached tri-byte stores (SWL/SWR). In SimpleBE mode,
these stores will be broken into two separate write transactions, one with a valid halfword and a second with a single
valid byte.

1.4.7 Hardware Reset

For historical reasons within the MIPS architecture, the M4K core has two types of reset inputSigRaiseand
Sl|_ColdReset

Functionally, these two signals are ORed together within the core and then used to initialize critical hardware state. Both
reset signals can be asserted either synchronously or asynchronously to the cof® cloltltn and will trigger a Reset
exception. The reset signals are active high, and must be asserted for a minim&in 6ilncycles. The falling edge

triggers the Reset exception. The primary difference between the two reset signalSls Regetets a bit in the Status
register; this bit could be used by software to distinguish between the two reset signals, if desired. The reset behavior is
summarized in Table 8.

Table 8 M4K Reset Types

Sl_ColdRes
SI_Reset et Action
0 0 Normal Operation, no rese.
1 0 Reset exception; sets
Status.SRit.
X 1 Reset exception.

One (or both) of the reset signals must be asserted at power-on or whenever hardware initialization of the core is desired.
A power-on reset typically occurs when the machine is first turned on. A hard reset usually occurs when the machine is
already on and the system is rebooted.

In debug mode, EJTAG can request that a soft reset (VB tiResepin) be masked. It is system dependent whether
this functionality is supported. In normal mode, 8ieResepin cannot be masked. TB& ColdResepin is never
masked.

1.4.8 Power Management

The M4K core offers a number of power management features, including low-power design, active power management,
and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which
reduces system power consumption during idle periods.

The M4K core provides two mechanisms for system-level low power support:

» Register-controlled power management

* Instruction-controlled power management

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 17

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.4.8.1 Register-Controlled Power Management

The RP bit in the CPO Status register provides a software mechanism for placing the system into a low power state. The
state of the RP bit is available externally via #ieRPsignal. The external agent then decides whether to place the
device in a low power mode, such as reducing the system clock frequency.

Three additional bits, Statgg, , Statugg, , and Debug,, support the power management function by allowing the user

to change the power state if an exception or error occurs while the M4K core is in a low power state. Depending on what
type of exception is taken, one of these three bits will be asserted and reflectedsdnEdé, SI_ERL or EJ_DebugM

outputs. The external agent can look at these signals and determine whether to leave the low power state to service the
exception.

The following 4 power-down signals are part of the system interface and change state as the corresponding bits in the
CPO registers are set or cleared:

» TheSI_RPsignal represents the state of the RP bit (27) in the CPO Status register.

» TheSI_EXLsignal represents the state of the EXL bit (1) in the CPO Status register.

» TheSI_ERLsignal represents the state of the ERL bit (2) in the CPO Status register.

» TheEJ_DebugMsignal represents the state of the DM bit (30) in the CP0O Debug register.

1.4.8.2 Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is through execution of the WAIT instruction. When the WAIT
instruction is executed, the internal clock is suspended; however, the internal timer and some of the input pins
(SI_Int[5:0], SI_NMI, SI_ResetandSI_ColdResgtcontinue to run. Once the CPU is in instruction-controlled power
management mode, any interrupt, NMI, or reset condition causes the CPU to exit this mode and resume normal
operation.

The M4K core asserts tH&l_Sleegsignal, which is part of the system interface bus, whenever the WAIT instruction is
executed. The assertion ®F_Sleepndicates that the clock has stopped and the M4K core is waiting for an interrupt.

1.4.8.3 Local clock gating

The majority of the power consumed by the M4K core is in the clock tree and clocking registers. The core has support
for extensive use of local gated-clocks. Power conscious implementors can use these gated clocks to significantly reduce
power consumption within the core.

1.5 M4K Core Optional Logic Blocks

18

The M4K core contains several optional logic blocks shown in the block diagfiguire 1

1.5.1 Coprocessor 2 Interface

The M4K core can be configured to have an interface for an on-chip coprocessor. This coprocessor can be tightly coupled
to the processor core, allowing high performance solutions integrating a graphics accelerator or DSP, for example.

The coprocessor interface is extensible and standardized on MIPS cores, allowing for design reuse. The M4K core
supports a subset of the full coprocessor interface standard: 32b data transfer, no Coprocessor 1 support, single issue, in-
order data transfer to coprocessor, one out-of-order data transfer from coprocessor.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.5 M4K Core Optional Logic Blocks

The coprocessor interface is designed to ease integration with customer IP. The interface allows high-performance
communication between the core and coprocessor. There are no late or critical signals on the interface.

1.5.2 CorExtend User Defined Instruction Extensions

The optional CorExtend User Defined Instruction (UDI) block enables the implementation of a small number of
application-specific instructions that are tightly coupled to the core’s execution unit. The interface to the UDI block is
internal and not defined externally on the M4K Pro core.

Such instructions may operate on a general-purpose register, immediate data specified by the instruction word, or local
state stored within the UDI block. The destination may be a general-purpose register or local UDI state. The operation
may complete in one cycle or multiple cycles, if desired.

1.5.3 EJTAG Debug Support

The M4K core provides for an optional Enhanced JTAG (EJTAG) interface for use in the software debug of application
and kernel code. In addition to standard user mode and kernel modes of operation, the M4K core provides a Debug mode
that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and
continues until a debug exception return (DERET) instruction is executed. During this time, the processor executes the
debug exception handler routine.

Refer to the section called "External Interface Signals" on page 26 for a list of EJTAG interface signals.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test
data in and out of the M4K core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG
specification define what registers are selected and how they are used.

1.5.3.1 Debug Registers

Three debug registers (DEBUG, DEPC, and DESAVE) have been added to the MIPS Coprocessor 0 (CPO) register set.
The DEBUG register shows the cause of the debug exception and is used for setting up single-step operations. The
DEPC, or Debug Exception Program Counter, register holds the address on which the debug exception was taken. This
is used to resume program execution after the debug operation finishes. Finally, the DESAVE, or Debug Exception Save,
register enables the saving of general-purpose registers used during execution of the debug exception handler.

To exit debug mode, a Debug Exception Return (DERET) instruction is executed. When this instruction is executed, the
system exits debug mode, allowing normal execution of application and system code to resume.

1.5.3.2 EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints defined in the EJTAG specification. These stop the normal
operation of the CPU and force the system into debug mode. There are two types of simple hardware breakpoints
implemented in the M4K core: Instruction breakpoints and Data breakpoints.

The M4K core can be configured with the following breakpoint options:

* No data or instruction breakpoints

* One data and two instruction breakpoints

» Two data and four instruction breakpoints

Instruction breaks occur on instruction fetch operations, and the break is set on the virtual address. A mask can be applied
to the virtual address to set breakpoints on a range of instructions.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 19

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address values, similar to the Instruction
breakpoint. Data breakpoints can be set on a load, a store, or both. Data breakpoints can also be set based on the value
of the load/store operation. Finally, masks can be applied to both the virtual address and the load/store value.

1.5.3.3 EJTAG Trace

The M4K core includes optional support for real-time tracing of instruction addresses, data addresses and data values.
The trace information is collected in an on-chip or off-chip memory, for post-capture processing by trace regeneration
software.

On-chip trace memory may be configured in size from 0 to 8 MB; it is accessed through the existing EJTAG TAP
interface and requires no additional chip pins. Off-chip trace memory is accessed through a special trace probe and can
be configured to use 4, 8, or 16 data pins plus a clock.

1.6 Testability

Testability for production testing of the core is supported through the use of internal scan and memory BIST.

1.6.1 Internal Scan
Full mux-based scan for maximum test coverage is supported, with a configurable number of scan chains. ATPG test
coverage can exceed 99%, depending on standard cell libraries and configuration options.

1.6.2 Memory BIST
Memory BIST for the on-chip trace memory is optional.

Memory BIST can be inserted with a CAD tool or other user-specified method. Wrapper modules and signal buses of
configurable width are provided within the core to facilitate this approach.

1.7 Instruction Set

The M4K core instruction set complies with the MIPS32 instruction set architecture. Table 1-1 provides a summary of
instructions implemented by the M4K core.

Table 1-1 M4K Core Instruction Set

Instruction Description Function
ADD Integer Add Rd =Rs + Rt
ADDI Integer Add Immediate Rt = Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt=Rs+ Immed
Unsigned Integer Add Immediate to PC Rt=PC+ | Immed
ADDIUPC (MIPS16 only)
ADDU Unsigned Integer Add Rd=Rs+ (Rt
AND Logical AND Rd = Rs & Rt
ANDI Logical AND Immediate Rt=Rs & (0 4¢ || Immed)
20 MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.7 Instruction Set

Table 1-1 M4K Core Instruction Set (Continued)

Instruction Description Function
Unconditional Branch _
B (Assembler idiom for: BEQ r0, r0, offset) PC += (int)offset
BAL Branch and Link GPR[31]=PC +8
(Assembler idiom for: BGEZAL rO0, offset) PC += (int)offset
. if COP2Condition(cc) ==
BC2F Branch On COP2 Condition False PC += (int)offset
if COP2Condition(cc) ==
BC2FL Branch On COP2 Condition False Likely elszC += (infoffset
Ignore Next Instruction
BC2T Branch On COP2 Condition True i COPZEqndltlon(cc) -
PC += (int)offset
if COP2Condition(cc) == 1
BC2TL Branch On COP2 Condition True Likely elszc += (injoffset
Ignore Next Instruction
if Rs == Rt
BEQ Branch On Equal PC += (infjoffset
if Rs == Rt
BEQL Branch On Equal Likely elszc += (intoffset
Ignore Next Instruction
if IRs[31]
BGEZ Branch on Greater Than or Equal To Zero PC += (int)offset
GPR[31]=PC +8
BGEZAL Eraknch on Greater Than or Equal To Zero An dif IRs[31]
n PC += (int)offset
GPR[31]=PC +8
if IRs[31]
BGEZALL Era;ihkoln Greater Than or Equal To Zero And PC += (infoffset
Ink Likely else
Ignore Next Instruction
if IRS[31]
BGEZL Branch on Greater Than or Equal To Zero PC += (int)offset
Likely else
Ignore Next Instruction
if IRS[31] && Rs != 0
BGTz Branch on Greater Than Zero PC += (in)offset
if IRs[31] && Rs 1= 0
BGTZL Branch on Greater Than Zero Likely elszc += (injoffset
Ignore Next Instruction
if Rs[31] || Rs == 0
BLEZ Branch on Less Than or Equal to Zero PC += (infjoffset
if Rs[31] || Rs ==
BLEZL Branch on Less Than or Equal to Zero Likel elszc += (intoffset
Ignore Next Instruction

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

21

22

Table 1-1 M4K Core Instruction Set (Continued)

=}

Instruction Description Function
if Rs[31]
BLTZ Branch on Less Than Zero PC += (in)offset
GPR[31]=PC +8
BLTZAL Branch on Less Than Zero And Link if Rs[31]
PC += (int)offset
GPR[31]=PC + 8
if Rs[31]
BLTZALL Branch on Less Than Zero And Link Likely PC += (int)offset
else
Ignore Next Instruction
if Rs[31]
BLTZL Branch on Less Than Zero Likely elszc += (injoffset
Ignore Next Instruction
if Rs I= Rt
BNE Branch on Not Equal PC += (intjoffset
if Rs 1= Rt
BNEL Branch on Not Equal Likely elszc += (intoffset
Ignore Next Instruction
BREAK Breakpoint Break Exception
CFC2 Move Control Word From Coprocessor 2 Rt = CCR[2, n]
CLO Count Leading Ones Rd = NumLeadingOnes(Rs)
CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)
COPO Coprocessor 0 Operation See Software User’'s Manual
COP2 Coprocessor 2 Operation See Coprocessor 2 Descriptio
CTC2 Move Control Word To Coprocessor 2 CCR[2,n] =Rt
. PC = DEPC
DERET Return from Debug Exception Exit Debug Mode
DI Atomically Disable Interrupts Rt = Status; Status E =0
. LO = (int)Rs / (int)Rt
DIV Divide HI = (int)Rs % (int)Rt
. . LO = (uns)Rs / (uns)Rt
DIvU Unsigned Divide HI = (Uns)Rs % (UNs)R
Stop instruction execution
EHB Execution Hazard Barrier until execution hazards are
cleared
El Atomically Enable Interrupts Rt = Status; Status E=1
if SR[2]
PC = ErrorEPC
else
ERET Return from Exception PC =EPC
SR[1]=0
SR[2]=0
LL=0

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.7 Instruction Set

Table 1-1 M4K Core Instruction Set (Continued)

Instruction Description Function
EXT Extract Bit Field Rt = ExtractField(Rs, pos,
size)
INS Insert Bit Field Rt= IqsertFieId(Rs, RY,
pos, size)
J Unconditional Jump PC = PC[31:28] || offset<<2
. GPR[31]=PC +8
JAL Jump and Link PC = PC[31:28] || offset<<2
. . Rd=PC +8
JALR Jump and Link Register PC = Rs
Like JALR, but also clears
JALR.HB Jump and Link Register with Hazard Barrier] execution and instruction
hazards
Jump and Link Register Compact - donot | Rd=PC+2
JALRC execute instruction in jump delay slot(MIPS1p PC =Rs
only)
JR Jump Register PC =Rs
Like JR, but also clears
JR.HB Jump Register with Hazard Barrier execution and instruction
hazards
JRC Jump Register Compact - do not execute PC =Rs
instruction in jump delay slot (MIPS16 only)
LB Load Byte Rt = (byte)Mem[Rs+offset]
LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]
LH Load Halfword Rt = (half)Mem[Rs+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]
Rt = Mem[Rs+offset]
LL Load Linked Word LL=1
LLAdr = Rs + offset
LUI Load Upper Immediate Rt = immediate << 16
LW Load Word Rt = Mem[Rs+offset]
LWC2 Load Word To Coprocessor 2 CPR[2,n,0] = Mem[Rs+offset]
LWPC Load Word, PC relative Rt = Mem[PC+offset]
LWL Load Word Left See Architecture Reference Manual
LWR Load Word Right See Architecture Reference Manpal
MADD Multiply-Add HI | LO += (int)Rs * (int)Rt
MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt
MFCO Move From Coprocessor 0 Rt = CPR[0, Rd, sel]
MFC2 Move From Coprocessor 2 Rt = CPR[2, Rd, sel]
MFHC2 Move From High Half of Coprocessor 2 Rt = CPR[2, Rd, sel] 63.32

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

23

24

Table 1-1 M4K Core Instruction Set (Continued)

Instruction Description Function
MFHI Move From HI Rd = HI
MFLO Move From LO Rd=LO
MOVN Move Conditional on Not Zero ifRt _¢ 0 then
Rd =Rs
MOVZ Move Conditional on Zero ifRt :9 then
Rd =Rs
MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt
MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt
MTCO Move To Coprocessor 0 CPRI[O, n, Sel] =Rt
MTC2 Move To Coprocessor 2 CPR[2, n, sel] = Rt
. CPR[2, Rd, sel] = Rt ||
MTHC2 Move To High Half of Coprocessor 2 CPR[2. Rd sel] 510
MTHI Move To HI HI =Rs
MTLO Move To LO LO=Rs
HI | LO =Unpredictable
MUL Multiply with register write Rd = ((int)Rs *
(inRt) 33 0
MULT Integer Multiply HI | LO = (int)Rs * (int)Rd
MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd
NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)
NOR Logical NOR Rd = ~(Rs | Rt)
OR Logical OR Rd =Rs|Rt
ORI Logical OR Immediate Rt = Rs | Immed
Allows unprivileged access to
RDHWR Read Hardware Register registers enabled by HWREna
register
RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRS®RH]
RESTORE Restore registers and deallocate stack frame See Architecture Reference Manu
(MIPS16 only)
ROTR Rotate Word Right Rd=Rt ¢u10 IRt 31sa
ROTRV Rotate Word Right Variable RAd=Rt gs10 IRt 31Rs
SAVE Save registers and allocate stack frame See Architecture Reference Manu
(MIPS16 only)
SB Store Byte (byte)Mem[Rs+offset] = Rt
ifLL=1
SC Store Conditional Word mem[Rs+offset] = Rt
Rt=LL

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.7 Instruction Set

Table 1-1 M4K Core Instruction Set (Continued)

ual

ual

Instruction Description Function
SDBBP Software Debug Break Point Trap to SW Debug Handler
SEB Sign Extend Byte Rd = (byte)Rs
SEH Sign Extend Half Rd = (half)Rs
SH Store Half (halffMem[Rs+offset] = Rt
SLL Shift Left Logical Rd=Rt<<sa
SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]
if (iN)Rs < (int)Rt
Rd=1
SLT Set on Less Than
else
Rd=0
if (int)Rs < (int)lmmed
SLTI Set on Less Than Immediate els':t =1
Rt=0
if (uns)Rs < (uns)immed
SLTIU Set on Less Than Immediate Unsigned els':t =1
Rt=0
if (uns)Rs < (uns)immed
SLTU Set on Less Than Unsigned els':d =1
Rd=0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]
SSNOP Superscalar Inhibit No Operation NOP
SUB Integer Subtract Rt = (int)Rs - (int)Rd
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
SW Store Word Mem[Rs+offset] = Rt
SWC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2,n,0]
SWL Store Word Left See Architecture Reference Man
SWR Store Word Right See Architecture Reference Mar
SYNC Synchronize See Software User's Manual
SYSCALL System Call SystemCallException
. if Rs == Rt
TEQ Trap if Equal TrapException
TEQI Trap if Equal Immediate if Rs == (injimmed

TrapException

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

25

Table 1-1 M4K Core Instruction Set (Continued)

Instruction Description Function

TGE Trap if Greater Than or Equal if (iNORs >= (.'m)Rt
TrapException

TGEI Trap if Greater Than or Equal Immediate if (injRs >= (.im)lmmed
TrapException

TGEIU Trap if Greater Than or Equal Immediate if (uns)Rs >= (uns)immed

Unsigned TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs = (uns)Rt
TrapException

TLT Trap if Less Than if (iNYRs < (iNORE
TrapException

TLTI Trap if Less Than Immediate if injRs < (inimmed
TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (_uns)lmmed
TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (.unS)Rt
TrapException

. if Rs I= Rt
TNE Trap if Not Equal TrapException
. . if Rs != (int)lmmed

TNEI Trap if Not Equal Immediate TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSSRA] = Rt

WSBH Word Swap Bytes Within HalfWords Rd = Rizs16 Il Rt 3124 |l

Rt70 IRt 158

XOR Exclusive OR Rd = Rs " Rt

XORI Exclusive OR Immediate Rt = Rs ” (uns)immed

ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs

ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs

1.8 External Interface Signals
This section describes the signal interface of the M4K microprocessor core.
The pin direction key for the signal descriptions is shown in Table 1-2 below.
The M4K core signals are listed in Table 1-3 below. Note that the signals are grouped by logical function, not by expected

physical location. All signals, with the exceptionEaf TRST_Nare active-high signalEJ_DINTandSI_NMigo
through edge-detection logic so that only one exception is taken each time they are asserted.

26 MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.8 External Interface Signals

Table 1-2 M4K Core Signal Direction Key

Dir Description

| Input to the M4K core sampled on the rising edge of the appropriate CLK signal.

(0] Output of the M4K core, unless otherwise noted, driven at the rising edge of the appropriate CLK signal.

Asynchronous inputs that are synchronized by the core.

Static input to the M4K core. These signals are normally tied to either power or ground and shoyld not
change state whilgl_ColdReses deasserted.

Table 1-3 M4K Signal Descriptions

Signal Name Type Description

System Interface

Clock Signals:

Clock Input. All inputs and outputs, except a few of the EJTAG signals, are sampled ahd/or
SI_CIkin I X g P

asserted relative to the rising edge of this signal.
SI_clkout o Reference Clock for the External Bus Interface. This clock signal provides a referenge for

deskewing any clock insertion delay created by the internal clock buffering in the core.

Reset Signals:

SI_ColdReset A Hard/Cold Reset Signal. Causes a Reset Exception in the core.

Non-Maskable Interrupt. An edge detect is used on this signal. When this signal is safmpled

SLNMI A asserted (high) one clock after being sampled deasserted, an NMI is posted to the dore.
Soft/Warm Reset Signal. Causes a Reset Exception in the core. Sets Status.SR bit (if
S|_Reset A SI_ColdReseis not asserted), but is otherwise ORed BithColdResdbefore it is used

internally.

Power Management Signals:

This signal represents the state of the ERL bit (2) in the CPO Status register and indicates the
S| ERL (@] error level. The core asseBf ERLwhenever a Reset, Soft Reset, or NMI exception is
taken.

This signal represents the state of the EXL bit (1) in the CPO Status register and ind|cates
SI_EXL (0] the exception level. The core ass@&@tsEXLwhenever any exception other than a Reset,
Soft Reset, NMI, or Debug exception is taken.

This signal represents the state of the RP bit (27) in the CPO Status register. Software can

SI_RP © write this bit to indicate that a reduced power mode may be entered.

This signal is asserted by the core whenever the WAIT instruction is executed. The asgertion

SI_Sleep © of this signal indicates that the clock has stopped and that the core is waiting for an interrupt.

Interrupt Signals:

Indicates whether an external interrupt controller is present. Value is visible to software in
SI_EICPresent S the Config3/g,c register field.

SI_EISS[3:0] | General purpose register shadow set number to be used when servicing an interrupt|in EIC
- : interrupt mode.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 27

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

Table 1-3 M4K Signal Descriptions (Continued)

Signal Name Type Description
Interrupt acknowledge indication for use in external interrupt controller mode. This signal
is active for a singl&I_Clkincycle when an interrupt is taken. When the processor initigtes
Sl 1Ack o the interrupt exception, it loads the value of 8ielnt[5:0] pins into theCausep, field
- (overlaid withCausgp7_po), and signals the external interrupt controller to notify it that the
current interrupt request is being serviced. This allows the controller to advance to arnother
pending higher-priority interrupt, if desired.
Active high Interrupt pins. These signals are driven by external logic and when assefted
indicate an interrupt exception to the core. The interpretation of these signals depends|on the
interrupt mode in which the core is operating; the interrupt mode is selected by software.
TheSI_Intsignals go through synchronization logic and can be asserted asynchronoysly to
SI_CIkIn.In External Interrupt Controller (EIC) mode, however, the interrupt pins are
interpreted as an encoded value, so they must be asserted synchrondusBjkimto
guarantee that all bits are received by the core in a particular cycle.
The interrupt pins are level sensitive and should remain asserted until the interrupt has been
serviced.
In Release 1 Interrupt Compatibility mode:
< All 6 interrupt pins have the same priority as far as the hardware is concerned.
* Interrupts are non-vectored.
SI_Int[5:0] I/A
In Vectored Interrupt (VI) mode:
e TheSI_Intpins are interpreted as individual hardware interrupt requests.
« Internally, the core prioritizes the hardware interrupts and chooses an interrupt vegtor.
In External Interrupt Controller (EIC) mode:
« An external block prioritizes its various interrupt requests and produces a vector number
of the highest priority interrupt to be serviced.
e The vector number is driven on ti$_Intpins, and is treated as a 6-bit encoded valug in
the range of 0..63.
* When the core starts the interrupt exception, signaled by the assei®ibrAxk it
loads the value of th®l_Int[5:0] pins into theCause,p, field (overlaid with
Causego7_po)- The interrupt controller can then signal another interrupt.
SI_IPL[5:0] o Current interrupt priority level from th8tatugs register field, provided for use by an
- : external interrupt controller. This value is updated when8i/dAckis asserted.
Indicates théSI_Inthardware interrupt pin that the timer interrupt @h (Timerlnj is
SIL_IPTI[2:0] S combined with external to the core. The value of this bus is visible to software in the
IntCtl,p, register field.
SI_SWInt[1:0] o Software interrupt request. These signals represent the valueli#j1t@ field of the
- : Causeregister. They are provided for use by an external interrupt controller.
28 MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.8 External Interface Signals

Table 1-3 M4K Signal Descriptions (Continued)

Signal Name

Type

Description

Sl|_Timerlint

Timer interrupt indication. This signal is asserted wheneveCthmtandCompare
registers match and is deasserted wheiCtrapareregister is written. This hardware pin
represents the value of tRause, register field.

For Release 1 Interrupt Compatibility mode or Vectored Interrupt mode:

In order to generate a timer interrupt, Bie Timerintsignal needs to be brought back in
the M4K core on one of the s&_Intinterrupt pins in a system-dependent manner.
Traditionally, this has been accomplished by mux@igTimerintwith SI_Int[5]. Exposing
SI_Timerintas an output allows more flexibility for the system designer. Timer interru
can be muxed or ORed into one of the interrupts, as desired in a particular systesi. Fite
hardware interrupt pin with which tf&_TimerIntsignal is merged is indicated via the
SI_IPTlstatic input pins.

For External Interrupt Controller (EIC) mode:

TheSI_Timerlntsignal is provided to the external interrupt controller, which then prioritiz
the timer interrupt with all other interrupt sources, as desired. The controller then en
the desired interrupt value on t8&_Intpins. SinceS1_Intis usually encoded, ti_IPTI
pins are not meaningful in EIC mode.

pts

res
codes

Configuration Inputs:

SI_CPUNum[9:0]

Unique identifier to specify an individual core in a multi-processor system. The hard
value specified on these pins is available inGR&Numfield of theEBaseregister, so it
can be used by software to distinguish a particular processor. In a single processor s
this value should be set to zero.

jvare

ystem,

S|_Endian

Indicates the base endianness of the core.

EB_Endian Base Endian Mode
0 Little Endian
1 Big Endian

SI_SimpleBE[1:0]

The state of these signals can constrain the core to only generate certain byte enab
SRAM-style interface writes. This eases connection to some existing bus standards

S|_SimpleBE[1:0] Byte Enable Mode
00, All BEs allowed

Naturally aligned bytes, half-
words, and words only

10, Reserved
11, Reserved

01,

es on

SRAM-style Interface

The SRAM-style interface allows simple connection to fast, tightly-coupled memory devices.It can be configured with inde
interfaces for Instruction and Data, or a Unified interface. Signals related to the I-side interface are prefixed withri#ds ”; si
related to the D-side interface are prefixed with “DS_". When the Unified interface is used, then most D-side signals are objsoleted,
since they have an I-side equivalent; only the write d$a WDatacontinues to be used from the D-side.

iendent

IS_Read (@) Read strobe.
IS_Write (0] Write strobe. Only asserted due to a redirected data write.
IS_Sync (0] Sync strobe.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

29

Table 1-3 M4K Signal Descriptions (Continued)

Signal Name

Type

Description

IS_WhCtl

Write buffer control.

This signal is asserted when the M4K core can guarantee that no I-side read transacti
be started in the current clock cycle. For the purpose of generating this signal, if the
pending transaction, the M4K core assumes that it will end in this cycle, in order to
determine whether a new read transaction might be started or not.

Unlike IS_Readthere is no asynchronous path frt#n Stallor any other input signal to
IS_WhCtlAlso, it is an earlier signal thda8_Read

Itis intended to be used by an external agent to control flushing of a write buffer (if a y
buffer is present).

bn will
eisa

vrite

IS_Instr

Indicates instruction fetch when high, or redirected data read/write when low.

IS_Addr[31:2]

Address of transaction. Whé®_Synds asserted highS_Addr[10:6]holds the “sync type”
(the “stype” field of SYNC instruction).

IS_BE[3:0]

Byte enable signals for transaction.

IS_BE[3] enables byte lane corresponding to Bit24.
IS_BE[2] enables byte lane corresponding to Bsl6
IS_BE[1] enables byte lane corresponding to b&s8.
IS_BE[0] enables byte lane corresponding to Bits

IS_Abort

Request for transaction to be aborted, if possible. It is optional whether the external
uses this signal or not, although using it may reduce interrupt latency. Completion of
transaction (aborted or not) is always communicated thrtsightall Whether the
transaction was in fact aborted is signalled usticAbortAck

IS_Abortis asserted through (and including) the cycle wierétallis deasserted.

ogic
any

IS_EjtBreakEn

One or more EJTAG instruction breakpoints are enabled. This signal is also asserted
Unified Interface when one or more data breakpoints are enabled.

or the

IS_EjtBreak

Asserted when an instruction break is detected. Also asserted for the Unified Interface
a data break is detected. May be used by external logic to cancel the current transa
External logic may determine whether this is an instruction break or a data break bal
IS_Instt

This signal is asserted one cycle after the transaction start, so when precise breaks
required, the external logic must stall transactions by one cy8eHjtBreakErindicates
that a break may occur.

IS_EjtBreakis asserted through (and including) the cycle wieré&tallis deasserted.

when
Ction.
sed on

are

IS_Lock

Asserted when a read transaction is due to a redirected LL (load linked) instruction,

IS_Unlock

Asserted when a write transaction is due to a redirected SC (store conditional) instr]

uction.

IS_UnlockAll

Olo|o

Asserted for one clock cycle when an ERET instruction is executed.

IS_Stall

Indicates that the transaction is not ready to be completed.

IS_Error

Valid in the cycle terminating the transacti¢8_(Stalldeasserted). Asserted high if
transaction caused an error. Causes bus error exception to be taken by the core.

IS_AbortAck

Valid in the cycle terminating the transacti¢8 (Stalldeasserted). Asserted high if
transaction was aborted.

If no abort was requestetS(_ Abortis low), andS_AbortAckis asserted high in the cyclg
terminating the transaction, a bus error exception is taken.

IS_UnlockAck

Valid in the cycle terminating the transactid8 (Stalldeasserted). Result k8_Unlock
operation. Should be asserted high if system holds a lock on the address used for th
redirected write transaction (SC).

e

IS_RData[31:0]

Read data.

30

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

01

1.8 External Interface Signals

Table 1-3 M4K Signal Descriptions (Continued)

on will
eisa

ether
cy.

cel the
hen

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

Signal Name Type Description
Byte enable signals fé6_RData[31:0]
IS RBE[3:0 | IS_RBE[3]enables byte lane correspondingSoRData[31:24]
— [3:0] IS_RBE[2]enables byte lane correspondingSoRData[23:16]
IS_RBE[1]enables byte lane correspondingSoRData[15:8]
IS_RBE|[O]enables byte lane correspondindSoRData[7:0]
DS_Read Read strobe.
DS_Write Write strobe.
DS_Sync Sync strobe.
Write buffer control.
This signal is asserted when the M4K core can guarantee that no D-side read transacti
be started in the current clock cycle. For the purpose of generating this signal, if the
pending transaction, the M4K core assumes that it will end in this cycle, in order to
DS_WhCtl (0] determine whether a new read transaction might be started or not.
Unlike DS_Reagdthere is no asynchronous path fr@®_Stallor any other input signal to
DS_WHhCtlAlso, it is an earlier signal thddS_Read
Itis intended to be used by an external agent to control flushing of a write buffer (if a write
buffer is present).
. Address of transaction. Wh&86_Synds asserted higi)S_Addr[10:6]holds the “sync
DS_Addr(31:2] 0 type” (the “stype” field of the SYNC instruction).
Byte enable signals for transaction.
DS BE[3:0 o DS_BE[3]enables byte lane corresponding to Bit24.
_BE[3:0] DS_BE|[2]enables byte lane corresponding to BBs16
DS_BE[1]enables byte lane corresponding to bis8.
DS_BE|[0]enables byte lane corresponding to Bits
) Write data as defined iyS_BE[3:0}IS_BE[3:0]. Used for both D-side and I-side
DS_WData[31.0] o transactions.
Request for transaction (read, write or sync) to be aborted, if possible. It is optional wh
the external logic uses this signal or not, although using it may reduce interrupt laten
DS_Abort (0] Completion of any transaction (aborted or not) is always communicated thia8gStall
Whether the transaction was in fact aborted is signalled Dssnd\bortAck
DS_Abortis asserted through (and including) the cycle wheSeStallis deasserted.
DS_EjtBreakEn @) One or more EJTAG data breakpoints are enabled.
Asserted when an EJTAG data break is detected. May be used by external logic to can
current transaction. This signal is asserted one cycle after the transaction start, so W
DS_EjtBreak (0] precise breaks are required, the external logic must stall transactions by one cycle if
DS_EjtBreakErnndicates that a break may occur.
DS_EjtBreakis asserted through (and including) the cycle wBhSeStallis deasserted.
DS_Lock Asserted when a read transaction is due to an LL (load linked) instruction.
DS_Unlock Asserted when a write transaction is due to an SC (store conditional) instruction.
DS_Stall | Indicates that the transaction is not ready to be completed.
DS Error | Valid in the cycle terminating the transacti®@S(_Stalldeasserted). Asserted high if
- transaction caused an error. Causes bus error exception to be taken by the core.
Valid in the cycle terminating the transacti®@S(_Stalldeasserted). Asserted high if
DS AbortAck | transaction was aborted. _ _ o
— If no abort was requeste®&_Abortis low), andDS_AbortAcks asserted high in the cycle
terminating the transaction, a bus error exception is taken.

31

Table 1-3 M4K Signal Descriptions (Continued)

Signal Name

Type

Description

DS_Redir

Valid in the cycle terminating the transacti®S_Stalldeasserted). Asserted high if
transaction must be redirected to I-side.

DS_UnlockAck

Valid in the cycle terminating the transacti®S_Stalldeasserted). Result BS_Unlock
operation. Should be asserted high if system holds a lock on the address used for th
transaction (SC).

e write

DS_RData[31:0]

Read data.

DS_RBE[3:0]

Byte enable signals f@S_RData[31:0]

DS_RBE[3]enables byte lane correspondind® RData[31:24]
DS_RBE[2]enables byte lane correspondind®_RData[23:16]
DS_RBE[1]enables byte lane correspondindt® RData[15:8]
DS_RBE[0O]enables byte lane correspondindt® RData[7:0]

Coprocessor Interface

Instruction dispatch: These signals are used to transfer an instruction from the M4K core to the COP2 coprocessor.

CP2_ir_0[31:0]

o

Coprocessor Arithmetic and To/From Instruction Word.
Valid in the cycle befor€P2_as_QCP2_ts_(or CP2_fs_Qs asserted.

CP2_irenable_0

Enable Instruction Registering. When deasserted, no instruction strobes will be asse
the following cycle. When asserted, theraybe an instruction strobe asserted in the
following cycle. Instruction strobes inclu@P2_as_QCP2_ts_Q0CP2_fs 0

Note: This is the only late signal in the interface. The intended function is to use this si
as a clock gate condition on the capture latches in the coproces€&2oir_0[31:0].

ted in

gnal

CP2_as O

Coprocessor2 Arithmetic Instruction Strobe. Asserted in the cycle after an arithmetid
coprocessor2 instruction is available@B2_ir_0[31:0] If CP2_abusy_@vas asserted in
the previous cycle, this signal will not be asserted. This signal will never be asserted
same cycle thatP2_ts_0or CP2_fs_Qs asserted.

n the

CP2_abusy 0

Coprocessor2 Arithmetic Busy. When asserted, a coprocessor2 arithmetic instructio|
not be dispatchedP2_as_0will not be asserted in the cycle after this signal is assertg

n will
od.

CP2_ts_0

Coprocessor2 To Strobe. Asserted in the cycle after a To COP2 Op instruction is av
onCP2_ir_0[31:0]. If CP2_tbusywvas asserted in the previous cycle, this signal will not
asserted. This signal will never be asserted in the same cycl€ftatas_@r CP2_fs_ Qs
asserted.

nilable
be

CP2_tbusy 0O

To Coprocessor2 Busy. When asserted, a To COP2 Op will not be dispaP2ds_Qwill
not be asserted in the cycle after this signal is asserted.

CP2_fs O

Coprocessor2 From Strobe. Asserted in the cycle after a From COP2 Op instruction
available orCP2_ir_0[31:0]. If CP2_fbusy_@vas asserted in the previous cycle, this sigr
will not be asserted. This signal will never be asserted in the same cycthaas Cor
CP2_ts_(Qs asserted.

S
al

CP2_fbusy 0

From Coprocessor2 Busy. When asserted, a From COP2 Op will not be dispatched.
CP2_fs_0will not be asserted in the cycle after this signal is asserted.

CP2_endian_0

Big Endian Byte Ordering. When asserted, the processor is using big endian byte ofdering

for the dispatched instruction. When deasserted, the processor is using little-endian
ordering. Valid the cycle befoleP2_as QCP2_fs_Oor CP2_ts (s asserted.

byte

32

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

01

1.8 External Interface Signals

Table 1-3 M4K Signal Descriptions (Continued)

Signal Name

Type

Description

CP2_inst32_0

MIPS32 Compatibility Mode - Instructions. When asserted, the dispatched instructioh is
restricted to the MIPS32 subset of instructions. Please refer to the MIPS64 architecture

specification for a complete description of MIPS32 compatibility mode. Valid the cyc
beforeCP2_as_QCP2_fs_Oor CP2_ts_(s asserted.

Note: The M4K core is a MIPS32 core, and will only issue MIPS32 instructions. Thug

CP2_inst32_Qs tied high.

CP2_kd_mode_0

o

D

Kernel/Debug Mode. When asserted, the processor is running in kernel or debug modg. Can

be used to enable “privileged” coprocessor instructions. Valid the cycle [@f@reas_0
CP2_fs_(OorCP2_ts_Qs asserted.

To Coprocessor Data: Th
a To Coprocessor instruction.

ese signals are used when data is sent from the M4K core to the COP2 coprocessor, as part of

Coprocessor To Data Strobe. Asserted when To COP Op data is available on

CP2_tds 0 O | cP2_tdata_0[31:0]
Coprocessor To Order. Specifies which outstanding To COP Op the data is for. Valid
whenCP2_tds_0s asserted.
CP2_torder_0[Z
:0] Order
000, Oldest outstanding To COP Op data transfer
001, 2nd oldest To COP Op data transfer.
CP2_torder_0[2:0] (0] 010, 3rd oldest To COP Op data transfer.
011, 4th oldest To COP Op data transfer.
100, 5th oldest To COP Op data transfer.
101, 6th oldest To COP Op data transfer.
1102 7th oldest To COP Op data transfer.
8th oldestTo COP Qb datatransfer.
Note: The M4K core WI|| never send Data Out-of-Order, tiCiB2_torder_0[2:0]is tied to
000,.
To Coprocessor Data Out-of-Order Limit. This signal forces the integer processor cg
limit how much it can reorder To COP Data. The value on this signal corresponds to
CP2_tordlim_0[2:0] S maximum allowed value to be used©R2_torder_0[2:0]
Note: The M4K core will never send Data Out-of-Order, t#2_tordlim_0[2:0]is
ignored.
CP2._tdata_0[31:0] o To Coprocessor Data. Data to be transferred to the coprocessor. Vali€®Rers_0ds

asserted.

From Coprocessor Data: These signals are used when data is sent to the M4K core from the COP2 coprocessor, as part of
a From Coprocessor instruction.

CP2_fds_0

Coprocessor From Data Strobe. Asserted when From COP Op data is available on
CP2_fdata_0[31:0]

completing

only

re to
the

completing

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

33

Table 1-3 M4K Signal Descriptions (Continued)

Signal Name Type Description
Coprocessor From Order. Specifies which outstanding From COP Op the data is for|
only whenCP2_fds_(s asserted.
CP2_forder_0[2:
0] Order
000, Oldest outstanding From COP Op data transfer
001, 2nd oldest From COP Op data transfer.
CP2_forder_0[2:0]
010, 3rd oldest From COP Op data transfer.
011, 4th oldest From COP Op data transfer.
106, 5th oldest From COP Op data transfer.
10%, 6th oldest From COP Op data transfer.
110, 7th oldest From COP Op data transfer.
8th nldest From COP On data transfer
Note: Only values OOQand 003% are allowed se€P2_fordlim_0[2:0]below
From Coprocessor Data Out-of-Order Limit. This signal sets the limit on how much t
coprocessor can reorder From COP Data. The value on this signal corresponds to t
) maximum allowed value to be used©R2_forder_0[2:0]
CP2_fordlim_0[2:0] (0]

Note: The M4K core can handle one Out-of-Order From Data tranGfe2_fordlim_0[2:0]
is therefore tied to 0Q;L The core will also never have more than two outstanding From C
instructions issued, which also automatically liniB2_forder_0[2:0 to 001,

Valid

ne

OP

CP2_fdata_0[31:0]

From Coprocessor Data. Data to be transferred from coprocessor. Validdf#grids_0s
asserted.

Coprocessor Condition Code Chec

COP2 coprocessor. This

is only used for BC2 instructions.

k: These signals are used to report the result of a condition code check to the M4K core

from the

ode

Coprocessor Condition Code Check Strobe. Asserted when coprocessor condition @
CP2_cccs_0 | - .
- - check bits are available @P2_ccc_0
Coprocessor Conditions Code Check. Valid wa&2_cccs_0s asserted. When asserte
CP2_ccc_0 the branch instruction checking the condition code should take the branch. When deas|

the branch instruction should not branch.

d
serted,

Coprocessor Exceptions:

These signals are used by the COP2 coprocessor to report exception for each instruction.

CP2_excs_0

Coprocessor Exception Strobe. Asserted when coprocessor exception signalling is av,
on CP2_exc_&ndCP2_exccode .0

ailable

CP2_exc_0

Coprocessor Exception. When asserted, a Coprocessor exception is signaled on
CP2_exccode_0[4:0)]valid whenCP2_excs_(s asserted.

CP2_exccode_0[4:0]

Coprocessor Exception Code. Valid when bOBR2_excs_@ndCP2_exc_Gare asserted.

CP2_exccode[4;

0] Exception
01016 (RI) Reserved Instruction Exceptign
10000, (IS1) Available for Coprocessor

specific Exception

(IS1) Available for Coprocessor
specific Exception

10016 C2E Exception

Al Adlamvn MAanAavii~d

10003,

34

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

01

1.8 External Interface Signals

Table 1-3 M4K Signal Descriptions (Continued)

Signal Name Type Description

Instruction Nullification: These signals are used by the M4K core to signal nullification of each instruction to the COP2 coprpcessor.

CP2_nulls_0 o Coprocessor Null Strobe. Asserted when a nullification signal is avail& amull_0

Nullify Coprocessor Instruction. When deasserted, the M4K core is signalling that the
instruction is not nullified. When asserted, the M4K core is signalling that the instruction is
nullified, and no further transactions will take place for this instruction. Valid when
CP2_nulls_QGs asserted.

CP2_null_0 (0]

Instruction Killing: These signals are used by the M4K core to signal killing of each instruction to the COP2 coprocessor.

CP2_kills_0 (0] Coprocessor Kill Strobe. Asserted when Kill signalling is availat@#®@nkill_0[1:0].

Kill Coprocessor Instruction. Valid whebP2_kills_Qis asserted.

CP2_kill_0[1:0
] Type of Kill
00, Instruction is not killed and
CP2_kill_0[1:0] o 01, results can be committed.

10, Instruction is killed.
(not due taCP2_exc_P

Instruction is killed.

11,
) o (due toCP2 exc 0 . i
If an instruction is killed, no further transactions will take place on the interface for this
instruction.
Miscellaneous COP?2 signals:
CP2_reset (0] Coprocessor Reset. Asserted when a hard or soft reset is performed by the integef unit.

COP2 Present. Must be asserted when COP2 hardware is connected to the Coprocessor 2

CP2_present S Interface.

Coprocessor Ildle. Asserted when the coprocessor logic is idle. Enables the processar to go

CP2_idle : into sleep mode and shut down the clock. Valid on¥R2_presenis asserted.

EJTAG Interface

TAP interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core doeg not
implement the TAP controller.

Active-low Test Reset Input (TRST*) for the EJTAG TAP. At power-up, the assertion pf

EJ_TRST_N : EJ_TRST_Nauses the TAP controller to be reset.
EJ_TCK | Test Clock Input (TCK) for the EJTAG TAP.
EJ_TMS | Test Mode Select Input (TMS) for the EJTAG TAP.
EJ_TDI | Test Data Input (TDI) for the EJTAG TAP.
EJ_TDO (0] Test Data Output (TDO) for the EJTAG TAP.

Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state

EJ TDOzstate O | 0: The TDO output at chip level must be driven to the vald&Joff DO
IEEE Standard 1149.1-1990 defines TDO as a 3-stated signal. To avoid having a 3-state core
output, the M4K core outputs this signal to drive an external 3-state buffer.

Debug Interrupt:

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 35

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

Table 1-3 M4K Signal Descriptions (Continued)

tthe

ing
ode is

a low

Signal Name Type Description
EJ DINTsu S Value of DINTsup for the Implementation register. When high, this signal indicates tha
- P EJTAG probe can use the DINT signal to interrupt the processor.
Debug exception request when this signal is asserted in a CPU clock period after be
EJ_DINT | deasserted in the previous CPU clock period. The request is cleared when debug m
entered. Requests when in debug mode are ignored.
Debug Mode Indication:
Asserted when the core is in Debug Mode. This can be used to bring the core out of]
EJ_DebugM @) power mode. In systems with multiple processor cores, this signal can be used to
synchronize the cores when debugging.
Device ID bits:

inputs to their own values.

These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not implemented,
inputs are not connected. These inputs are always available for soft core customers. On hard cores, the core “hardener” cg

these
n set these

EJ_ManufID[10:0]

Value of the ManuflD[10:0] field in the Device ID register. As per IEEE 1149.1-1990
section 11.2, the manufacturer identity code shall be a compressed form of JEDEC st§
manufacturer’s identification code in the JEDEC Publications 106, which can be fou
http://lwww.jedec.org/

ManuflD[6:0] bits are derived from the last byte of the JEDEC code by discarding the p
bit. ManuflD[10:7] bits provide a binary count of the number of bytes in the JEDEC ¢
that contain the continuation character (0Ox7F). Where the number of continuations
characters exceeds 15, these 4 bits contain the modulo-16 count of the number of
continuation characters.

andard
nd at:

arity
ode

EJ_PartNumber[15:0]

S

Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0]

S

Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs:

These signals come from EJTAG control registers. They have no effect on the core, but can be used to give EJTAG debu
software additional control over the system.

gging

this

the

Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft resets. If
EJ_SRstE @) .)
- signal is deasserted, none, some, or all soft reset sources are masked.
Peripheral Reset. EJTAG can assert this signal to request the reset of some or all of
EJ_PerRst o . . .
- peripheral devices in the system.
Processor Reset. EJTAG can assert this signal to request that the core be reset. Th
EJ_PrRst @) ; .
- fed into theSI_Resesignal.

s can be

EJTAG Trace Interface

Note that if on-chip trace memory is used, access occurs via the EJTAG TAP interface, and this interface is not required.

These signals enable an interface to optional off-chip trace memory. The EJTAG Trace interface connects to the Probe Interface
Block (PIB) which in turn connects to the physical off-chip trace pins.

36

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

01

1.8 External Interface Signals

Table 1-3 M4K Signal Descriptions (Continued)

Signal Name

Type

Description

TC_ClockRatio[2:0]

Clock ratio. This is the clock ratio set by softward@ @BCONTROLB.CRThe value will
be within the boundaries defined B¢_CRMaxandTC_CRMinThe table below shows the
encoded values for clock ratio.

Clock Ratio
8:1 (Trace clock is eight times the core clock)

TC_ClockRatio
000
001
010
011
100
101
110
111

4:1 (Trace clock is four times the core clock)

2:1 (Trace clock is double the core clock)

1:1 (Trace clock is same as the core clock)

1:2 (Trace clock is one half the core clock)

1:4 (Trace clock is one fourth the core clock)

1:6 (Trace clock is one sixth the core clock)

1:8 (Trace clock is one eight the core clock)

TC_CRMax[2:0]

Maximum clock ratio supported. This static input sets the CRMax field of @BCONFIG
register. It defines the capabilities of the Probe Interface Block (PIB) module.This fie
determines the minimum value B€_ClockRatio

TC_CRMin[2:0]

Minimum clock ratio supported. This input sets the CRMin field oMGBCONFIG
register. It defines the capabilities of the PIB module. This field determines the maxi
value of TC_ClockRatio

mum

TC_ProbeWidth[1:0]

This static input will set the PW field of tTe€CBCONFIGregister.

If this interface is not driving a PIB module, but some chip-level TCB-like module, then
field should be set to 2’b11 (reserved value for PW).

TC_ProbeWidt | Number physical
h data pin on PIB

00 4 bits

01 8 bits

10 16 bits

11 Not directly to PIB

this

TC_PibPresent

Must be asserted when a PIB is attached to the TC Interface. When de-asserted (low)
other inputs are disregarded.

all the

TC_TrEnable

Trace Enable, when asserted the PIB must start running its output clock and can expe
data on all other outputs.

tvalid

TC_Calibrate

This signal is asserted when the Cal bit inTRBCONTROLBegister is set.

For a simple PIB which only serves one TCB, this pin can be ignored. For a multi-co
capable PIB which also us&€ ValidandTC_Stall the PIB must start producing the
calibration pattern when this signal is asserted.

re

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

37

Table 1-3 M4K Signal Descriptions (Continued)

Signal Name Type Description
This input identifies the number of bits picked up by the probe interface module in each
“cycle”.
If TC_ClockRatidndicates a clock-ratio higher than 1:2, then clock multiplication in the
Probe logic is used. The “cycle” is equal to each core clock cycle.
If TC_ClockRatidndicates a clock-ratio lower than or equal to 1:2, then “cycle” is (clack-
ratio * 2) of the core clock cycle. For example, with a clock ratio of 1:2, a “cycle” is eqqual
to core clock cycle; with a clock ratio of 1:4, a “cycle” is equal to one half of core clo¢gk
cycle.
This input controls the down-shifting amount and frequency of the trace word on
TC_Data[63:0] The bit width and the correspondif@_DataBitsvalue is shown in the
table below.
TC_DataBits[2:0]
Probe uses following
TC_DataBits[2:| bits from TC_Data
0] each cycle
000 TC_Data[3:0]
001 TC_Data[7:0]
010 TC_Data[15:0]
011 TC_Data[31:0]
100 TC_Data[63:0]
L . Nthare I lInticad i
This input might change as the valueTad_ClockRatio[2:0]changes.
TC Valid o Asserted when a valid new trace word is started off theData[63:0] signals.
ali
- TC_Validis only asserted wherC_DataBitsis 100.
When asserted, a nellC_Validin the following cycle is stalledTC_Validis still asserted,
but theTC_Datavalue andrC_Validare held static, until the cycle afteéC_ Stallis sampled
TC_Stall | low.
TC_Stallis only sampled in the cycle before a nB@&_Validcycle, and only when
TC_DataBitsis 100, indicating a full word ofFC_Data
Trace word data. The value on this 64-bit interface is shifted down as indicated in
TC_DataBits[2:0] In the first cycle where a new trace word is valid on all the bits ang
TC_DataBits[2:0]is 100,TC_Validis also asserted.
TC_Data[63:0] O | The Probe Interface Block (PIB) will only be connected to [(N-1):0] bits of this output Hus.
N is the number of bits picked up by the PIB in each core clock cycle. For clock ratigs 1:2
and lower, N is equal to the number of physical trace pins (legal values of N are 4, 8, of 16).
For higher clock ratios, N is larger than the number of physical trace pins.
TC_ProbeTrigin A Rlsm.g edge trigger input. The source should b_e the P_robe Trigger input. The input is
considered asynchronous; i.e., it is double registered in the core.

. Single cycle (relative to the “cycle” defined the descriptiom®@f DataBit$ high strobe,
TC_ProbeTrigOut © trigger output. The target of this trigger is intended to be the external probe’s trigger olitput.
TC_ChipTrigin A Rising edge trllgger !nput. The source shOL_JId be on-chip. The input is considered

asynchronous; i.e., it is double registered in the core.
TC_ChipTrigOut o Slngle cycle (relative to core _clock) high strobe, trigger output. The target of this trigger is
intended to be an on-chip unit.

Scan Test Interface

These signals provide an interface for testing the core. The use and configuration of these pins are implementation-depgndent.

38

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.9 SRAM-style Interface Transactions

Table 1-3 M4K Signal Descriptions (Continued)

Signal Name Type Description
This signal should be asserted while scanning vectors into or out of the core. The
gscanenable | gscanenablsignal must be deasserted during normal operation and during capture ¢locks
in test mode.
This signal should be asserted during all scan testing both while scanning and during cppture
gscanmode | . ; .
clocks. Thegscanmodsignal must be deasserted during normal operation.
gscanin_X I These signal(s) are the inputs to the scan chain(s).
gscanout_X (@) These signal(s) are the outputs from the scan chain(s).
BistIn[n:0] | Input to user-specified BIST controller.
BistOut[n:0] (0] Output from user-specified BIST controller.

1.9 SRAM-style Interface Transactions

Waveforms illustrating various transactions are shown in the following subsections. The type of transaction is always
indicated through assertion of one of the three mutually-exclusive strobe signals:

» DS _ReadDS_ Write orDS_Synmn the D-side
* IS_ReadlS_Write orIS_Synmn the I-side
Most figures assume that a dual I/D interface is present, and show D-side transactions (in some cases redirected to I-

side). However, I-side (and thus Unified Interface) transactions work the same way, except there is no I- to D-side
redirection mechanism.

Unless stated otherwise, I-side waveforms assume that 32 bit MIPS32 instruction fetches are being continuously
performed.

1.9.1 Simple Reads and Writes

This section describes several basic read and write transactions.

1.9.1.1 Single Read

Figure 1-6 illustrates the fastest read, a single cycle D-side read operation. The transaction is initiated by the core in cycle
1, as it asserts the read strob&S(Rea}l as well as the desired word addreBS(Addr[31:2) and output byte enables
(DS_BEJ[3:0). The byte enables represent the lower two bits of the address, as well as the requested data size, and
identify which of the four byte lanes &@5_RDatan which the core expects the read data to be returned.

The external agent is able to process the read immediately, so it deasserts stall while returning the appropriate read data
(DS_RData[31:0] and the input byte enabld3%_RBE[3:0) in the following clock, cycle 2, and the transaction

completes successfully. The input byte enables control sampling of the corresponding byte R8eRataand

must be asserted appropriately. There is no explicit hardware check that the input byte enables actually corresponded to
the requested output byte enables. If some of the necessary input byte enables are not asserted, the core will (probably
erroneously) just use the last read data held in the input registers for those byte lanes.

The interface protocol does not include an explicit “read acknowledge” strobe; for simplicity, the transaction is identified
to be complete solely by the first cycle following a read strobe in whichB&llGtal) is deasserted. Other signals

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 39

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

(DS_Error, DS_RedirDS_AbortAck, DS_UnlockAxlndicate the status of a transaction, but the completion itself is
identified only through the deassertion@®_Stalj the status signals are ignored by the core wh&n Stallis asserted.

In a typical system, the read data is returned from an SRAM device that is accessed synchronously on the rising edge of
cycle 2, with the address and strobe information provided by the core in cycle 1. The read data can be returned by any
device that meets the protocol timing, such as ROM, flash, or memory-mapped registers.

Cycle # 121345167
clk SN Iy A
bs Read | U TN 1 T T T T T
DS_Write

DS_Sync

DS Addr3L2] — XXadd X = @
DS_BE[3:0] XTXbe X X %
DS_WData[31:0] X ©
DS_Lock

DS_Unlock

DS_Abort

DS_E;jtBreakEn

DS_EjtBreak

DS_Stall X \ X

DS_Error % \

DS_AbortAck \ I
>

DS_Redir \ g

DS_UnlockAck X

DS_RData[31:0] XX data X

DS_RBE[3:0] X X _be X

Figure 1-6 Single Cycle Read

1.9.1.2 Single Write

Figure 1-7 illustrates the fastest write, a single cycle D-side write operation. The transaction is initiated by the core in
cycle 1, as it asserts the write stroB&(Writd, as well as the desired word addrd3S (Addr[31:2), write data
(DS_WhData[31:0], and output byte enable®$ BE[3:0). The byte enables identify which of the four byte lanes in
DS_WDatahold valid write data.

The external agent is able to successfully acknowledge the write immediately, so it deass®&& SHl)(in the
following clock, cycle 2, to complete the write. Note that the interface protocol does not include an explicit “write
acknowledge” strobe; the transaction is identified to be complete simply by the deassertion of stall.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.9 SRAM-style Interface Transactions

Cycle # 172345167

DS_Write _/
DS_Sync
DS Addra1:2] X Xaddr X 2
DS_BE[3:0] XTXbe [X X
DS_WData[31:0] X X data_X X
DS_Lock

Outputs

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_Stall

DS_Error

X X
X X
DS_AbortAck X X
X X

Inputs

DS_Redir
DS_UnlockAck

DS_RData[31:0]
DS_RBE[3:0]

Figure 1-7 Single Cycle Write

1.9.1.3 Read with Waitstate

Figure 1-8 illustrates a D-side read operation with a single waitstate. This transaction is similar to the single-cycle read
in Figure 1-6, only now a stalDS_Stal) is asserted for one cycle and the read data is returned a cycle later.

The transaction is initiated by the core in cycle 1, as it asserts the read BBolRea)l as well as the desired word
address@S_Addr[31:2) and output byte enable®$_BE[3:0).

The external agent is not ready to complete the read immediately, so it BSsedtallin cycle 2. Note that during a
stall, the core holds the read strobe, address and output byte enables valid, and ignores values driven on the input status
signals DS_Error, DS_RedirDS_AbortAck

In cycle 3, the read data becomes available, so the external agent ddaSs@&talland returns the appropriate read data
(DS_RData[31:0] and the input byte enableB$ RBE[3:0). In this example, no error or redirection is signaled, so the
transaction completes successfully in cycle 3.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 41

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

42

Cycle # 1. 2 3 4 5 6 7

clk N Sy Sy Oy QI
ES__Read_ ______________
DS_Write

DS_Sync

DS_Addr[31:2] XX addr . X_ X Y
DS_BE[3:0] XX be Y X é‘
DS_WData[31:0] < o
DS_Lock

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_Stall X7 / <

DS_Error X \ / <
DS_AbortAck X \ / Q
DS_Redir X \ |/ X ;;
DS_UnlockAck X

DS_RData[31:0] X X

DS_RBE[30] X X XD XX T

Figure 1-8 Read with One Waitstate

1.9.1.4 Write with Waitstate

Figure 1-9 illustrates a D-side write operation with a single waitstate. This transaction is similar to the single-cycle write
in Figure 1-7, only now a stalDS_Stal) is asserted for one cycle and the write is completed a cycle later.

The transaction is initiated by the core in cycle 1, as it asserts the write 8RD#/1(jt9, as well as the desired word
address@S_Addr[31:2), write dataDS_WData[31:0], and output byte enable®$_BE[3:0).

The external agent cannot acknowledge the write immediately for some reason, so iD&<&tdtlin cycle 2. The
core outputs are held valid through the stall. Finally in cycle 3, the write can be accepi¥8, Stalldeasserts, and the
error and redirection signals also deassert to indicate a normal completion.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.9 SRAM-style Interface Transactions

Cycle # 1 2 3 4 5 6 7
clk N [y Dy I S oy
BS__Read_ ______________
DS_Write T T\

DS_Sync

DS_Addr[31:2] XX Taddr T XTX A
DS_BE[3:0] XTX__Tbe XT_X §
DS_WbData[31:0] X data X X ©
DS_Lock

DS_Unlock

DS_Abort

DS_E;jtBreakEn

DS_EjtBreak

DS_Stall X 1/ \ / X

DS_Error X \ /

DS_AbortAck X \ / @
DS_Redir / E
DS_UnlockAck X

DS_RData[31:0]

DS_RBE[3:0]

Figure 1-9 Write with One Waitstate

1.9.1.5 Read Followed by Write

Figure 1-10 illustrates a single cycle D-side read operation followed immediately by a single cycle D-side write
operation. This example represents the back-to-back concatenation of the single-cycle read shown in Figure 1-6 with the
single cycle write from Figure 1-7.

The read is initiated in cycle 1, with the core’s assertion of the read strobe, read address, and read output byte enables.
The external agent is able to fulfill the read request in cycle 2, so it deasserts stall and drives the read data and input byte
enables in cycle 2.

Since there is no stall from the read in cycle 2, the core is immediately able to initiate another transaction in the same
cycle (if it has one pending), this time a write. Note that the SRAM-style interface logic contains a combinational path
from DS_Stallto the start of a new transaction, for maximum performance. The external agent can accept the write, so
no stall is asserted in cycle 3 and the write finishes.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 43

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

44

Cycle # 1 2 3 4 5 6 7

clk S Ty T e I T 0 W o
BS__Read_ - :/___\ _________
DS_Write /T \

DS_Sync

DS_Addr[31:2] X X addr0 X addriX X ;
DS_BE[3:0] X XBe0 X bel X X z-.
DS_WData[31:0] X X data X X ©
DS_Lock

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_stall —\) S —
DS_Error X [T
DS_AbortAck “TXTTN [T x }2
DS_Redir X [T X T é—
DS_UnlockAck X

DS_RData[31:0] X X_data X X

DS_RBE[3:0] X X <

Figure 1-10 Read followed by write (single cycle)

1.9.1.6 Read Followed by Write, with Waitstates

Figure 1-11 illustrates a one waitstate D-side read operation followed immediately by a one waitstate D-side write
operation. This example is similar to the back-to-back read/write case in Figure 1-10, only now each of the two
transactions includes one waitstate.

The read is initiated in cycle 1, with the core’s assertion of the read strobe, read address, and read output byte enables.
The external agent cannot complete the read immediately, so it asserts stall in cycle 2. This forces the core to hold its
read-related outputs for another cycle, and precludes the core from starting a new transaction. In cycle 3, stall deasserts
and the read data and input byte enables are driven valid, completing the read.

The stall deassertion in cycle 3 allows the core to start its next pending transaction, this time a write. The external agent
is not ready to accept the write, so it asserts stall again in cycle 4. Finally in cycle 5, the write can complete, so stall
deasserts and the write finishes.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.9 SRAM-style Interface Transactions

Cycle # 1 2 3 4 5 6 7
S I R L I
DS_Read Y,

DS_Write / \

DS_Sync

DS_Addr[31:2] XX addro | XT addd X X ﬂ
DS_BE[3:0] XTX”hed X hel X X %
DS_WbData[31:0] X X datal X X ©
DS_Lock

DS_Unlock

DS_Abort

DS_E;jtBreakEn

DS_EjtBreak

DS_Stall X L/ X

DS Error X N/ XN\ /[X
DS_AbortAck X N\ |/ X[\ /X @
DS_Redir X X X é‘
DS_UnlockAck X

DS_RData[31:0] X X dataX X

DS_RBE[3:0] X_ X X1 Xpe D) X

Figure 1-11 Read followed by write (one waitstate)

1.9.2 MIPS16e Instruction Fetches

Most instruction fetches are performed as a full word read (32 bits) on the I-side interface, so all®itBB{3:0]are

usually asserted. Even in MIPS16e mode, where 16-bit instructions are executed, most fetches are still performed as full
word fetches in order to optimize the I-side bandwidth. The core holds the full word in an internal buffer, and therefore
usually only needs to perform a fetch when executing every other MIPS16e instruction. When a jump or branch occurs
to the middle of a word in MIPS16e mode, however, the core will perform a halfword (16-bit) fetch.

Figure 1-12 illustrates instruction fetches when executing in MIPS16e mode, assuming no waitstates.

A word-aligned fetch at addrO is requested in cycle 1. This causes a 32 bit word (for example, containing two non-
extended MIPS16e instructions, “instr0” and “instrl”) to be fetched (the current as well as the following instruction).

This example assumes that the code is executed sequentially up to this point, so no read is necessary for the next
instruction (i.e. no read request in cycle 2). The example assumes that “instrl” is a jump to a non word aligned address
(addr5).

In cycle 3, a word-aligned fetch from addr2 is requested. Again, a full instruction word is fetched, but in this case it is
assumed that only one 16 bit instruction is used (“instr2”, which is the jump delay slot of “instrl”).

In cycle 4, afetch occurs for the instruction at the jump target address (addr5). The figure illustrates the case where addr5
is not word aligned, so only 16 bits (“instr5”) are read. Endianness is assumed to be I&IBE[3:0] =“1100". In
the big endian cas&_BE[3:0]would have been “0011".

In cycle 5, a full word fetch occurs for the following 2 instructions after the jump target, stored at addr6.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 45

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

Cycle # 11723415167
ek S LTVITLTLTITL L
IS_Read TN TN
IS_Write

2
IS_Sync 2

5
IS_Instr (@]
IS_Addr[31:2] X X addroX X*XaddreXaddr5XaddreX X
IS_BE[3:0] X XCII11X X X1111XT100X 11110 X)
IS_Stall X /X X
IS_Error X /[X\ X
IS_AbortAck X XN\ <

IS_RData[31:16] (X XinstrIX_ X Xinstr3Xinstr5Xinstr7 XX
IS_RData[15:0] (X XinstroX_ X, Xinstr2X_X: Xinstr6X_ X

Inputs

IS_RBE[3:2] D 657 & U 6T S &7
IS_RBE[1:0] (O XX O X X X XX

Figure 1-12 MIPS16e instruction fetches (single cycle, little endian mode)

1.9.3 Redirection

When dual | and D interfaces are present, it is possible to redirect a D-side operation to the I-side for completion. This
mechanism might be useful if the system wants to read data that is stored in an I-side device, or to initialize an I-side
SRAM with data store instructions that would normally be presented to the D-side. There is no mechanism to redirect
I-side references to the D-side. Also, the PC-relative load instructions present in the MIPS16e ASE use an internal
method within the core to present loads to the I-side, and therefore do not use the explicit external redirection
mechanism.

When a D-side transaction has been redirected to the I-side, the core will never initiate a new D-side transaction until
the redirected one has completed on the I-side.

Several examples of D-side operations redirected to I-side are illustrated. The examples assume that the redirected D-
side transaction immediately gets access to the I-side external interface. This is the typical case since redirected D-side
accesses have priority over I-side instruction fetches.

1.9.3.1 Redirected Read, Single-Cycle

Figure 1-13 illustrates a single-cycle D-side read operation vibfer&ediris used for requesting the operation to be
redirected to the I-side. In this example, the I-side read operation is also single cycle.

The data read begins in cycle 1, like the simple read introduced in Figure 1-6. The external agent decides that the read
must be handled by the I-side array, so it deas&BtsStallwhile assertinddS_Rediiin cycle 2. The D-side transaction

is thus terminated, but with the status that it must be redirected to the I-side for completion. The I-side is able to start the
request immediately, so the read strdiSe Reall addressI§_Addr[31:2) and byte enable$S BE[3:0]) from the

original data read request are driven in cycle 3. Notel®alnstris deasserted in cycle 3. The external agent returns the
requested read datts(RDat§31:0]) and input byte enablekS(RBE[3:0) in cycle 4, and the redirected transaction
completes since there is no stall.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.9 SRAM-style Interface Transactions

Cycle # 1 2 3 4 5 6 7
S i S L i
DS_Read /TN

DS_Addr[31:2] XX addr X X 0
DS_BE[3:0] XXbe X X g
IS_Read ©
IS_Instr L/

IS_Addr[31:2] XX Xadde X XXX
IS_BE[3:0] 1111 X_be X ‘1117

DS_Stall X \ X

DS_Redir X / \ X

DS_RData[31:0] X &
DS_RBE[3:0] X X0000 X X é
IS_Stall

IS_RData[31:0] XXX Xdaa X XX
IS_RBE[3:0] TIiT B XTI

Figure 1-13 Redirected read (single cycle)

1.9.3.2 Redirected Read with Waitstate

Figure 1-14 illustrates a one waitstate D-side read operation vidfer&ediris used for requesting the operation to be
redirected to the I-side. In this example, the I-side read operation also has one waitstate.

The data read again begins in cycle 1. The external agent decides to stall the core for one cycle starting in cycle 2, by
assertingS_Stall Then in cycle 3, the agent decides to redirect the data read request to the I-side. In cycle 4, the core
drives the original data read signals on the I-side interface. The I-side is not available for some reason, so the external
agent assert§_Stallin cycle 5, causing the core to hold its strobe, address, and byte enables valid for another cycle.
Finally in cycle 6, the agent deasserts stall, returns the requested read data, and the transaction completes.

Cycle # 1213 4/'516!7

ok _ . _ _ LTI LT

DS_Read _ /T T\

DS_Addr[31:2] XX Taddr X @

DS_BE[3:0] XX be XX %

IS_Read

IS_Instr /T

IS_Addr[31:2] X X X_addr X

IS_BE[3:0] 11T X__be XCTILT

DS_Stall X/ "\ X

DS_Redir X /"N X

DS_RData[31:0] X ﬂ

DS_RBE[3:0] i e a—

IS_stall NN

IS_RData[31:0] X X__ X X_ XX Xdata X__

IS_RBE[3:0] :

Figure 1-14 Redirected read (one waitstate)

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 a7

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

48

1.9.3.3 Redirected Write, Single-Cycle

Figure 1-15 illustrates a single cycle D-side write operation wh8reRediris used for requesting the operation to be
redirected to I-side. In this example, the I-side write operation is also single cycle. Writes redirected to the I-side might
be used as a method for initializing the instruction code space, as writes to instruction memory are not otherwise possible
from the core.

The D-side write initiated in cycle 1 is requested for redirection in cycle 2. In cycle 3, the core drives the I-side write
strobe, address, byte enables, and data. A redirected write is the only way litBatWheestrobe is asserted. There is

no write data bus on the I-side, so the write data continues to be held® WData[31:0]bus. The external agent

can accept the data immediately, so the transaction completes in cycle 4 since there is no stall.

Cycle # 1721345167
T S R S S iy i R
DS_Write I/ T\

DS_Addr[31:2] XX addr X X

DS_BE[3:0] X | X be X

DS_WData[3L0] ~—2-X—data X X é’
IS_Read g
IS_Write \

IS_Instr _ | /

IS_Addr[31:2]
IS_BE[3:0] T T X _be X TIIT

DS_stall |/ .]
DS_Redir < < - §
IS_Stall

Figure 1-15 Redirected write (single cycle)

1.9.3.4 Redirected Write with Waitstate

Figure 1-16 illustrates a one waitstate D-side write operation wh&reRedilis used for requesting the operation to be
redirected to I-side. In this example, the I-side write operation also has one waitstate.

The sequence shown in Figure 1-16 is similar to the single cycle write redirection in Figure 1-15, only this time one
waitstate is asserted on the D-side before the redirection is signaled, and then another waitstate is signaled on the I-side
before the write is accepted.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.9 SRAM-style Interface Transactions

Cycle # 12 '3 14 '5 16 '7
S e B R
DS_Write L/

DS_Addr[31:2] XX addr XX

DS_BE[3:0] X X__be XX

DS _WData[31:0] XX data XX %
IS_Read g
IS_Write

IS_Instr

IS_Addr[31:2] X X X_addr__X

IS_BE[3:0] 11T X__be) GENEEY
DS_Stall x—T7 \ % .
DS_Redir - S é
IS_Stall NN N

Figure 1-16 Redirected write (one waitstate)

1.9.4 Data Gathering

The SRAM interface includes a “data gathering” capability that uses input byte enable diffialRBE[3:0] to control
input data registers and allow the read data to be registered within the core as it becomes available. The same mechanism
is available for the I-side, using§_RBE[3:0]

As the core contains 32-bit interfaces for read data, the gathering capability enables the connection to narrower memories
with minimal logic external to the core. Read data must be aligned to the appropriate byte lane by external logic, but the
input byte enables remove the need for external flops to hold partial read data while it is collected.

The gathering capability is illustrated in Figure 1-17. The data read is initiated by the core in cycle 1, as normal. In this
example, the requested read data is 32 bits wide, but it will be returned one byte at a time. The external agent asserts
DS_Stalffor 3 clocks, starting in cycle 2. In cycles 2-4, a single byte of read data is returned each clock, as indicated by
the input byte enable®& RBE][3:0), while stall remains asserted. Finally in cycle 5, stall is deasserted and the final
byte is returned, completing the read transaction.

The input byte enableBS_RBE[3:0] simply act as enables on the conditional flops that capture the read data bus,
DS_RData[31:0] The core does not perform any explicit checking to ensure that the requested bytes, as indicated by
DS_BE[3:0] were actually returned, as indicatedy_ RBE[3:0] It is up to the external agent to ensure that the
appropriate read data is actually returned. If the necessary input byte enables were not asserted before the transaction
completes, the core will use the last data held by the byte-wide input flops, which will probably not be the desired
behavior.

While stall is asserted, minimal system power will usually be achieved when the valid data byte is strobed only once via
the appropriat®S_RBEsignal. However, the core input flops will be overwritten each cycle &t &BBbit is
asserted, while the transaction is still active.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 49

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

50

Cycle # 1123141 516!'7

ek__ LT LTI 7L
DS_Read _ly

DS_Write ,g
DS_Addr312] XX addr XX §
DS_BE[3:0] XX be

DS_Stall X7 \ X
DS_RData[31:24] X__ X _data X X

DS_RData[23:16] X___ X data X X

DS_RData[15:8] X X_data X X 2]
DS_RData[7:0] X X_data X | X é‘
DS_RBE[3] X 17 T\ [T X
DS_RBE[2] X /T \ X
DS_RBE[1] X /N X
DS_RBE[0] X X

Figure 1-17 Word read, data arriving bytewise

1.9.5 Sync

This section illustrates several examples of the protocol associated with the execution of a SYNC instruction. An external
indication of SYNC execution is provided to allow external agents to order memory operations, if desired.

1.9.5.1 Sync with Waitstate

Figure 1-18 illustrates D-side sync signaling for flushing external write buffers. One waitstate is assumed in this
example.

The sync signaling is initiated in cycle 1, as indicated by the sync sb&&yncThe 5-bit “stype” field encoded

within the SYNC instruction is provided on the address B&s,Addr[10:6] The location of the stype field on the

address bus matches its field position within the SYNC instruction word. A sync transaction is terminated just like a
normal read, in the first non-stall cycle after the sync strobe. If an external agent wants to flush external write buffers, or
allow other pending memory traffic to propagate through the system, it can stall acknowledgment of the sync by asserting
the normal stall signaDS_Stall In this example, one such stall cycle is shown, starting in cycle 2. Then in cycle 3, stall
deasserts and the sync transaction is terminated. In a sync transaction, no read data is returned, so the values on the
DS_RDataandDS_RBEsignals are ignored by the core.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01
Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.9 SRAM-style Interface Transactions

Cycle # 11723 6
clk L

DS_Read

DS_Write
DS_Sync _/
DS_Addr10:6] XX _stwpe. X X
DS_BE[3:0] X

Outputs

DS_WData[31:0] X

DS_Lock

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_Stall X/ \ X

DS_Error

DS_AbortAck X \ / X

Inputs

DS_Redir X

DS_UnlockAck X

DS_RData[31:0]

DS_RBE[3:0]

Figure 1-18 Sync (one waitstate)

1.9.5.2 Redirected Sync

Figure 1-19 illustrates sync signaling where the sync operation is requested to be redirected to I-side in order to flush I-
side external write buffers. One waitstate for both D- and I-side is assumed in this example.

Usually, memory ordering around D-side transactions is desired, so the sync would only take effect on the D-side. But
the sync transaction, much like a read, can also be redirected to the I-side, if desired.

In this example, the sync is initiated on the D-side in cycle 1. The external agent responds with a stall in cycle 2, then a
redirection request to the I-side in cycle 3. In cycle 4, the core drives the I-side Erdbgnft and stype information

on the address butJ_Addr[10:6). Note thatlS_Instralso deasserts in cycle 4, to indicate that the I-side transaction is

not due to an instruction fetch. The external agent cannot acknowledge the sync immediately, so it asserts stall in cycle
5. Finally in cycle 6, the stall deasserts and the redirected sync transaction is completed.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 51

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

Cycle # 172134151 6!'7

iy S Sy S S Sy

DS_Read

DS_Write

DS_Sync /

DS_Addr{10:6] XX Tstme XX

DS_BE[3:0] X £

3

IS_Read 5

- (e}

IS_Write

IS_Sync

IS_Instr

IS_Addr[10:6] X X X _stype X

IS_BE[3:0] 1111 X1 X XC1111

DS_stall 7T\

DS_Redir X X

DS_RData[31:0] X

DS_RBE[3:0] g
X 2

IS_stall Y Y s Y aus VY 2un -

IS_RData[31:0] XX XXX XX

IS_RBE[3:0] (X X X X X)

Figure 1-19 Redirected sync (one waitstate)

1.9.6 Bus Error

Examples of the error protocol are shown in this section. An error is indicated throif theororIS_Error pins,

and ultimately results in a precise data or instruction bus error exception within the core. The ass&8o&wbrwill

always result in a data bus error exception. The assertith drrorwill result in an instruction bus error exception if

the transaction is a fetch, or a data bus error exception if the transaction is a data request (redirected or unified interface).

1.9.6.1 Bus Error on Single Cycle Read
Figure 1-20 illustrates a single-cycle D-side read operation causing a bus error, sign&®dB#ieor.

The read is initiated in cycle 1, as normal. This time, the external agent has identified an error condition for some reason,
so it responds by deassertiBg _Stallwhile assertinddS_Errorin cycle 2. This terminates the read transaction on the

bus with an error status. Any values returned obiBeRDataandDS_RBBEbuses will be captured by the input data
registers, but are otherwise ignored by the core. The termination of a read transactibswithrorwill result in a data

bus error exception within the core.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.9 SRAM-style Interface Transactions

Cycle # 12345167

Sk LTI LI LTI
DS_Read U "
DS_Addr31:2) X Xaddr X X 2
DS_BE[3:0] X Xbe X X S
DS_Stall X \ _ / X

DS_Error X / \ X

DS_Redir X N/ X 2
DS_AbortAck X X g_
DS_RData[31:0] X X _data X X

DS_RBE[3:0] X X be X

Figure 1-20 Read with error indication (single cycle)

1.9.6.2 Bus Error on Read with Waitstate
Figure 1-21 illustrates a one waitstate D-side read operation causing a bus error.

Again, the read transaction begins normally in cycle 1. A stall is asserted in cycle 2. Finally in cycle 3, the external agent
has identified an error condition so it deasserts stall and terminates the read transaction with error status, via the assertion
of DS_Error The value oDS_Error, as well as any other core input for that matter, is ignored by the core whenever
DS_Stallis asserted.

Cycle # 121345167
<. S S S Sy S S
DS_Read /
0
DS_Addr[31:2] XX_addr __X_X 2
>
DS_BE[3:0] XX be XX o
DS_Stall X 7 \ /
DS_Error X X
DS_Redir X X %
2
DS_AbortAck X X =
DS_RData[31:0] . .
DS_RBE[:0] S 0 50 (T G S

Figure 1-21 Read with error indication (one waitstate)

1.9.7 Abort

Due to the nature of the core pipeline, it may sometimes be desirable to abort a transaction on the SRAM-style interface
before it completes.

Normally, interrupts are taken on the E-M boundary of the pipeline. Since a D-side interface transaction occurs during
the M-stage, a pending interrupt must wait for the outstanding transaction to complete. If this transaction has multiple
waitstates, interrupt latency will be degraded. To improve interrupt latency, a mechanism exists on the SRAM interface
that allows an outstanding transaction to be aborted. Generally, a transaction must have at least one waitstate or it doesn't
make sense to abort it.

Use of the abort mechanism is optional. If a load/store/sync transaction is successfully aborted following an interrupt,
then the interrupt will be taken on the load/store/sync instruction that initiated the transaction. In this case, care must be

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 53

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

54

taken to ensure that the aborted transaction can be replayed with no ill effects in the system. If the transaction is not
aborted, then the interrupt is simply taken on the instruction following the load/store/sync.

Examples of aborted transactions are discussed in the following subsections.

1.9.7.1 Aborted Read

Figure 1-22 illustrates a one waitstate D-side read operation with an abort request. In this example, external logic was
able to abort the operation, and signals the acknowledgment through assebi®mtiortAck

The read begins normally in cycle 1, due to a load instruction. An interrupt is pending, so the core signals an abort
request, by assertiigS_Abortin cycle 2. Whether the external agent responds to the abort request is completely
optional. Also in cycle 2, the external agent is not ready to complete the read, so it asserts stall. In cycle 3, the external
agent decides to abort the pending read transaction, so it deasserts stall while ad&erfibgrtAckand the transaction

is aborted. The interrupt will be taken on the load instruction. Depending on the interrupt handler, instruction flow will
likely return to this load after processing the interrupt, and the aborted read transaction will be replayed.

Cycle # 121345167
S Ty T oy I B
DS_Read / — .\
DS_Addr[31:2] XX __addr XX v
=}
DS_BE[3:0] XX be XX g
o
DS_Abort T N
DS_Stall < / <
DS_Error X \ / X g
g
DS_AbortAck X / \ X =
DS_Redir X \ |/ X

Figure 1-22 Aborted read (one waitstate)

1.9.7.2 Unsuccessful Abort for Single-Cycle Write

Figure 1-23 illustrates a single-cycle D-side write operation with an abort request. In this example, the external logic
ignores the request and does not abort the operation.

The write is initiated in cycle 1. Due to a pending interrupt, the core signals an abort request in cycle 2. The external
agent chooses not to abort the write, so it does not aB&rAbortAckThe transaction completes normally in cycle 2,
since no stall was asserted and the error, redirection and abort acknowledge status signals were deasserted.

Cycle # 123 4/ 5167
g R R R S N
DS_Write /T
DS_Addr{31:2] X Xaddr X X
(%]
DS_BE[3:0] X XBe X < s
F
DS_WData[31:0] XTX dam X X e}
DS_Abort T\
DS_stall < =
DS_Error < \ / < o
3
DS_AbortAck X e E.
DS_Redir X \ / X

Figure 1-23 Unsuccessful Abort attempt for write (single cycle)

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.9 SRAM-style Interface Transactions

1.9.7.3 Aborted Multi-Cycle Write

Figure 1-24 illustrates another case of a successfully aborted operation. This example demonstrates that the abort request
can be signaled several cycles after the transaction has started.

This time, a write request is initiated in cycle 1. The external agent is not ready to complete the write, so it asserts stall
in cycles 2 and 3. In cycle 4, an interrupt causes the core to signal an abort request. This causes the external agent to
terminate the access in cycle 5 (deassefi8gStal), while assertinddS_AbortAcko indicate that the write was

aborted.
Cycle # 11231415167
O S) S
DS_Write _f _ I
DS_Addr[31:2] XX addr X X
DS_BE[3:0] XX be X X %._
DS_WData31:0] XY RE " 3
DS_Abort —_——
DS_Stall X7 \ X
DS_Error @
DS_AbortAck X X é‘
DS_Redir X X

Figure 1-24 Aborted write (multi cycle)

1.9.8 EJTAG Hardware Breakpoints

EJTAG hardware breakpoints present another twist on the SRAM-style interface. Hardware breakpoints are one method
to achieve entry into EJTAG debug mode. When a breakpoint occurs, a debug exception must be taken on the instruction
fetch, data load, or data store instruction itself, but the exception is not known until the transaction has already started
on the interface. Hence, the breakpointed transaction may have accessed memory, but will be replayed after returning
from the debug exception. If this transaction is not replay-able, it should not be allowed to access or modify memory
until it is certain that no breakpoint will occur. At least one waitstate is necessary to identify a transaction that may
potentially take an EJTAG breakpoint exception.

Note that no acknowledge is signalled as response to EJTAG break indicaortgtBreakor IS_EjtBrealj. The
exception is always taken on the instruction fetch, data load, or data store instruction causing the break.

Also note that for a data read operation, a data break may depend on the data value read and so may be triggered after
the read has finished. In case the read is followed by a new transaction, the new transaction may already have been
initiated when the break is detected. In this case, the EJTAG break is signalled in the cycle following the cycle in which

the read was terminated and the new access was initiated.

1.9.8.1 EJTAG Break on Data Write

Figure 1-25 illustrates a one-waitstate D-side write operation causing an EJTAG data break. The EJTAG data break is
signalled usind®S_EjtBreak

The write begins in cycle 1, as usuab_EjtBreakErhas been asserted for a while, indicating that EJTAG data
breakpoints are enabled. The external agent can elect to use this signal to conditionally add waitstates, if replays cannot
be tolerated when a breakpoint event ultimately occurs. In cycle 2, the core BSséfjBreakto indicate that a

hardware breakpoint has been detected. Also in cycle 2, the external agent asserts a stall. Finally in cycle 3, the agent
terminates the write transaction by deasseififg Stall The core pipeline will take a debug exception on the store

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 55

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

56

instruction that caused the write transaction, go into debug mode, and eventually upon exit from the debug handler will
restart the store that caused the EJTAG break.

If the system cannot tolerate replay of the breakpointed transaction, then it should not allow the transaction to access
memory. However, it must indicate a completion of the breakpointed transaction by deasserting stall; otherwise, the core
will be stalled indefinitely.

Cycle # 11234/ 516'!7

ok _ == LI 1Tl

DS_Write -

X X

DS_Addr31:2] XX_addr X

DS_BE[3:0] XX be XX

DS_WData[31:0] X X__[data | X X @
>

DS_Abort £
o

DS_EjtBreakEn

DS_EjtBreak S N

DS_Stall S N/ =

DS_Error X < "

DS_AbortAck X X §

DS_Redir X X

Figure 1-25 EJTAG data write break (one waitstate)

1.9.8.2 EJTAG Break for Data Write, Unified Interface

Figure 1-26 illustrates a data write operation on the Unified Interface. The data write causes an EJTAG data break, which
is signalled usingS_EjtBreak

The data write begins in cycle 1. Note that tBe Writestrobe is asserted, whil8 _ReadndIS_Instrare deasserted, to
indicate that a data write is occurring on the Unified Interfé8eEjtBreakErsignal is asserted, since data breakpoints
and/or instruction breakpoints, have been enabled. In cycle 2, the core detects a data breakpoint, and indicates it by
assertindS_EjtBreak The external agent also stalls the write by asselfin§tallin cycle 2. Finally in cycle 3, the

external agent terminates the transaction by deasststigjall The external agent must signal the completion of the
transaction in the normal manner (by deasserting stall). Again, the system is free to decide whether it actually allows the
breakpointed write to update unified memory, according to its tolerance for replay.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01
Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.9 SRAM-style Interface Transactions

Cycle # 1'2'"31 45167
ek JLTUTLITLTLriL L
IS_Read Y

IS_Write ./

IS_Instr N\

IS_Addr[31:2] X addr X X X_
IS_BE[3:0] "TIIIX__be X TIIT %
DS_WData[31:0) X X__data X < 3
IS_Abort

IS_EjtBreakEn

IS_EjtBreak I Y s U R R
IS_Stall T "
IS_Error X\ [XIN\N[XN\ [XN\ g:.
IS_AbortAck X\ /XN /XN XN\

Figure 1-26 EJTAG data write break for Unified Interface (one waitstate)

1.9.9 Lock

Figure 1-27 illustrates the locking mechanism available to handle semaphores on the interface. This mechanism is used
during the execution of D-side “load linked” / “store conditional” (LL/SC) operations.

The data read resulting from an LL instruction is initiated in cycle 1. The LL is indicated by the core’s high-active
assertion of th®S_Locksignal in cycle 1. External logic can use this information to attempt to set a lock on the
requested address, and prevent other devices from accessing the address if the lock is obtained. The read completes in a
single clock, in cycle 2. Then in cycle 4, the core starts a write resulting from an SC instruction, as indicated by its
assertion of th®S_Unlocksignal. The external agent can signal whether it was able to maintain the desired lock, by
returning the status ddS_UnlockAckThe value returned oRS_UnlockAcks written by the core into the destination

register specified by the SC instruction.

In this example, the read address from the LL (addrO) and the write address from the SC (addrl) are different. It is
completely up to the external logic as to whether locks it maintains are address-specific or not.

While this example has assumed a data operation occuring on a the D-side of a Dual Interface, I-side signaling is used
for redirected (or Unified Interface) LL/SC operations. I-side lock signaling works the same way as the D-side.

An additional signallS_UnlockAl| is related to the locking mechanism but not shown in Figure 1&7nlockAllis
asserted for one cycle whenever an ERET instruction is performed. This signal is only present on the I-side (and
therefore the Unified Interface), and has no equivalent on the D-side. Whenever an ERET instruction is executed,
IS_UnlockAllis asserted for one cycle. When this occurs, external logic can unlock all addresses locked by that CPU.
An ERET is typically issued for each task-switch performed by the operating system.

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01 57

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

58

Cycle # 11721341567
S I Wy Iy s SN
DS_Read T\

DS_Write /

DS_Addr[31:2] XX @ddio XXX addriX X é
DS_BE[3:0] XTX el X X_ T Xbel X X g
DS_WnData[31:0] X X _data X X

DS_Lock /T

DS_Unlock /T \

DS_Stall X T\ [/ X X
DS_RData[31:0] X X daa X X %
DS_RBE[3:0] — T - 2
DS_UnlockAck X 7 AN X

Figure 1-27 Locking (single cycle)

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01
Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

1.10 Revision History

1.10 Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change bars
on figure titles are used to denote a potential change in the figure itself. Certain parts of this document (Instruction set
descriptions, EJTAG register definitions) are references to Architecture specifications, and the change bars within these
sections indicate alterations since the previous version of the relevant Architecture document.

aused

Revisio
n Date Description

00.20 May 8, 2002 Preliminary release.
» Added more details about interrupt modes.

00.90 June 27, 2002 » Added external signals related to an optional external interrupt controller.
 Improved description of GPR shadow sets.
» Commercial release.
» Added this revision history table.
» Changed KO, KU, and K23 fields in Config register to be read-only, with static value

01.00 August 28, 2002 of 2.
» Modified abort description on SRAM interface, as abort requests are not only ¢

by interrupts.

» Updated description of write buffer control signals on SRAM interface.

01.01 January 8, 2003 » Changed case of signalname SI_lAck. Added assembler idioms such as b, hal

MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

59

Copyright ©2002-2003 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies™). Any
copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in
writing by MIPS Technologies or an authorized third party is strictly prohibited. Ata minimum, thisinformati -
protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties ar

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft V
format) is subject to use and distribution restrictions that are independent of and supplemental to any anc
confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURC
FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS
WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve fL

design or otherwise. MIPS Technologies does not assume any liability arising out of the application or us ;
information, or of any error or omission in such information. Any warranties, whether express, statutory, img.
otherwise, including but not limited to the implied warranties of merchantability or fithess for a particular pu

are excluded. Except as expressly provided in any written license agreement from MIPS Technologies o
authorized third party, the furnishing of this document does not give recipient any license to any intellectual

rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported or transferred for the purpose of reexpc
violation of any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement

The information contained in this document constitutes one or more of the following: commercial computt
software, commercial computer software documentation or other commercial items. If the user of this infori

or any related documentation of any kind, including related technical data or manuals, is an agency, depart

other entity of the United States government ("Government”), the use, duplication, reproduction, release,
modification, disclosure, or transfer of this information, or any related documentation of any kind, is restri
accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquis
Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and ¢ 5
covering this information from MIPS Technologies or an authorized third party.

MIPS, R3000, R4000, R5000 and R10000 are among the registered trademarks of MIPS Technologies, | e
United States and other countries, and MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-3D, MIPS-based, Ml

MIPS II, MIPS 1lI, MIPS IV, MIPS V, MIPSsim, SmartMIPS, MIPS Technologies logo, 4K, 4Kc, 4Km, 4Kp, 4t

4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 25Kf, ASMACRO, ATLAS, At the Core of

User Experience., BusBridge, CoreFPGA, CorelLV, EC, JALGO, MALTA, MDMX, MGB, PDtrace, Pipeline,

Pro Series, SEAD, SEAD-2, SOC-it and YAMON are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: D1.06, Build with Conditional Tags: 2B

60MIPS32™ M4K™ Processor Core Datasheet, Revision 01.01

Copyright © 2002-2003 MIPS Technologies Inc. All rights reserved.

	1.1� Features
	1.2� Architecture Overview
	1.3� Pipeline Flow
	1.4� M4K Core Required Logic Blocks
	1.4.1� Execution Unit
	1.4.2� Multiply/Divide Unit (MDU)
	1.4.2.1� Area-Efficient MDU Option
	1.4.2.2� High-Performance MDU

	1.4.3� System Control Coprocessor (CP0)
	1.4.3.1� Interrupt Handling
	1.4.3.2� GPR Shadow Registers

	1.4.4� Modes of Operation
	1.4.5� Memory Management Unit (MMU)
	1.4.6� SRAM Interface Controller
	1.4.6.1� Dual or Unified Interfaces
	1.4.6.2� Backstalling
	1.4.6.3� Redirection
	1.4.6.4� Transaction Abort
	1.4.6.5� MIPS16e Execution
	1.4.6.6� Connecting to Narrower Devices
	1.4.6.7� Lock Mechanism
	1.4.6.8� Sync Mechanism
	1.4.6.9� SimpleBE Mode

	1.4.7� Hardware Reset
	1.4.8� Power Management
	1.4.8.1� Register-Controlled Power Management
	1.4.8.2� Instruction-Controlled Power Management
	1.4.8.3� Local clock gating

	1.5� M4K Core Optional Logic Blocks
	1.5.1� Coprocessor 2 Interface
	1.5.2� CorExtend User Defined Instruction Extensions
	1.5.3� EJTAG Debug Support
	1.5.3.1� Debug Registers
	1.5.3.2� EJTAG Hardware Breakpoints
	1.5.3.3� EJTAG Trace

	1.6� Testability
	1.6.1� Internal Scan
	1.6.2� Memory BIST

	1.7� Instruction Set
	1.8� External Interface Signals
	1.9� SRAM-style Interface Transactions
	1.9.1� Simple Reads and Writes
	1.9.1.1� Single Read
	1.9.1.2� Single Write
	1.9.1.3� Read with Waitstate
	1.9.1.4� Write with Waitstate
	1.9.1.5� Read Followed by Write
	1.9.1.6� Read Followed by Write, with Waitstates

	1.9.2� MIPS16e Instruction Fetches
	1.9.3� Redirection
	1.9.3.1� Redirected Read, Single-Cycle
	1.9.3.2� Redirected Read with Waitstate
	1.9.3.3� Redirected Write, Single-Cycle
	1.9.3.4� Redirected Write with Waitstate

	1.9.4� Data Gathering
	1.9.5� Sync
	1.9.5.1� Sync with Waitstate
	1.9.5.2� Redirected Sync

	1.9.6� Bus Error
	1.9.6.1� Bus Error on Single Cycle Read
	1.9.6.2� Bus Error on Read with Waitstate

	1.9.7� Abort
	1.9.7.1� Aborted Read
	1.9.7.2� Unsuccessful Abort for Single-Cycle Write
	1.9.7.3� Aborted Multi-Cycle Write

	1.9.8� EJTAG Hardware Breakpoints
	1.9.8.1� EJTAG Break on Data Write
	1.9.8.2� EJTAG Break for Data Write, Unified Interface

	1.9.9� Lock

	1.10� Revision History

