MIPS

TECHNOLOGIES

MIPS32™ 4KEp™ Processor Core Datasheet November 8, 2002

The MIPS32™ 4KEp™ core from MIPS® Technologies is a member of the MIPS32 4KE™ processor core family. Itis a
high-performance, low-power, 32-bit MIPS RISC core designed for custom system-on-silicon applications. The core is
designed for semiconductor manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate
their own custom logic and peripherals with a high-performance RISC processor. Itis highly portable across processes, and
can be easily integrated into full system-on-silicon designs, allowing developers to focus their attention on end-user
products. The 4KEp core is ideally positioned to support new products for emerging segments of the digital consumer,
network, systems, and information management markets, enabling new tailored solutions for embedded applications.

The 4KEp core implements the MIPS32 Release 2 Architecture with the MIPS16e™ ASE, and the 32-bit privileged
resource architecture. The Memory Management Unit (MMU) consists of a simple, Fixed Mapping Translation (FMT)
mechanism for applications that do not require the full capabilities of a Translation Lookaside Buffer- (TLB-) based MMU.

Instruction and data caches are fully configurable from O - 64 Kbytes in size. In addition, each cache can be organized as
direct-mapped or 2-way, 3-way, or 4-way set associative. Load and fetch cache misses only block until the critical word

becomes available. The pipeline resumes execution while the remaining words are being written to the cache. Both caches
are virtually indexed and physically tagged to allow them to be accessed in the same clock that the address is translated.

An optional Enhanced JTAG (EJTAG) block allows for single-stepping of the processor as well as instruction and data
virtual address/value breakpoints. Additionally, real-time tracing of instruction program counter, data address, and data
values can be supported.

Figure 1shows a block diagram of the 4KEp core. The core is divideaeqtdredandoptional blocks as shown.

EJTAG Off/On-Chip
Trace I/F
Trace]
MDU I-cache TAP Off-Chip
Debug I/F
g
UDI |« Execution W =
Core MMU Cache 2 5
(RF/ALU/Shift) Controller BIU £ 2
cP2 Q
O
System FMT D-cache Power
Coprocessor
Mgmt
On-Chip | Fixed/Required | | Optional |
Coprocessor 2
Figure 1 4KEp Core Block Diagram
MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 Document Number: MD00113

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Features

5-stage pipeline
32-bit Address and Data Paths
MIPS32-Compatible Instruction Set

— Multiply-Accumulate and Multiply-Subtract
Instructions (MADD, MADDU, MSUB, MSUBU)

— Targeted Multiply Instruction (MUL)

— Zero/One Detect Instructions (CLZ, CLO)

— Wait Instruction (WAIT)

— Conditional Move Instructions (MOVZ, MOVN)

— Prefetch Instruction (PREF)

MIPS32 Enhanced Architecture (Release 2) Features

— Vectored interrupts and support for external interrupt
controller

— Programmable exception vector base

— Atomic interrupt enable/disable

— GPR shadow registers (optionally, one or three
additional shadows can be added to minimize latency
for interrupt handlers)

— Bit field manipulation instructions

MIPS16e™ Code Compression

— 16 bit encodings of 32 bit instructions to improve code
density

— Special PC-relative instructions for efficient loading of
addresses and constants

— SAVE & RESTORE macro instructions for setting up
and tearing down stack frames within subroutines

— Improved support for handling 8 and 16 bit datatypes
Programmable Cache Sizes

— Individually configurable instruction and data caches
— Sizes from 0 - 64KB

— Direct Mapped, 2-, 3-, or 4-Way Set Associative

— Loads block only until critical word is available

— Write-back and write-through support

— 16-byte cache line size

— \Virtually indexed, physically tagged

— Cache line locking support

— Non-blocking prefetches

Scratchpad RAM Support
— Can optionally replace 1 way of the I- and/or D-cache
with a fast scratchpad RAM

— Independent external pin interfaces for |- and D-
scratchpads

— Simple Fixed Mapping Translation (FMT) mechanism
Simple Bus Interface Unit (BIU)

— Al l/O’s fully registered

— Separate unidirectional 32-bit address and data buses

— Two 16-byte collapsing write buffers

— Designed to allow easy conversion to other bus
protocols

CorExtend™ User Defined Instruction Set Extensions
(available in 4KEp Pro™ core)

— Allows user to define and add instructions to the core at
build time

— Maintains full MIPS32 compatibility

— Supported by industry standard development tools

— Single or multi-cycle instructions

— Separately licensed; a core with this feature is known as
the 4KEp Pro™ core

Multiply/Divide Unit
— 32 clock latency on multiply

— 34 clock latency on multiply-accumulate
— 33-35 clock latency on divide (sign-dependent)

Coprocessor 2 interface
— 32 bitinterface to an external coprocessor
Power Control

— Minimum frequency: 0 MHz

— Power-down mode (triggered by WAIT instruction)
— Support for software-controlled clock divider

— Support for extensive use of local gated clocks

EJTAG Debug

— Support for single stepping

— Virtual instruction and data address/value breakpoints
— PC and data tracing

— TAP controller is chainable for multi-CPU debug

— Cross-CPU breakpoint support

Testability

— Full scan design achieves test coverage in excess of
99% (dependent on library and configuration options)
— Optional memory BIST for internal SRAM arrays

Architecture Overview

The 4KEp core contains both required and optional blocks.

— 20 index address bits allow access of arrays up to LIMBRequired blocks are the lightly shaded areas of the block

— Interface allows back-stalling the core
MIPS32 Privileged Resource Architecture

— Count/Compare registers for real-time timer interrupts
— land D watch registers for SW breakpoints

Memory Management Unit

diagram inFigure 1land must be implemented to remain
MIPS-compliant. Optional blocks can be added to the
4KEp core based on the needs of the implementation.

The required blocks are as follows:

Execution Unit

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

« Multiply/Divide Unit (MDU)

» System Control Coprocessor (CPO0)
» Memory Management Unit (MMU)
» Fixed Mapping Translation (FMT)

» Cache Controllers

» Bus Interface Unit (BIU)

e Power Management

Optional blocks include:

* Instruction Cache

» Data Cache

» Scratchpad RAM interface

» Coprocessor 2 interface

e CorExtend™ User Defined Instruction (UDI) support
* MIPS16e support

* Enhanced JTAG (EJTAG) Controller

Figure 2shows a timing diagram of the 4KEp core pipeline.

| ! |
\
I [E M [A [w
\ Bypass | \
] T Bypass |
I-Cache |Regrd] ALuop | !
| Dec | D-AC | D-Cache Align | I RegW
1

| RegW

7/

|
]
|
|
) ' |
T
|
| mul, div |
|

| 17

|
Reng |
|
I

Figure 2 4KEp Core Pipeline

| Stage: Instruction Fetch

During the Instruction fetch stage:

The section entitled "4KEp Core Required Logic Blocks" *

on page 4 discusses the required blocks. The section
entitled "4KEp Core Optional Logic Blocks" on page 11
discusses the optional blocks.

Pipeline Flow

The 4KEp core implements a 5-stage pipeline with
performance similar to the R3000pipeline. The pipeline
allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and
power consumption.

The 4KEp core pipeline consists of five stages:
* Instruction (I Stage)

» Execution (E Stage)

* Memory (M Stage)

« Align (A Stage)

» Writeback (W stage)

The 4KEp core implements a bypass mechanism that

allows the result of an operation to be forwarded directly to

the instruction that needs it without having to write the
result to the register and then read it back.

An instruction is fetched from instruction cache.

MIPS16e instructions are expanded into MIPS32-like
instructions

E Stage: Execution

During the Execution stage:

Operands are fetched from register file.

The arithmetic logic unit (ALU) begins the arithmetic
or logical operation for register-to-register instructions.

The ALU calculates the data virtual address for load
and store instructions.

The ALU determines whether the branch condition is
true and calculates the virtual branch target address for
branch instructions.

Instruction logic selects an instruction address.
All multiply and divide operations begin in this stage.

M Stage: Memory Fetch

During the Memory fetch stage:

The arithmetic ALU operation completes.

The data cache access and the data virtual-to-physical
address translation are performed for load and store
instructions.

Data cache look-up is performed and a hit/miss
determination is made.

A multiply operation stalls the MDU pipeline for 31
clocks in the M stage.

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

* A multiply-accumulate operation stalls the MDU
pipeline for 33 clocks in the M stage.

» A divide operation stalls the MDU pipeline for 32-34
clocks in the M stage.

A Stage: Align

During the Align stage:
* Load data is aligned to its word boundary.

* A multiply/divide operation updates the HI/LO
registers.

* A MUL operation makes the result available for
writeback. The actual register writeback is performed
in the W stage.

W Stage: Writeback

During the Writeback stage:

» For register-to-register or load instructions, the
instruction result is written back to the register file.

4KEp Core Required Logic Blocks

The 4KEp core consists of the following required logic
blocks, shown ifFigure 1 These logic blocks are defined
in the following subsections:

» Execution Unit
Multiply/Divide Unit (MDU)

System Control Coprocessor (CPO0)

Memory Management Unit (MMU)
Fixed Mapping Translation (FMT)
Cache Controller

Bus Interface Unit (BIU)

Power Management

Execution Unit

The 4KEp core execution unit implements a load/store
architecture with single-cycle ALU operations (logical,
shift, add, subtract) and an autonomous multiply/divide
unit. The 4KEp core contains thirty-two 32-bit general-
purpose registers used for integer operations and addres
calculation. Optionally, one or three additional register file
shadow sets (each containing thirty-two registers) can be|
added to minimize context switching overhead during
interrupt/exception processing. The register file consists o

two read ports and one write port and is fully bypassed to
minimize operation latency in the pipeline.

The execution unit includes:

32-bit adder used for calculating the data address

Address unit for calculating the next instruction
address

Logic for branch determination and branch target
address calculation

Load aligner

Bypass multiplexers used to avoid stalls when
executing instructions streams where data producing
instructions are followed closely by consumers of their
results

Leading Zero/One detect unit for implementing the
CLZ and CLO instructions

Arithmetic Logic Unit (ALU) for performing bitwise
logical operations

Shifter & Store Aligner

Multiply/Divide Unit (MDU)

The 4KEp core includes a multiply/divide unit (MDU) that
contains a separate pipeline for multiply and divide
operations. This pipeline operates in parallel with the
integer unit (1U) pipeline and does not stall when the 1U
pipeline stalls. This allows the long-running MDU
operations to be partially masked by system stalls and/or
other integer unit instructions.

Multiply and divide operations are implemented with a
simple 1 bit per clock iterative algorithm. Any attempt to
issue a subsequent MDU instruction while a multiply/
divide is still active causes an MDU pipeline stall until the
operation is completed.

Table 1lists the latency (humber of cycles until a result is
available) for the 4KEp core multiply and divide
instructions. The latencies are listed in terms of pipeline
clocks.

Table 1 4KEp Core Area-Efficient Integer Multiply/
Divide Unit Operation Latencies
Operand
S Opcode Sign Latency

MUL, MULT, MULTU any 32
MADD, MADDU,

any 34
MSUB, MSUBU

4
Copyright © 2001-2002 MIPS Technol

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

ogies Inc. All rights reserved.

Table 1 4KEp Core Area-Efficient Integer Multiply/ Table 2 Coprocessor 0 Registers in Numerical Order
Divide Unit Operation Latencies

Register Register

Operand Number Name Function
Opcod Si Lat
peore on aeney 8 BadVAdd? Reports the address for the most
DIVU any 33 recent address-related exception|.
pos/pos 33 9 Count Processor cycle count.
DIV any/neg 34 10 Reserved Reserved in the 4KEp core.
neg/pos 35 11 Compar& | Timer interrupt control.
. .) 12 Statu$ Processor status and control.
The MIPS architecture defines that the results of a multiply
or divide operation be placed in the HI and LO registers. 12 IntCtlt Interrupt system status and control.
Using the move-from-HI (MFHI) and move-from-LO Shadow reqister set stafus and
(MFLO) instructions, these values can be transferred tothe¢ 12 SRrsctt 9

. . control.
general-purpose register file.

Provides mapping from vectored

12 SRSMaﬂ) interrupt to a shadow set.

In addition to the HI/LO targeted operations, the MIPS32
architecture also defines a multiply instruction, MUL,

which places the least significant results in the primary 13 Caust Cause of last general exception.
register file instead of the HI/LO register pair. 14 EPG Program counter at last exceptiop.
Two other instructions, multiply-add (MADD) and 15 PRId Processor identification and
multiply-subtract (MSUBY), are used to perform the revision.
multiply-accumulate and multiply-subtract operations, 15 EBASE Exception vector base register.
respectively. The MADD instruction multiplies two : - : :
numbers and then adds the product to the current contents 16 Config Configuration register.
pf the HI and LQ r_eg|sters. Similarly, the MSUB 16 Configl Configuration register 1.
instruction multiplies two operands and then subtracts th
product from the HI and LO registers. The MADD and 16 Config2 Configuration register 2.
MSUB operations are commonly used in DSP algorithms

P y g 16 Config3 Configuration register 3.

17 LLAddr Load linked address.

System Control Coprocessor (CPO)

18 WatchLd Low-order watchpoint address.

In the MIPS architecture, CPO is responsible for the virtual 19 WatchHE
to-physical address translation and cache protocols, the

High-order watchpoint address.

exception control system, the processor’s diagnostics 20-22 | Reserved Reserved in the 4KEp core.
capability, the operating modes (kernel, user, and debug)j .
and whether interrupts are enabled or disabled. 23 Debud Etzgjf control and exception
Configuration information, such as cache size and set i
ass_OC|at|V|Fy, is glso available by accessing the CPO 23 Trace PC/Data trace control register.
registers, listed in Table 2. ControP
Table 2 Coprocessor 0 Registers in Numerical Order 23 g:r?t?olz’- Additional PC/Data trace control.
Register Register
Number Name Function 23 l;zzr@Trace User Trace control register.
0-6 R d R d in the 4KE . .
eserve eservedin fhe p core 23 TraceBP€ | Trace breakpoint control.
Enables access via the RDHWR P ter at last deb
7 HWREna instruction to selected hardware 24 DEPC rogram counter at fast debug
. exceptlon.
reglsters.
MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 5

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 2 Coprocessor 0 Registers in Numerical Order Table 3 4KEp Core Exception Types (Continued)

Register Register Exception Description
Number Name Function
DB EJTAG Breakpoint (execution of
25 Reserved Reserved in the 4KEp core. P SDBBP instruction).
26 ErrCtl Used for software testing of cache | Sys Execution of SYSCALL instruction.
arrays.
Bp Execution of BREAK instruction.
27 Reserved Reserved in the 4KEp core.
RI Execution of a Reserved Instruction.
o8 TagLo/ Low-order portion of cache tag
DatalLo interface. CoU Execution of a coprocessor instruction
P for a coprocessor that is not enabled
29 Reserved Reserved in the 4KEp core.
0 Execution of an arithmetic instruction
30 ErrorEPG Program counter at last error. v that overflowed.
31 DESAVE® | Debug handler scratchpad register. T Execution of a trap (when trap
- - - - r condition is true).
1. Registers used in exception processing.
2. Registers used during debug. EJTAG Data Address Break (address

DDBL / DDBS only) or EJTAG Data Value Break on

Coprocessor 0 also contains the logic for identifying and Store (address+value).

managing exceptions. Exceptions can be caused by a A reference to an address in one of the
variety of sources, including boundary cases in data, WATCH watch registers (data).

external events, or program errors. Table 3 shows the

exception types in order of priority. AdEL Load address alignment error.

Load reference to protected address

Table 3 4KEp Core Exception Types :
Store address alignment error.

: L AdES
Exception Description Store to protected address.
Reset A;sertion ofSI_ColdReseatr SI_Reset DBE Load or store bus error.
signals.
: DDBL EJTAG d:?\ta hardware breakpoint
DSS EJTAG Debug Single Step. matched in load data compare.
EJTAG Debug Interrupt. Caused by thie
DINT gssertion of the.externEl]._DINT N Interrupt Handling
input, or by setting the EjtagBrk bit in
the ECR register. The 4KEp core includes support for six hardware interrupt
NMI Assertion ofEB_NMIsignal, pins, two software interrupts, and a timer interrupt. These
interrupts can be used in any of three interrupt modes, as
Interrupt Assertion. of unma;ked hardware or defined by Release 2 of the MIPS32 Architecture:
software interrupt signal. « Interrupt compatibility mode, which acts identically to
Deferred Watch (unmasked by K|DM} that in an implementation of Release 1 of the
Deferred Watch | ., M) transition). Architecture.
EJTAG debug hardware instruction » Vectored Interrupt (V1) mode, which adds the ability to
bIB break matched. prioritize and vector interrupts to a handler dedicated
to that interrupt, and to assign a GPR shadow set for
WATCH A reference to an address in one of the use during interrupt processing. The presence of this
watch registers (fetch). mode is denoted by the Vint bit in thgonfig3register.
Fetch address alignment error. This mode is architecturally optional; but it is always
AdEL Fetch reference to protected address. present on the 4KEp core, so the Vint bit will always
read & a 1 for the 4KEp core.
IBE Instruction fetch bus error.
6 MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

» External Interrupt Controller (EIC) mode, which Shadow sets are new copies of the GPRs that can be
redefines the way in which interrupts are handled to substituted for the normal GPRs on entry to kernel mode
provide full support for an external interrupt controller via an interrupt or exception. Once a shadow set is bound
handling prioritization and vectoring of interrupts. This to a kernel mode entry condition, reference to GPRs work
presence of this mode denoted by the VEIC bit in the exactly as one would expect, but they are redirected to
Config3register. Again, this mode is architecturally registers that are dedicated to that condition. Privileged
optional. On the 4KEp core, the VEIC bit is set software may need to reference all GPRs in the register file,
externally by the static inpuSl_EICPresentto allow even specific shadow registers that are not visible in the
system logic to indicate the presence of an external ~ current mode. The RDPGPR and WRPGPR instructions
interrupt controller. are used for this purpose. The CSS field ofSR&Ctl

register provides the number of the current shadow register

The reset state of the processor is to interrupt compatibilityS€t: and the PSS field of tB&SCtregister provides the
mode such that a processor supporting Release 2 of the number of the previous shadO_/v reg|s_ter set (that which was
Architecture, like the 4KEp core, is fully compatible with current before the last exception or interrupt occurred).

implementations of Release 1 of the Architecture.) o) o
If the processor is operating in VI interrupt mode, binding

of a vectored interrupt to a shadow set is done by writing to
the SRSMapregister. If the processor is operating in EIC
interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller,
and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a
shadow setis done by writing to the ESS field of #RSCtl
register. When an exception or interrupt occurs, the value
of SRSCtggis copied to SRSGtlkg and SRSCHggis set

. . to the value taken from the appropriate source. On an
Release 2 of the MIPS32 Architecture optionally reMOVES EpET the value of SRSGHs copied back into

the need to save and restore GPRs on entry to high priori%RSCtbssto restore the shadow set of the mode to which
interrupts or exceptions, and to provide specified Processof . trol returns.

modes with the same capability. This is done by

introducing multiple copies of the GPRs, calgthdow

sets and allowing privileged software to associate a Modes of Operation

shadow set with entry to kernel mode via an interrupt
vector or exception. The normal GPRs are logically
considered shadow set zero.

VI or EIC interrupt modes can be combined with the
optional shadow registers to specify which shadow set
should be used upon entry to a particular vector. The
shadow registers further improve interrupt latency by
avoiding the need to save context when invoking an
interrupt handler.

GPR Shadow Registers

The 4KEp core supports three modes of operation: user
mode, kernel mode, and debug mode. User mode is most
] o) often used for applications programs. Kernel mode is

The number of GPR shadow sets is a bU|Id-t|me_ option Ontypically used for handling exceptions and operating

the 4KEp core. Although Release 2 of the Architecture gy tem kernel functions, including CPO management and I/
defines a maximum of 16 shadow sets, the core allows 0Ny yevice accesses. An additional Debug mode is used
(the normal GPRs), two, or four shadow sets. The highesfy,ring system bring-up and software development. Refer to

number actually implemented is indicated by the the EJTAG section for more information on debug mode.
SRSCt} gsfield. If this field is zero, only the normal GPRs

are implemented.

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 7

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

segments that are unmapped in a TLB implementation

OXFFFFFFFF . .
Fixed Mapped (kseg0 and ksegl) are translated identically by the FMT.
O0XFF400000 . . .
OXFF3FFFFF 1 Figure 4shows how the FMT is implemented in the 4KEp
O0xFF200000 Memory/EJTAG kseg3
core.
OXF1FFFFFF
OXE0000000 Fixed Mapped Virtual Address Coenete"
OXDFFFFFFF . Tag RAM
Kernel virtual address space kseg2 T —roction
Fixed Mapped, 512 MB Address
0xC0000000 Calculator Instruction
OxBFFFFFFF | Kernel virtual address space Hit/Miss
Unmapped, 512 MB kseg1 FMT Data
0xA0000000 Uncached Hit/Miss
Dat
OXOFFFFFFF | Kernel virtual address space Address Comparator
Unmapped, 512 MB kseg0 Calculator
0x80000000 Virtual Address Data
OX7FFFFFFF gme
Figure 4 Address Translation During Access
In general, the FMT also determines the cacheability of
User virtual address space kuseg each segment. These attributes are controlled via bits in the
Fixed Mapped, 2048 MB Config register. Table 4 shows the encoding for the K23
(bits 30:28), KU (bits 27:25), and KO (bits 2:0) fields of the
Config register. Table 5 shows how the cacheability of the
virtual address segments is controlled by these fields.
Table 4 Cache Coherency Attributes
0x00000000 Config Register Fields
1. This space is mapped to memory in user or kernel mode, K23, KU, and KO Cache Coherency Attribute
and by the EJTAG module in debug mode.
o Cacheable, noncoherent, write-
Figure 3 4KEp Core Virtual Address Map through, no write-allocate
1% Cacheable, noncoherent, write-
Memory Management Unit (MMU) through, write-allocate
]) 3 4% 5 G Cacheable, noncoherent, write-
The 4KEp core contains an MMU that interfaces betweer R back, write-allocate
the execution unit and the cache controller. The 4KEp core
provides a simple Fixed Mapping Translation (FMT) 2, Uncached

mechanism that is smaller and simpler than a full
Translation Lookaside Buffer (TLB) found in other MIPS
cores, like the MIPS32 4KEc™ core. Like a TLB, the FMT

che-
her

*2 and 3 are the required MIPS32 mappings for uncached and c3
able references, other values may have different meanings in otl
MIPS32 processors

performs virtual-to-physical address translation and
provides attributes for the different segments. Those

In the 4KEp core, no translation exceptions can be taken,
although address errors are still possible.

Copyright © 2001-2002 MIPS Technol

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

ogies Inc. All rights reserved.

This behavior is the same as if there was a TLB. This

Table 5 Cacheability of Segments with Fixed Mapping mapping is shown iffigure 6

Translation
Virtual
Address
Segment Range Cacheability
Controlled by the KU field
(bits 27:25) of the Config
usea/kuse 0x0000_0000- | register. See Table 4 for
9 9 0x7FFF_FFFF | mapping. This segment is
always uncached when
ERL =1.
Controlled by the KO field
kseqO 0x8000_0000- | (bits 2:0) of the Config
9 OX9FFF_FFFF | register. See Table 4 for
mapping.
kseql 0xA000_0000- | Always uncacheable.
9 OXBFFF_FFFF
Controlled by the K23 field
kseq? 0xC000_0000-| (bits 30:28) of the Config
9 OXDFFF_FFFF| register. See Table 4 for
mapping.
kseg3 O0XE000_0000{ Controlled by the K23 field
OXFFFF_FFFF| (bits 30:28) of the Config
register. See Table 4 for
mapping.

The FMT performs a simple translation to map from virtual
addresses to physical addresses. This mapping is shown

Figure 5

Virtual Address

Physical Address

kseg3 kseg3
0xE000 0000 0xE000_0000
kseg2 kseg2
0xC000 0000 0xC000_0000
ksegl
0xA000 0000
ksegO
0x8000 0000
useg/kuseg
useg/kuseg 0x4000_0000
reserved
0x2000_0000
ksegO/ksegl
0x0000_0000 0x0000_0000

Figure 5 FMT Memory Map (ERL=0) in the 4KEp Core

Virtual Address Physical Address

kseg3
0xE000_0000

kseg3
0xE000_0000

kseg2
0xC000_0000

ksegl
0xA000_0000

kseg2
0xC000_0000

reserved

kseg0

0x8000_0000 0x8000_0000

useg/kuseg useg/kuseg

kseg0/ksegl
_4,0x0000_0000

0x0000_0000

Figure 6 FMT Memory Map (ERL=1) in the 4KEp Core

Cache Controllers

The 4KEp core instruction and data cache controllers
support caches of various sizes, organizations, and set-
associativity. For example, the data cache can be 2 Kbytes
in size and 2-way set associative, while the instruction
cache can be 8 Kbytes in size and 4-way set associative.
Bach cache can each be accessed in a single processor
cycle. In addition, each cache has its own 32-bit data path
and both caches can be accessed in the same pipeline clock
cycle. Refer to the section entitled "4KEp Core Optional
Logic Blocks" on page 11 for more information on
instruction and data cache organization.

The cache controllers also have built-in support for
replacing one way of the cache with a scratchpad RAM.
See the section entitled "Scratchpad RAM" on page 13 for
more information on scratchpad RAMs.

Bus Interface (BIU)

The Bus Interface Unit (BIU) controls the external
interface signals. Additionally, it contains the
implementation of the 32-byte collapsing write buffer. The
purpose of this buffer is to store and combine write
transactions before issuing them at the external interface.
When using the write-through cache policy, the write buffer
significantly reduces the number of write transactions on

When ERL=1, useg and kuseg become unmapped (virtughe external interface and reduces the amount of stalling in
address is identical to the physical address) and uncached.

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 9
Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

the core due to issuance of multiple writes in a short perioda mode that generates only “simple” byte enables. Only

of time. When using a write-back cache policy, the write byte enables representing naturally aligned byte, half, and

buffer gathers the 4 words of dirty line writebacks. word transactions will be generated. Legal byte enable
patterns are shown in Table 6.

The write buffer is organized as two 16-byte buffers. Each

buffer contains data from a single 16-byte aligned block of Table 6 Valid SimpleBE Byte Enable Patterns

memory. One buffer contains the data currently being

transferred on the external interface, while the other buffef EB_BE[3:0]
contains accumulating data from the core. Data from the 0001
accumulation buffer is transferred to the external interface
buffer under one of these conditions: 0010
* When a store is attempted from the core to a different 0100

16-byte block than is currently being accumulated 1000
* SYNC Instruction

. . 0011

» Store to an invalid merge pattern
» Any load or store to uncached memory 1100
» A load to the line being merged 1111

» A complete 16B block has been gathered .
The only case where aread can generate “non-simple” byte

Note that if the data in the external interface buffer has not€nables is on an uncached tri-byte load (LWL/LWR). In
been written out to memory, the core is stalled until the SIMPIEBE mode, such reads will be converted into a word
memory write completes. After completion of the memory réad on the external interface.

write, accumulated buffer data can be written to the)))]
external interface buffer. Writes with non-simple byte enable patterns can arise when

a sequence of stores is processed by the merging write
buffer, or from uncached tri-byte stores (SWL/SWR). In
SimpleBE mode, these stores will be broken into two
separate write transactions, one with a valid halfword and a
second with a single valid byte. This splitting is
independent of the merge pattern control in the write buffer.

Merge Control

The 4KEp core implements two 16-byte collapsing write
buffers that allow byte, halfword, or word writes from the
core to be accumulated in the buffer into a 16-byte value
before bursting the data onto the bus in word format. Note
that writes to uncached areas are never merged. Hardware Reset

The 4KEp core provides two options for merge pattern

For historical reasons within the MIPS architecture, the
control:

4KEp core has two types of reset input sign@lsReset

* No merge andS|_ColdReset

* Full merge . . o
Functionally, these two signals are ORed together within
the core and then used to initialize critical hardware state.
goth reset signals can be asserted either synchronously or
asynchronously to the core clo&, Clkin and willtrigger

a Reset exception. The reset signals are active high, and
must be asserted for a minimum o085 _Clkincycles. The
falling edge triggers the Reset exception. The primary
difference between the two reset signals is #taReset

sets a bit in the Status register; this bit could be used by
software to distinguish between the two reset signals, if
desired. The reset behavior is summarized in Table 7.

In No Mergemode, writes to a different word within the
same line are accumulated in the buffer. Writes to the sam
word cause the previous word to be driven onto the bus.

In Full Mergemode, all combinations of writes to the same

line are collected in the buffer. Any pattern of byte enables
is possible.

SimpleBE Mode

To aid in attaching the 4KEp core to structures which
cannot easily handle arbitrary byte enable patterns, there is

10 MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

look at these signals and determine whether to leave the

Table 7 4KEp Reset Types low power state to service the exception.

SI_Reset S|_ColdReset Action . .
The following 4 power-down signals are part of the system

0 0 Normal Operation, no resef. interface and change state as the corresponding bits in the
CPO registers are set or cleared:

Reset exception; sets
Status.Smit. e TheSI_RPsignal represents the state of the RP bit (27)

in the CPO Status register.

e TheSI_EXLsignal represents the state of the EXL bit
(1) in the CPO Status register.

X 1 Reset exception.

One (or both) of the reset signals must be asserted at power-

on or whenever hardware initialization of the core is » The SI_ERLsignal represents the state of the ERL bit
desired. A power-on reset typically occurs when the (2) in the CPO Status register.

machine is first turned on. A hard reset usually occurs when Theg3J DebugMsignal represents the state of the DM
the machine is already on and the system is rebooted. bit (30)_in the CPO Debug register.

In debug mode, EJTAG can request that a soft reset (via the)
Sl_Resepin) be masked. It is system dependent whether Instruction-Controlied Power Management
this functionality is supported. In normal mode, the
SI_Resepin cannot be masked. TB& ColdResepin is
never masked.

The second mechanism for invoking power-down mode is
through execution of the WAIT instruction. When the
WAIT instruction is executed, the internal clock is
suspended; however, the internal timer and some of the
Power Management input pins §1_Int[5:0], SI_NM|, SI_Resetand
S|_ColdResgftcontinue to run. Once the CPU is in
instruction-controlled power management mode, any
interrupt, NMI, or reset condition causes the CPU to exit
this mode and resume normal operation.

The 4KEp core offers a number of power management
features, including low-power design, active power
management, and power-down modes of operation. The
core is a static design that supports slowing or halting the

clocks, which reduces system power consumption during | € 4KEp core asserts tg_Sleeignal, which is part of
idle periods. the system interface bus, whenever the WAIT instruction is

executed. The assertion®f_Sleepndicates that the clock

The 4KEp core provides two mechanisms for system-levelhas stopped and the 4KEp core is waiting for an interrupt.

low power support:

» Register-controlled power management Local clock gating

* Instruction-controlled power management The majority of the power consumed by the 4KEp core is
in the clock tree and clocking registers. The core has
Register-Controlled Power Management support for extensive use of local gated-clocks. Power

conscious implementors can use these gated clocks to
The RP bit in the CPO Status register provides a softwaresignificantly reduce power consumption within the core.
mechanism for placing the system into a low power state.
The state of the RP bit is available externally viagieRP
signal. The external agent then decides whether to place thﬂKEp Core Optional Logic Blocks
device in a low power mode, such as reducing the system

clock frequency. The 4KEp core contains several optional logic blocks

Three additional bits, Statgg, , Statugg , and Debugy, shown in the block diagram Figure 1

support the power management function by allowing the
user to change the power state if an exception or error
occurs while the 4KEp core is in a low power state.
Depending on what type of exception is taken, one of thes
three bits will be asserted and reflected orsthé&XL,
SI_ERIL, orEJ_DebugMoutputs. The external agent can

Instruction Cache

®rhe instruction cache is an optional on-chip memory block
of up to 64 Kbytes. Because the instruction cache is

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 11

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

virtually indexed, the virtual-to-physical address Cache Memory Configuration

translation occurs in parallel with the cache access rather

than having to wait for the physical address translation. TheThe 4KEp core incorporates on-chip instruction and data

tag holds 22 bits of physical address, a valid bit, and a lockcaches that can each be accessed in a single processor

bit. The LRU replacement bits (0-6b per set depending orcycle. Each cache has its own 32-bit data path and can be

associativity) are stored in a separate array. accessed in the same pipeline clock cy@lble 8lists the
4KEp core instruction and data cache attributes.

The instruction cache block also contains and manages the

instruction line fill buffer. Besides accumulating data to be

Table 8 4KEp Core Instruction and Data Cache

written to the cache, instruction fetches that reference data Attributes
in the line fill buffer are serviced either by a bypass of that -
data, or data coming from the external interface. The Parameter Instruction Data
instru_ction cache control logic controls the bypass Size 0 - 64 Kbytes 0 - 64 Kbytes
function.
- 1 -4 way set 1 -4 way set
. . . Organization o .
The 4KEp core supports instruction-cache locking. Cache associative associative
!ocklng allows critical cod_e or dat_a segme_nts to be locked Line Size 16 bytes 16 bytes
into the cache on a “per-line” basis, enabling the system
programmer to maximize the efficiency of the system Read Unit 32 bits 32 bits
cache. :
write-through
. . . with write
The cache-locking function is always available on all allocate
instruction-cache entries. Entries can then be marked as writ thr’ h
locked or unlocked on a per entry basis using the CACHE| Write Policies na rie-throug
. . without write
instruction. allocate,
write-back with
Data Cache write allocate
Miss restart after miss word miss word
The data cache is an optional on-chip memory block of up| transfer of
to 64 Kbytes. This virtually indexed, physically tagged - : :
cache is protected. Because the data cache is virtually | ©ache Locking per line per line

indexed, the virtual-to-physical address translation occurs
in parallel with the cache access. The tag holds 22 bits of
physical address, a valid bit, and a lock bit. There is an
additional array holding dirty bits and LRU replacement

Cache Protocols

algorithm bits (0-6b depending on associativity) for each The 4KEp core supports the following cache protocols:

set of the cache. .

In addition to instruction-cache locking, the 4KEp core
also supports a data-cache locking mechanism identical to
the instruction cache. Critical data segments are locked into
the cache on a “per-line” basis. The locked contents can be
updated on a store hit, but cannot be selected for
replacement on a cache miss.

The cache-locking function is always available on all data
cache entries. Entries can then be marked as locked or
unlocked on a per-entry basis using the CACHE
instruction.

Uncached: Addresses in a memory area indicated as
uncached are not read from the cache. Stores to such
addresses are written directly to main memory, without
changing cache contents.

Write-through, no write allocate: Loads and

instruction fetches first search the cache, reading main
memory only if the desired data does not reside in the
cache. On data store operations, the cache is first
searched to see if the target address is cache resident. If
it is resident, the cache contents are updated, and main
memory is also written. If the cache look-up misses,
only main memory is written.

Write-through, write allocate : Similar to above, but
stores missing in the cache will cause a cache refill.
The store data is then written to both the cache and
main memory

12

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

» Write-back, write allocate: Stores that miss in the Coprocessor 2 Interface
cache will cause a cache refill. Store data, however, is
only written to the cache. Caches lines that are written The 4KEp core can be configured to have an interface for

by stores will be marked as dirty. If a dirty line is an on-chip coprocessor. This coprocessor can be tightly
selected for replacement, the cache line will be written coupled to the processor core, allowing high performance
back to main memory. solutions integrating a graphics accelerator or DSP, for
example.
Scratchpad RAM The coprocessor interface is extensible and standardized on

MIPS cores, allowing for design reuse. The 4KEp core
The 4KEp core also supports replacing up to one way of supports a subset of the full coprocessor interface standard:
each cache with a scratchpad RAM. Scratchpad RAM is 32b data transfer, no Coprocessor 1 support, single issue,
accessed via independent external pin interfaces for in-order data transfer to coprocessor, one out-of-order data
instruction and data scratchpads. The external block whichiransfer from coprocessor.
connects to a scratchpad interface is user-defined and can
consist of a variety of devices. The main requirement is thatThe coprocessor interface is designed to ease integration
it must be accessible with timing similar to an internal ~ with customer IP. The interface allows high-performance
cache RAM. Normally, this means that an index will be communication between the core and coprocessor. There
driven one cycle, a tag will be driven the following clock, are no late or critical signals on the interface.
and the scratchpad must return a hit signal and the data in
the second clock. The scratchpad can easily contain a large
RAM/ROM or memory-mapped registers. Unlike the fixed CorExtend User Defined Instruction
single-cycle cache timing, however, the scratchpad Extensions
interface can also accommodate backstalling the core
pipeline if data is not available in a single clock. This The optional CorExtend User Defined Instruction (UDI)
backstalling capability can be useful for operations whichblock enables the implementation of a small number of
require multi-cycle latency. It can also be used to enable application-specific instructions that are tightly coupled to
arbitration of external accesses to a shared scratchpad the core’s execution unit. The interface to the UDI block is
memory. internal and not defined externally on the 4KEp Pro core.

The core’s functional interface to a scratchpad RAM is Such instructions may operate on a general-purpose
slightly different than to a regular cache RAM. Additional register, immediate data specified by the instruction word,
index bits allow access to a larger array, 1MB of scratchpador local state stored within the UDI block. The destination
RAM versus 4KB for a cache way. The core does not ~ may be a general-purpose register or local UDI state. The
automatically refill the scratchpad way and will not select operation may complete in one cycle or multiple cycles, if
it for replacement on cache misses. Additionally, stores thatlesired.

hit in the scratchpad will not generate writes to main

memory.
EJTAG Debug Support

MIPS16e Application Specific Extension The 4KEp core provides for an optional Enhanced JTAG
(EJTAG) interface for use in the software debug of
The 4KEp core has optional support for the MIPS16e ASE.application and kernel code. In addition to standard user
This ASE improves code density through the use of 16-bitmode and kernel modes of operation, the 4KEp core
encodings of MIPS32 instructions plus some MIPS16e- provides a Debug mode that is entered after a debug
specific instructions. PC relative loads allow quick accessexception (derived from a hardware breakpoint, single-step
to constants. Save/Restore macro instructions provide forexception, etc.) is taken and continues until a debug
single instruction stack frame setup/teardown for efficientexception return (DERET) instruction is executed. During
subroutine entry/exit. Sign- and zero-extend instructions this time, the processor executes the debug exception
improve handling of 8-bit and 16-bit datatypes. handler routine.

Refer to the section called "External Interface Signals" on
page 21 for a list of EJTAG interface signals.

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 13

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

The EJTAG interface operates through the Test Access Pormnasks can be applied to both the virtual address and the
(TAP), a serial communication port used for transferring load/store value.

test data in and out of the 4KEp core. In addition to the

standard JTAG instructions, special instructions defined ing 3TAG Trace

the EJTAG specification define what registers are selected

and how they are used. The 4KEp core includes optional support for real-time
tracing of instruction addresses, data addresses and data
Debug Registers values. The trace information is collected in an on-chip or

off-chip memory, for post-capture processing by trace
Three debug registers (DEBUG, DEPC, and DESAVE) regeneration software.
have been added to the MIPS Coprocessor 0 (CPO) register
set. The DEBUG register shows the cause of the debug On-chip trace memory may be configured in size from 0 to
exception and is used for setting up single-step operations8 MB; it is accessed through the existing EJTAG TAP
The DEPC, or Debug Exception Program Counter, registetinterface and requires no additional chip pins. Off-chip
holds the address on which the debug exception was takertrace memory is accessed through a special trace probe and
This is used to resume program execution after the debugan be configured to use 4, 8, or 16 data pins plus a clock.
operation finishes. Finally, the DESAVE, or Debug
Exception Save, register enables the saving of general-
purpose registers used during execution of the debug

exception handler. Testability

Testability for production testing of the core is supported

To exit debug mode, a Debug Exception Return (DERET ;
g g P ()through the use of internal scan and memory BIST.

instruction is executed. When this instruction is executed,
the system exits debug mode, allowing normal execution of

application and system code to resume. Internal Scan

EJTAG Hardware Breakpoints Full mux-based scan for maximum test coverage is

_) supported, with a configurable number of scan chains.
There are several types of simple hardware breakpoints ATPG test coverage can exceed 99%, depending on
defined in the EJTAG specification. These stop the normalktandard cell libraries and configuration options.

operation of the CPU and force the system into debug

mode. There are two types of simple hardware breakpoints

implemented in the 4KEp core: Instruction breakpoints andMemory BIST
Data breakpoints.

Memory BIST for the cache arrays and on-chip trace

The 4KEp core can be configured with the following memory is optional, but can be implemented either through

breakpoint options: the use of integrated BIST features provided with the core,

« No data or instruction breakpoints or inserted with an industry-standard memory BIST CAD
tool.

* One data and two instruction breakpoints

» Two data and four instruction breakpoints Integrated Memory BIST

Instruction breaks occur on instruction fetch operations, The core provides an integrated memory BIST solution for
and the break is set on the virtual address. A mask can b?esting the internal cache SRAMs, using BIST controllers

applied to_the virtual address to set breakpoints on a rangg g4 logic tightly coupled to the cache subsystem. Several
of instructions. parameters associated with the integrated BIST controllers

)) are configurable, including the algorithm (March C+ or
Data breakpoints occur on load/store transactions. IFA-13).

Breakpoints are set on virtual address values, similar to the
Instruction breakpoint. Data breakpoints can be set on a
load, a store, or both. Data breakpoints can also be set
based on the value of the load/store operation. Finally,

User-specified Memory BIST

Memory BIST can also be inserted with a CAD tool or
other user-specified method. Wrapper modules and signal

14 MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

buses of configurable width are provided within the core to|nstruction Set
facilitate this approach.

The 4KEp core instruction set complies with the MIPS32
instruction set architectur@able 9provides a summary of
instructions implemented by the 4KEp core.

Table 9 4KEp Core Instruction Set

Instruction Description Function
ADD Integer Add Rd =Rs + Rt
ADDI Integer Add Immediate Rt =Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt=Rs+ lmmed
Unsigned Integer Add Immediate to PC Rt=PC+ | Immed
ADDIUPC (MIPS16 only)
ADDU Unsigned Integer Add Rd=Rs+ (Rt
AND Logical AND Rd=Rs & Rt
ANDI Logical AND Immediate Rt=Rs& (0 1 || Immed)
BC2F Branch On COP2 Condition False i COPZE:qndltlon(cc) =
PC += (int)offset
if COP2Condition(cc) == 0
BC2FL Branch On COP2 Condition False Likely eIsZC += (injoffset
Ignore Next Instruction
. if COP2Condition(cc) == 1
BC2T Branch On COP2 Condition True PC += (infoffset
if COP2Condition(cc) ==
BC2TL Branch On COP2 Condition True Likely elsZC += (ingoffset
Ignore Next Instruction
if Rs == Rt
BEQ Branch On Equal PC += (inoffset
if Rs == Rt
BEQL Branch On Equal Likely elszc += (intoffset
Ignore Next Instruction
if IRs[31]
BGEZ Branch on Greater Than or Equal To Zero PC += (inf)offset
GPR[31]=PC +8
BGEZAL E_raknch on Greater Than or Equal To Zero Ar dif IRs[31]
in PC += (int)offset
GPR[31]=PC + 8
if IRS[31]
BGEZALL E_raknihkoln Greater Than or Equal To Zero Arjd PC += (int)offset
ink Likely else
Ignore Next Instruction

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

15

Table 9 4KEp Core Instruction Set (Continued)

=

Instruction Description Function
if IRS[31]
BGEZL Branch on Greater Than or Equal To Zero PC += (int)offset
Likely else
Ignore Next Instruction
if IRs[31] && Rs 1= 0
BGTZ Branch on Greater Than Zero PC += (int)offset
if IRS[31] && Rs =0
BGTZL Branch on Greater Than Zero Likely eIsZC += (ingoffset
Ignore Next Instruction
if Rs[31] || Rs ==
BLEZ Branch on Less Than or Equal to Zero PC += (intjoffset
if Rs[31] || Rs ==
BLEZL Branch on Less Than or Equal to Zero Likel els:C += (ingoffset
Ignore Next Instruction
if Rs[31]
BLTZ Branch on Less Than Zero PC += (inf)offset
GPR[31]=PC +8
BLTZAL Branch on Less Than Zero And Link if Rs[31]
PC += (int)offset
GPR[31]=PC+8
if Rs[31]
BLTZALL Branch on Less Than Zero And Link Likely PC += (int)offset
else
Ignore Next Instruction
if Rs[31]
BLTZL Branch on Less Than Zero Likely eIsZC += (intjoffset
Ignore Next Instruction
if Rs I= Rt
BNE Branch on Not Equal PC += (int)offset
if Rs 1= Rt
BNEL Branch on Not Equal Likely eIsZC += (ingoffset
Ignore Next Instruction
BREAK Breakpoint Break Exception
CACHE Cache Operation See Software User's Manual
CFC2 Move Control Word From Coprocessor 2 Rt = CCRI[2, n]
CLO Count Leading Ones Rd = NumLeadingOnes(Rs)
CLz Count Leading Zeroes Rd = NumLeadingZeroes(Rs)
COPO Coprocessor 0 Operation See Software User’'s Manual
COP2 Coprocessor 2 Operation See Coprocessor 2 Descriptio
CTC2 Move Control Word To Coprocessor 2 CCR[2, n] =Rt

16

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 9 4KEp Core Instruction Set (Continued)

Instruction Description Function
. PC = DEPC
DERET Return from Debug Exception Exit Debug Mode
DI Atomically Disable Interrupts Rt = Status; Status g =0
. LO = (int)Rs / (int)Rt
DIV Divide HI = (intRs % (int)Rt
. . LO = (uns)Rs / (uns)Rt
DIVU Unsigned Divide HI = (UnS)Rs % (UNS)Rt
Stop instruction execution
EHB Execution Hazard Barrier until execution hazards are
cleared
El Atomically Enable Interrupts Rt = Status; Status E =1
if SR[2]
PC = ErrorEPC
else
ERET Return from Exception PC =EPC
SR[1]=0
SR[2]=0
LL=0
EXT Extract Bit Field Rt = ExtractField(Rs, pos,
size)
INS Insert Bit Field Rt = Insertrield(Rs, Rt,
pos, size)
J Unconditional Jump PC = PC[31:28] || offset<<2
) GPR[31]=PC +8
JAL Jump and Link PC = PC[31:28] || offset<<2
. . Rd=PC+8
JALR Jump and Link Register PC = Rs
Like JALR, but also clears
JALR.HB Jump and Link Register with Hazard Barrienl execution and instruction
hazards
Jump and Link Register Compact - donot | Rd=PC+2
JALRC execute instruction in jump delay slot(MIPS16 PC = Rs
only)
JR Jump Register PC=Rs
Like JR, but also clears
JR.HB Jump Register with Hazard Barrier execution and instruction
hazards
IRC Jump Register Compact - do not execute PC=Rs
instruction in jump delay slot (MIPS16 only)
LB Load Byte Rt = (byte)Mem[Rs+offset]
LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]
LH Load Halfword Rt = (half)Mem[Rs+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

17

Table 9 4KEp Core Instruction Set (Continued)

Instruction Description Function

Rt = Mem[Rs+offset]
LL Load Linked Word LL=1

LLAdr = Rs + offset
LUI Load Upper Immediate Rt = immediate << 16
Lw Load Word Rt = Mem[Rs+offset]
LWC2 Load Word To Coprocessor 2 CPR[2,n,0] = Mem[Rs+offset]
LWPC Load Word, PC relative Rt = Mem[PC+offset]
LWL Load Word Left See Software User's Manual
LWR Load Word Right See Software User’'s Manual
MADD Multiply-Add HI | LO += (int)Rs * (int)Rt
MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt
MFCO Move From Coprocessor 0 Rt = CPR[O, Rd, sel]
MFC2 Move From Coprocessor 2 Rt = CPR[2, Rd, sel]
MFHC2 Move From High Half of Coprocessor 2 Rt = CPR[2, Rd, sel] 63.32
MFHI Move From HI Rd = Hl
MFLO Move From LO Rd =LO
MOVN Move Conditional on Not Zero i RFt{d =¢R2 then
MOVZ Move Conditional on Zero i Ré;f;{hsen
MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt
MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt
MTCO Move To Coprocessor 0 CPRJ[O, n, Sel] =Rt
MTC2 Move To Coprocessor 2 CPR[2, n, sel] = Rt
MTHC2 Move To High Half of Coprocessor 2 gEEE: 23: :2:} - Rtsll.o
MTHI Move To HI HI = Rs
MTLO Move To LO LO=Rs

HI | LO =Unpredictable
MUL Multiply with register write Rd = ((int)Rs *

(iNRY 31,0
MULT Integer Multiply HI | LO = (in)Rs * (int)Rd
MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd
NOR Logical NOR Rd = ~(Rs | Rt)
OR Logical OR Rd =Rs | Rt

18

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 9 4KEp Core Instruction Set (Continued)

Instruction Description Function
ORI Logical OR Immediate Rt=Rs | Immed
PREF Prefetch Load Specified Line into Cache
Allows unprivileged access to
RDHWR Read Hardware Register registers enabled by HWREna
register
RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRE®RH]
RESTORE Restore registers and deallocate stack frame See Software User's Manual
(MIPS16 only)
ROTR Rotate Word Right RA=Rt sa10 IRt 314
ROTRV Rotate Word Right Variable Rd=Rt gs1.0 IIRt 31Rs
Save registers and allocate stack frame ,
SAVE (MIPS16 only) See Software User's Manual
SB Store Byte (byte)Mem[Rs+offset] = Rt
ifLL=1
SC Store Conditional Word mem[Rs+offset] = Rt
Rt=LL
SDBBP Software Debug Break Point Trap to SW Debug Handler
SEB Sign Extend Byte Rd = (byte)Rs
SEH Sign Extend Half Rd = (half)Rs
SH Store Half (half)Mem[Rs+offset] = Rt
SLL Shift Left Logical Rd=Rt<<sa
SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]
if (int)Rs < (int)Rt
Rd=1
SLT Set on Less Than
else
Rd=0
if (int)Rs < (int)immed
SLTI Set on Less Than Immediate els’:t =1
Rt=0
if (uns)Rs < (uns)immed
SLTIU Set on Less Than Immediate Unsigned els’:t =1
Rt=0
if (uns)Rs < (uns)immed
SLTU Set on Less Than Unsigned els’:d =1
Rd=0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

19

Table 9 4KEp Core Instruction Set (Continued)

Instruction Description Function
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]
SSNOP Superscalar Inhibit No Operation NOP
sSuB Integer Subtract Rt = (int)Rs - (int)Rd
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
SW Store Word Mem[Rs+offset] = Rt
SWC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2,n,0]
SWL Store Word Left See Software User’'s Manual
SWR Store Word Right See Software User’'s Manual
SYNC Synchronize See Software User's Manual
SYSCALL System Call SystemCallException
. if Rs == Rt
TEQ Trap if Equal TrapException
. . if Rs == (int)lmmed
TEQI Trap if Equal Immediate TrapException
TGE Trap if Greater Than or Equal if (in)Rs >= (.'m)Rt
TrapException
TGEI Trap if Greater Than or Equal Immediate If (INYRs >= (.'m)lmmEd
TrapException
TGEIU Trap if Greater Than or Equal Immediate if (uns)Rs >= (uns)immed
Unsigned TrapException
TGEU Trap if Greater Than or Equal Unsigned If (uns)Rs >= (uns)Rt
TrapException
TLT Trap if Less Than If (INYRs < (iNORE
TrapException
TLTI Trap if Less Than Immediate if (nHRs < ("?t)lmmed
TrapException
TLTIU Trap if Less Than Immediate Unsigned If (uns)Rs < (.uns)lmmEd
TrapException
TLTU Trap if Less Than Unsigned if Uns)Rs < (.L‘”S)Rt
TrapException
. if Rs 1= Rt
TNE Trap if Not Equal TrapException
. . if Rs = (int)ilmmed
TNEI Trap if Not Equal Immediate TrapException
WAIT Wait for Interrupts Stall until interrupt occurs
WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSSCRA] = Rt
WSBH Word Swap Bytes Within HalfWords Rd = Rigs.a6 I Rt 3124 I

Rt7 o IIRt 158

20

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 9 4KEp Core Instruction Set (Continued)

Instruction Description Function
XOR Exclusive OR Rd = Rs "Rt
XORI Exclusive OR Immediate Rt = Rs ” (uns)Immed
ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs
ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs
External Interface Signals The 4KEp core signals are listedTiable 11below. Note

that the signals are grouped by logical function, not by
expected physical location. All signals, with the exception
of EJ_TRST_Nare active-high signal&J_DINTand
SI_NMigo through edge-detection logic so that only one

The pin direction key for the signal descriptions is shown exception is taken each time they are asserted.
in Table 10below.

This section describes the signal interface of the 4KEp
microprocessor core.

Table 10 4KEp Core Signal Direction Key

Dir Description

I Input to the 4KEp core sampled on the rising edge of the appropriate CLK signal.

Output of the 4KEp core, unless otherwise noted, driven at the rising edge of the appropriate GLK
signal.

A Asynchronous inputs that are synchronized by the core.

Static input to the 4KEp core. These signals are normally tied to either power or ground and should not
change state whil8l_ColdReses deasserted.

Table 11 4KEp Signal Descriptions

Signal Name | Type | Description

System Interface

Clock Signals:
Clock Input. All inputs and outputs, except a few of the EJTAG signals, are sampled ahd/or
SI_CIkIn . y D
- asserted relative to the rising edge of this signal.
SI_ClkOut o Reference Clock for the External Bus Interface. This clock signal provides a referenge for

deskewing any clock insertion delay created by the internal clock buffering in the cofe.

Reset Signals:

SI_ColdReset A Hard/Cold Reset Signal. Causes a Reset Exception in the core.
SI NMI A Non-Maskable Interrupt. An edge detect is used on this signal. When this signal is sampled
- asserted (high) one clock after being sampled deasserted, an NMI is posted to the dore.

Soft/Warm Reset Signal. Causes a Reset Exception in the core. Sets Status.SR bit (if

SI_Reset A SlI_ColdReseis not asserted), but is otherwise ORed BithColdResedbefore it is used
internally.

Power Management Signals:

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 21

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name Type Description
This signal represents the state of the ERL bit (2) in the CPO Status register and indicates the
SI_ERL (@) error level. The core asseB6 ERLwhenever a Reset, Soft Reset, or NMI exception ig
taken.

This signal represents the state of the EXL bit (1) in the CPO Status register and ind|cates
SI_EXL (0] the exception level. The core ass&tsEXLwhenever any exception other than a Reset,
Soft Reset, NMI, or Debug exception is taken.

This signal represents the state of the RP bit (27) in the CPO Status register. Softwafe can

SI_RP © write this bit to indicate that a reduced power mode may be entered.

This signal is asserted by the core whenever the WAIT instruction is executed. The asgertion

SI_Sleep © of this signal indicates that the clock has stopped and that the core is waiting for an int¢rrupt.

Interrupt Signals:

Indicates whether an external interrupt controller is present. Value is visible to software in
SI_ElCPresent S the Config/g,c register field.

SI_EISS[3:0] | General purpose register shadow set number to be used when servicing an interrupt|in EIC
- : interrupt mode.

Interrupt acknowledge indication for use in external interrupt controller mode. This s|gnal
is active for a singl&I_Clkincycle when an interrupt is taken. When the processor initigtes
SI 1Ack o the interrupt exception, it loads the value of #elnt[5:0] pins into theCausgyp, field
- (overlaid withCausgs7_po), and signals the external interrupt controller to notify it that the
current interrupt request is being serviced. This allows the controller to advance to another
pending higher-priority interrupt, if desired.

Active high Interrupt pins. These signals are driven by external logic and when assefted
indicate an interrupt exception to the core. The interpretation of these signals depends{on the
interrupt mode in which the core is operating; the interrupt mode is selected by software.
TheSI_Intsignals go through synchronization logic and can be asserted asynchronoysly to
SI_CIkIn.In External Interrupt Controller (EIC) mode, however, the interrupt pins are
interpreted as an encoded value, so they must be asserted synchrondusBikimto
guarantee that all bits are received by the core in a particular cycle.

The interrupt pins are level sensitive and should remain asserted until the interrupt has been
serviced.

In Release 1 Interrupt Compatibility mode:

 All 6 interrupt pins have the same priority as far as the hardware is concerned.
* Interrupts are non-vectored.

SI_Int[5:0] I/A
In Vectored Interrupt (VI) mode:

» TheSI_Intpins are interpreted as individual hardware interrupt requests.
* Internally, the core prioritizes the hardware interrupts and chooses an interrupt veftor.
In External Interrupt Controller (EIC) mode:

» An external block prioritizes its various interrupt requests and produces a vector number
of the highest priority interrupt to be serviced.

» The vector number is driven on ti8_Intpins, and is treated as a 6-bit encoded valug
the range of 0..63.

n

» When the core starts the interrupt exception, signaled by the asseSibiAdk it
loads the value of th8I_Int[5:0] pins into theCausg,p, field (overlaid with
Causgp7 |po)- The interrupt controller can then signal another interrupt.

22 MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name Type Description

Current interrupt priority level from th®tatugs, register field, provided for use by an

SI_IPL[5:0] o external interrupt controller. This value is updated when8l/dAckis asserted.

Indicates theS|_Inthardware interrupt pin that the timer interrupt (®h (Timerin} is
SI_IPTI[2:0] S combined with external to the core. The value of this bus is visible to software in the
IntCtl,p, register field.

o Software interrupt request. These signals represent the valudj1H field of the

SI_SWint[1:0] Causeregister. They are provided for use by an external interrupt controller.

Timer interrupt indication. This signal is asserted wheneveCtuntandCompare
registers match and is deasserted wheiCtmpareregister is written. This hardware pir
represents the value of tausg, register field.

For Release 1 Interrupt Compatibility mode or Vectored Interrupt mode:

In order to generate a timer interrupt, Sie Timerintsignal needs to be brought back info
the 4KEp core on one of the $t_Intinterrupt pins in a system-dependent manner.
Traditionally, this has been accomplished by mux@gTimerInwith SI_Int[5]. Exposing
SI_Timerlntas an output allows more flexibility for the system designer. Timer interrupts
can be muxed or ORed into one of the interrupts, as desired in a particular systesih. Irte
hardware interrupt pin with which ti&_TimerIntsignal is merged is indicated via the
SI_IPTlstatic input pins.

SI_Timerint (@)

For External Interrupt Controller (EIC) mode:

TheSI_TimerlIntsignal is provided to the external interrupt controller, which then prioritizes
the timer interrupt with all other interrupt sources, as desired. The controller then enrodes
the desired interrupt value on t8& Intpins. SinceSI_Intis usually encoded, tH&l_IPTI
pins are not meaningful in EIC mode.

Configuration Inputs:

Unique identifier to specify an individual core in a multi-processor system. The hardyare
value specified on these pins is available inGR&Numfield of theEBaseregister, so it

SI_CPUNum(3:0] S can be used by software to distinguish a particular processor. In a single processor system,
this value should be set to zero.
Indicates the base endianness of the core.
EB_Endian Base Endian Mode
SI_Endian S - -
- 0 Little Endian
1 Big Endian
The state of these signals determines the merge mode for the 16-byte collapsing write|buffer.
Encoding Merge Mode
00, No Merge
SI_MergeMode[1:0] S 01, Reserved
10, Full Merge
11, Reserved
MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 23

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name Type Description

The state of these signals can constrain the core to only generate certain byte enables on
EC™ interface transactions. This eases connection to some existing bus standards.

SI_SimpleBE[1:0] Byte Enable Mode
00, All BEs allowed
SI_SimpleBE[1:0] S Naturally aligned bytes, half-
0L,
words, and words only
10, Reserved
11, Reserved

External Bus Interface

Indicates whether the target is ready for a new address. The core will not complete the
EB_ARdy address phase of a new bus transaction until the clock cycl&Bfté&Rdyis sampled
asserted.

When asserted, indicates that the values on the address bus and access types lines are valid,

EB_Avalid © signifying the beginning of a new bus transactiBB. AValidmust always be valid.
EB Instr 0 When asserted, indicates that the transaction is an instruction fetch versus a data reference.
- EB_Instris only valid wherEB_AValidis asserted.
. When asserted, indicates that the current transaction is a write. This signal is only valid
EB_Write @) .
- whenEB_AValidis asserted.
When asserted, indicates that the current transaction is part of a cache fill or a write|burst.
EB Burst 0 Note that there is redundant information containeBB Burst EB_BFirst EB_BLastand
- EB_BLen This is done to simplify the system design—the information can be used in
whatever form is easiest.
EB_BFirst @) When asserted, indicates the beginning of the BEiBsBFirstis always valid.
EB_BLast (0] When asserted, indicates the end of the lEiBsBLastis always valid.
Indicates the length of the burst. This signal is only valid vERBnAValidis asserted.
EB_BLength[1:0] Burst Length
0 reserved
EB_BLen[1:0 0]
_| [1:0] 1 4
2 reserved
3 reserved
Static input which determines burst order. When asserted, sub-block ordering is used.|When
EB_SBlock S . A
- deasserted, sequential addressing is used.
24 MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Coprocessor Interface

Instruction dispatch: These signals are used to transfer an instruction from the 4KEp core to the COP2 coprocessor.

CP2_ir_0[31:0]

o

Coprocessor Arithmetic and To/From Instruction Word.
Valid in the cycle befor€P2_as QCP2_ts (or CP2_fs_Qs asserted.

CP2_irenable_0

)

Signal Name Type Description
Indicates which bytes of tHeB_RDataor EB_WDatabuses are involved in the current
transaction. If afEB_BEsignal is asserted, the associated byte is being read or writte
EB_BElines are only valid whil&B_AValidis asserted.
EB_BE Read Data Bits Write Data Bits
Signal Sampled Driven Valid
EB_BE[3:0] N EB_BE[0] EB_RData[7:0] EB_WData[7:0]
EB_BE[1] EB_RData[15:8] EB_WnData[15:8]
EB_BE[2] EB_RData[23:16] EB_WData[23:16]
EB_BE[3] EB_RData[31:24] EB_WnData[31:24]
EB_A[35:2] 0 Addr_ess !lnes for external bus. Only valid wheB_ AValidis assertecdEB_A[35:32]are tied
to 0 in this core.
EB_WData[31:0] (0] Output data for writes.
EB_RData[31:0] | Input Data for reads.
Indicates that the target is driving read dateE®) RDatdines.EB_RdVamust always be
EB_RdVal valid. EB_RdVamay never be sampled asserted until the rising edge after the corresponding
EB_ARdywas sampled asserted.
Indicates that the target of a write is ready. Bi2_WDatdines can change in the next clock
EB_WDRdy cycle.EB_WDRdywill not be sampled until the rising edge where the corresponding
EB_ARdyis sampled asserted.
Bus error indicator for read transactioB® RBErris sampled on every rising clock edg
EB_RBErr until an active sampling dB_RdValEB_RBErrsampled with assertdtB_RdVal
indicates a bus error during re&B_RBErrmust be deasserted in idle phases.
EB WBE Bus error indicator for write transactio®&B_WBErris sampled on the rising clock edge
- following an active sample &B_WDRdyEB_WBErrmust be deasserted in idle phases.
Indicates that any external write buffers are empty. The external write buffers must deassert
EB_EWBE EB_EWABEN the cycle after the correspondi&f_WDRdys asserted and ke&B_EWBE
deasserted until the external write buffers are empty.
EB_WWBE O When asserted, indicates that the core is waiting for external write buffers to empty.

Enable Instruction Registering. When deasserted, no instruction strobes will be asserted in

the following cycle. When asserted, theraybe an instruction strobe asserted in the
following cycle. Instruction strobes inclu@P2_as_QCP2_ts QCP2_fs 0

Note: This is the only late signal in the interface. The intended function is to use this signal

as a clock gate condition on the capture latches in the coproces&&2oir_0[31:0].

CP2_as 0

Coprocessor2 Arithmetic Instruction Strobe. Asserted in the cycle after an arithmetig
coprocessor?2 instruction is available@R2_ir_0[31:0]. If CP2_abusy_@vas asserted in
the previous cycle, this signal will not be asserted. This signal will never be asserted
same cycle thatP2_ts_Oor CP2_fs_Gs asserted.

n the

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 25

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name

Type

Description

CP2_abusy 0

Coprocessor2 Arithmetic Busy. When asserted, a coprocessor2 arithmetic instructio
not be dispatchedP2_as_Qwill not be asserted in the cycle after this signal is assert

n will
od.

CP2_ts O

Coprocessor2 To Strobe. Asserted in the cycle after a To COP2 Op instruction is av
onCP2_ir_0[31:0]. If CP2_tbusyvas asserted in the previous cycle, this signal will not
asserted. This signal will never be asserted in the same cycl€®Btatas_mr CP2_fs_Qs
asserted.

nilable
be

CP2_tbusy 0O

To Coprocessor2 Busy. When asserted, a To COP2 Op will not be dispa@izdts_Qwill
not be asserted in the cycle after this signal is asserted.

CP2 fs 0

Coprocessor2 From Strobe. Asserted in the cycle after a From COP2 Op instruction

S

available orCP2_ir_0[31:0]. If CP2_fbusy_6®vas asserted in the previous cycle, this signal

will not be asserted. This signal will never be asserted in the same cyd#®thads_Cor
CP2_ts (s asserted.

CP2_fbusy 0O

From Coprocessor2 Busy. When asserted, a From COP2 Op will not be dispatched.
CP2_fs_0will not be asserted in the cycle after this signal is asserted.

CP2_endian_0

Big Endian Byte Ordering. When asserted, the processor is using big endian byte ofdering

for the dispatched instruction. When deasserted, the processor is using little-endian
ordering. Valid the cycle befoleP2_as QCP2_fs Oor CP2_ts (s asserted.

byte

CP2_inst32_0

MIPS32 Compatibility Mode - Instructions. When asserted, the dispatched instructio)
restricted to the MIPS32 subset of instructions. Please refer to the MIPS64 architect
specification for a complete description of MIPS32 compatibility mode. Valid the cyc
beforeCP2_as_QCP2_fs_(or CP2_ts_(s asserted.

Note: The 4KEp core is a MIPS32 core, and will only issue MIPS32 instructions. Thu
CP2_inst32_0s tied high.

nis
ure
e

7]

CP2_kd_mode_0

0]

Kernel/Debug Mode. When asserted, the processor is running in kernel or debug mod
be used to enable “privileged” coprocessor instructions. Valid the cycle &#@eas_0
CP2_fs_(or CP2_ts_Qs asserted.

e.Can

To Coprocessor Data: These signals are used when data is sent from the 4KEp core to the COP2 coprocessor, as part of
a To Coprocessor instruction.

completing

CP2_tds O

Coprocessor To Data Strobe. Asserted when To COP Op data is available on
CP2_tdata_0[31:0]

26

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name Type Description

Coprocessor To Order. Specifies which outstanding To COP Op the data is for. Valid only
whenCP2_tds_(0s asserted.

CP2_torder_0[2:0] Order

000, Oldest outstanding To COP Op data transfer

001, 2nd oldest To COP Op data transfer.

010, 3rd oldest To COP Op data transfer.
CP2_torder_0[2:0] (0] 011, 4th oldest To COP Op data transfer.

100, 5th oldest To COP Op data transfer.

105, 6th oldest To COP Op data transfer.

110, 7th oldest To COP Op data transfer.

111, 8th oldest To COP Op data transfer.

Note: The 4KEp core will never send Data Out-of-Order, tlR2_torder_0[2:0]is tied to
000,.

To Coprocessor Data Out-of-Order Limit. This signal forces the integer processor cdre to
limit how much it can reorder To COP Data. The value on this signal corresponds to|the
CP2_tordlim_0[2:0] S maximum allowed value to be used©R2_torder_0[2:0]

Note: The 4KEp core will never send Data Out-of-Order, 882 _tordlim_0[2:0]is
ignored.

To Coprocessor Data. Data to be transferred to the coprocessor. Vali€R®etls_0s

CP2_tdata_0[31:0] (0]
asserted.

From Coprocessor Data: These signals are used when data is sent to the 4KEp core from the COP2 coprocessor, as part ofcompleting
a From Coprocessor instruction.

Coprocessor From Data Strobe. Asserted when From COP Op data is available on

CP2_fds_0 ' | cP2 fdata_0[31:0]

Coprocessor From Order. Specifies which outstanding From COP Op the data is for} Valid
only whenCP2_fds_Qs asserted.

CP2_forder_0[2:0] Order

000, Oldest outstanding From COP Op data transfer

001, 2nd oldest From COP Op data transfer.
CP2_forder 0[2:0] | 010, 3rd oldest From COP Op data transfer.

011, 4th oldest From COP Op data transfer.

100, 5th oldest From COP Op data transfer.

101, 6th oldest From COP Op data transfer.

110, 7th oldest From COP Op data transfer.

111, 8th oldest From COP Op data transfer.

Note: Only values 009and 003 are allowed se€P2_fordlim_0[2:0]below

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 27

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name Type Description

From Coprocessor Data Out-of-Order Limit. This signal sets the limit on how much the
coprocessor can reorder From COP Data. The value on this signal corresponds to the
maximum allowed value to be used ©R2_forder_0[2:0]

CP2_fordlim_0[2:0] O | Note: The 4KEp core can handle one Out-of-Order From Data transfer.
CP2_fordlim_0[2:0]is therefore tied to 0Q.L The core will also never have more than two
outstanding From COP instructions issued, which also automatically limits
CP2_forder_0[2:Q to 001,

From Coprocessor Data. Data to be transferred from coprocessor. Validd#rids_0s

CP2_fdata_0[31:0] | asserted.

Coprocessor Condition Code Check: These signals are used to report the result of a condition code check to the 4KEp core from the
COP2 coprocessor. This is only used for BC2 instructions.

Coprocessor Condition Code Check Strobe. Asserted when coprocessor condition gode

CP2_cces 0 : check bits are available @P2_ccc_0

Coprocessor Conditions Code Check. Valid wo&2_cccs_0s asserted. When assertef,
CP2_ccc_0 | the branch instruction checking the condition code should take the branch. When deasserted,
the branch instruction should not branch.

Coprocessor Exceptions: These signals are used by the COP2 coprocessor to report exception for each instruction.

Coprocessor Exception Strobe. Asserted when coprocessor exception signalling is aviailable

CP2_excs_0 : onCP2_exc_@mndCP2_exccode_.0

Coprocessor Exception. When asserted, a Coprocessor exception is signaled on

CP2_exc 0 ! CP2_exccode_0[4:0Malid whenCP2_excs_(@s asserted.

Coprocessor Exception Code. Valid when loB2_excs_@ndCP2_exc_(are asserted.

CP2_exccode[4:0] Exception
01016 (RI) Reserved Instruction Exception
10006 (IS1) Available for Coprocessor

CP2_exccode_0[4:0] specific Exception

(IS1) Available for Coprocessor

1000% specific Exception
10016 C2E Exception
All others Reserved

Instruction Nullification: These signals are used by the 4KEp core to signal nullification of each instruction to the COP2 copriocessor.

CP2 nulls_0 (0] Coprocessor Null Strobe. Asserted when a nullification signal is avail&#® amull_0

Nullify Coprocessor Instruction. When deasserted, the 4KEp core is signalling that the
instruction is not nullified. When asserted, the 4KEp core is signalling that the instructipn is
nullified, and no further transactions will take place for this instruction. Valid when
CP2_nulls_Gs asserted.

CP2_null_0 o)

Instruction Killing: These signals are used by the 4KEp core to signal killing of each instruction to the COP2 coprocesso

CP2_kills_0 0] Coprocessor Kill Strobe. Asserted when kill signalling is availali#@nkill_0[1:0].

28 MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name Type Description

Kill Coprocessor Instruction. Valid whe®P2_kills_0is asserted.

CP2_kill_0[1:0] Type of Kill
00, Instruction is not killed and
01, results can be committed.

10, Instruction is killed.
(not due taCP2_exc_D

Instruction is killed.
(due toCP2_exc_D

CP2_kill_O[1:0] o)

11,

If an instruction is killed, no further transactions will take place on the interface for this

instruction.
Miscellaneous COP2 signals:
CP2_reset (0] Coprocessor Reset. Asserted when a hard or soft reset is performed by the integef unit.
COP2 Present. Must be asserted when COP2 hardware is connected to the Coprocessor 2
CP2_present S
Interface.
CP2 idle Coprocessor ldle. Asserted when the coprocessor logic is idle. Enables the processqr to go

into sleep mode and shut down the clock. Valid onyR2_presenis asserted.

EJTAG Interface

TAP interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core doeg not
implement the TAP controller.

EJ TRST N | Active-low Test Reset Input (TRST*) for the EJTAG TAP. At power-up, the assertion pf
- - EJ_TRST_Nauses the TAP controller to be reset.

EJ TCK I Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS I Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TDI I Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO O Test Data Output (TDO) for the EJTAG TAP.

Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state
EJ_TDOzstate O | 0: The TDO output at chip level must be driven to the valugloff DO

IEEE Standard 1149.1-1990 defines TDO as a 3-stated signal. To avoid having a 3-state core
output, the 4KEp core outputs this signal to drive an external 3-state buffer.

Debug Interrupt:

EJ DINTsu S Value of DINTsup for the Implementation register. When high, this signal indicates that the
- P EJTAG probe can use the DINT signal to interrupt the processor.

Debug exception request when this signal is asserted in a CPU clock period after being
EJ_DINT deasserted in the previous CPU clock period. The request is cleared when debug mode is
entered. Requests when in debug mode are ignored.

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 29

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name | Type | Description

Debug Mode Indication:

Asserted when the core is in Debug Mode. This can be used to bring the core out of
EJ_DebugM (0] power mode. In systems with multiple processor cores, this signal can be used to
synchronize the cores when debugging.

a low

Device ID bits:

These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not implemented,
inputs are not connected. These inputs are always available for soft core customers. On hard cores, the core “hardener” cg
inputs to their own values.

these
n set these

Value of the ManuflD[10:0] field in the Device ID register. As per IEEE 1149.1-1990

manufacturer’s identification code in the JEDEC Publications 106, which can be fou
http://www.jedec.org/

EJ_ManuflD[10:0] S | ManuflD[6:0] bits are derived from the last byte of the JEDEC code by discarding the p
bit. ManufID[10:7] bits provide a binary count of the number of bytes in the JEDEC ¢
that contain the continuation character (0x7F). Where the number of continuations
characters exceeds 15, these 4 bits contain the modulo-16 count of the number of
continuation characters.

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0] S Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs:

These signals come from EJTAG control registers. They have no effect on the core, but can be used to give EJTAG deby
software additional control over the system.

section 11.2, the manufacturer identity code shall be a compressed form of JEDEC standard

nd at:

arity
ode

gging

the

s can be

Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft resets. If this
EJ_SRstE 0 : .

signal is deasserted, none, some, or all soft reset sources are masked.

Peripheral Reset. EJTAG can assert this signal to request the reset of some or all of
EJ_PerRst 0 . =

peripheral devices in the system.

Processor Reset. EJTAG can assert this signal to request that the core be reset. Th
EJ_PrRst (0] . .

- fed into theSI_Resesignal.

EJTAG Trace Interface

These signals enable an interface to optional off-chip trace memory. The EJTAG Trace interface connects to the Probe Ipterface

Block (PIB) which in turn connects to the physical off-chip trace pins.

Note that if on-chip trace memory is used, access occurs via the EJTAG TAP interface, and this interface is not required.

30 MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00
Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name

Type

Description

TC_ClockRatio[2:0]

Clock ratio. This is the clock ratio set by softward ®@BCONTROLB.CRThe value will
be within the boundaries defined ¢ _CRMaxandTC_CRMinThe table below shows the
encoded values for clock ratio.

TC_ClockRatio
000
001
010
011
100
101
110
111

Clock Ratio

8:1 (Trace clock is eight times the core clock)

4:1 (Trace clock is four times the core clock)

2:1 (Trace clock is double the core clock)

1:1 (Trace clock is same as the core clock)

1:2 (Trace clock is one half the core clock)

1:4 (Trace clock is one fourth the core clock)

1:6 (Trace clock is one sixth the core clock)

1:8 (Trace clock is one eight the core clock)

TC_CRMax[2:0]

Maximum clock ratio supported. This static input sets the CRMax field of @BCONFIG
register. It defines the capabilities of the Probe Interface Block (PIB) module.This fie
determines the minimum value B€_ClockRatio

Id

TC_CRMin[2:0]

Minimum clock ratio supported. This input sets the CRMin field oMGBCONFIG
register. It defines the capabilities of the PIB module. This field determines the maxi
value of TC_ClockRatio

mum

TC_ProbeWidth[1:0]

This static input will set the PW field of ti€BCONFIGregister.

If this interface is not driving a PIB module, but some chip-level TCB-like module, then
field should be set to 2'b11 (reserved value for PW).

Number physical data
TC_ProbeWidth pin on PIB
00 4 bits

01 8 bits

10 16 bits

11 Not directly to PIB

this

TC_PibPresent

Must be asserted when a PIB is attached to the TC Interface. When de-asserted (low)
other inputs are disregarded.

all the

TC_TrEnable

Trace Enable, when asserted the PIB must start running its output clock and can expe
data on all other outputs.

tt valid

TC_Calibrate

This signal is asserted when the Cal bit inT@BCONTROLBegister is set.

For a simple PIB which only serves one TCB, this pin can be ignored. For a multi-cq
capable PIB which also us&€_ValidandTC_Stall the PIB must start producing the
calibration pattern when this signal is asserted.

re

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

31

Table 11 4KEp Signal Descriptions (Continued)

Signal Name Type Description
This input identifies the number of bits picked up by the probe interface module in each
“cycle”.
If TC_ClockRatidndicates a clock-ratio higher than 1:2, then clock multiplication in the
Probe logic is used. The “cycle” is equal to each core clock cycle.
If TC_ClockRatidndicates a clock-ratio lower than or equal to 1:2, then “cycle” is (clgck-
ratio * 2) of the core clock cycle. For example, with a clock ratio of 1:2, a “cycle” is equal
to core clock cycle; with a clock ratio of 1:4, a “cycle” is equal to one half of core clo¢k
cycle.
This input controls the down-shifting amount and frequency of the trace word on
TC_Data[63:0] The bit width and the correspondifi@_DataBitsvalue is shown in the
table below.
TC_DataBits[2:0] |
Probe uses following bits
TC_DataBits[2:0] | from TC_Dataeach cycle
000 TC_Data[3:0]
001 TC_Data[7:0]
010 TC_Data[15:0]
011 TC_Data[31:0]
100 TC_Data[63:0]
Others Unused
This input might change as the valueTdd_ClockRatio[2:0]changes.
TC Valid o Asserted when a valid new trace word is started ofi theData[63:0] signals.
i
- TC_Validis only asserted wherC_DataBitsis 100.
When asserted, a neliC_Validin the following cycle is stalledTC_Validis still asserted,
but theTC_Datavalue andlrC_Validare held static, until the cycle aft€C_ Stallis sampled
TC_Stall low.
TC_Stallis only sampled in the cycle before a nE@&_Validcycle, and only when
TC_DataBitsis 100, indicating a full word ofC_Data
Trace word data. The value on this 64-bit interface is shifted down as indicated in
TC_DataBits[2:0] In the first cycle where a new trace word is valid on all the bits ang
TC_DataBits[2:0]is 100,TC_Validis also asserted.
TC_Data[63:0] O | The Probe Interface Block (PIB) will only be connected to [(N-1):0] bits of this output Hus.
N is the number of bits picked up by the PIB in each core clock cycle. For clock ratigs 1:2
and lower, N is equal to the number of physical trace pins (legal values of N are 4, 8, oy 16).
For higher clock ratios, N is larger than the number of physical trace pins.
TC_ProbeTrigin A Rlsm_g edge trigger input. The source should b_e the P_robe Trigger input. The input i
considered asynchronous; i.e., it is double registered in the core.
TC_ProbeTrigOut o S_lngle cycle (relative to the cyclg defme_d the descriptiom@©f DataBit$ hlgh, str_obe,
trigger output. The target of this trigger is intended to be the external probe’s trigger optput.
TC_ChipTrigin A Rising edge trl_g_ger !n_put. The source shogld be on-chip. The input is considered
asynchronous; i.e., it is double registered in the core.
TC_ChipTrigOut o _Slngle cycle (relative to core _clock) high strobe, trigger output. The target of this trigger is
intended to be an on-chip unit.

Performance Monitoring Interface

32

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name

| Type

| Description

These signals can be used to implement performance counters, which can be used to monitor hardware/software performance.

PM_DCacheHit (0] This signal is asserted whenever there is a data cache hit.

PM_DCacheMiss (0] This signal is asserted whenever there is a data-cache miss.

PM_DTLBHit (0] This signal is not used in the 4KEp processor core and is tied to ground.

PM_DTLBMiss 0] This signal is not used in the 4KEp processor core and is tied to ground.

PM_ICacheHit (0] This signal is asserted whenever there is an instruction-cache hit.

PM_ICacheMiss (0] This signal is asserted whenever there is an instruction-cache miss.

PM_InstComplete (0] This signal is asserted each time an instruction completes in the pipeline.

PM_ITLBHit (0] This signal is not used in the 4KEp processor core and is tied to ground.

PM_ITLBMiss (0] This signal is not used in the 4KEp processor core and is tied to ground.

PM_JTLBHit (0] This signal is not used in the 4KEp processor core and is tied to ground.

PM_JTLBMiss (@) This signal is not used in the 4KEp processor core and is tied to ground.
PM_WTBMerge (0] This signal is asserted whenever there is a successful merge in the write-through bpffer.
PM_WTBNoMerge (0] This signal is asserted whenever a non-merging store is written to the write-through buffer.

ScratchPad RAM interface

This interface allows a ScratchPad RAM (SPRAM) array to be connected in parallel with the cache arrays, enabling fast
data. There are independent interfaces for Instruction and Data ScratchPads. Signals related to the Instruction Scréschp
are prefixed with “ISP_". Signals related to the Data Scratchpad interface are prefixed with “DSP_". Note: In order to achieve single

cycle access, the ScratchPad interface is not registered, unlike the other core interfaces. This requires more careful timin

considerations.

access to
nd inte

g

DSP_TagAddr[19:4]

Virtual index into the SPRAM used for tag reads and writes.

DSP_TagRdStr

Tag Read Strobe - Hit, Stall, TagRdValue use this strobe.

nto

DSP_TagWrStr o Tag Write Strobe - If SPRAM tag is software configurable, this signal will indicate whe
update the tag value.
Tag Compare Value - This bus is used for both tag comparison and tag write value.
DSP_TagCmpValue[23:0 o For tag_com_paqson, the bus usage is {PA[31:10], 2’'b0} and contains the address to
determine hit/miss.
For tag writes, the bus contains {PA[31:10], Lock, Valid} from TlagLoregister.
DSP_DataAddr[19:2] (0] Virtual index into the SPRAM used for data reads and writes.
DSP_DataWrValue[31:0] (0] Data Write Value - Data value to be written to the data array.
DSP_DataRdStr (0] Data Read Strobe - Indicates that the data array should be read.
DSP_DataWrStr (0] Data Write Strobe - Indicates that the data array should be written.
DSP_DataWrMask[3:0] (0] Data Write Mask - Byte enables for a data write.

DSP_DataRdValue[31:0]

Data Read Value - Data value read from the data array.

DSP_TagRdValue[23:0]

Tag Read Value - Tag value read from the tag array. WrittéragrLoregister on a CACHE
instruction. Read value maps into th@agLofields: {PA[31:10], Lock, Valid}

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

33

Table 11 4KEp Signal Descriptions (Continued)

Integrated Memory BIST Interface

These signals provide the interface to optional integrated memory BIST capability for testing the SRAM arrays within the

ter.

Signal Name Type Description
DSP_Hit I Hit - Indicates that this read was to an address covered by the SPRAM.
DSP_Stall | Stall - Indicates that the read has not yet completed.
DSP_Present S Present - Indicates that a SPRAM array is connected to this port.
ISP_Addr[19:2] (0] Virtual index into the SPRAM used for both reads and writes of tag and data.
Read Strobe - indicates a read of the tag and data arrays. Hit and Stall signals are alsp based
ISP_RdStr O .
off of this strobe.
ISP_TagWrStr o Tag Write Strobe - If SPRAM tag is software configurable, this signal will indicate whep to
update the tag value.
Write/Compare Data
For data writes, this is the value to be written to the data array.
For tag writes the bus contains the {8'b0, PA[31:10], Lock, Valid} from the TagLo regig
ISP_DataTagValue[31:0] o For tag comparison, the bus has the address to be used for hit/miss determination in the
format {8'b0, PA[31:10], Uncacheable, 1’'b0}. When high, the Uncacheable bit indicates
that the physical address bits (PA[31:10]) are to an uncacheable address; when the
Uncacheable bit is low, the physical address is to a cacheable address.
ISP_DataWrStr (0] Data Write Strobe - Indicates that the data array should be written.
ISP_DataRdValue[31:0] I Data Read Value - Data value read from the data array.
. Tag Read Value - Tag value read from the tag array. Writtéiagioregister on a CACHE
ISP_TagRdValue[23:0] ! instruction. Read value maps into th@agLofields: {PA[31:10], Lock, Valid}
ISP_Hit I Hit - Indicates that this read was to an address covered by the SPRAM.
ISP_Stall I Stall - Indicates that the read has not yet completed.
ISP_Present S Present - Indicates that a SPRAM array is connected to this port.

core.

ay.

t array.

L array.

array.

select

gmbinvoke | Enable signal for integrated BIST controllers.

gmbdone (0] Common completion indicator for all integrated BIST sequences.

gmbddfail (@) When high, indicates that the integrated BIST test failed on the data cache data arr,

gmbtdfail (@) When high, indicates that the integrated BIST test failed on the data cache tag array.

gmbwdfail @) When high, indicates that the integrated BIST test failed on the data cache way seled

gmbdifail @) When high, indicates that the integrated BIST test failed on the instruction cache datg

gmbtifail (0] When high, indicates that the integrated BIST test failed on the instruction cache tag array.
s When high, indicates that the integrated BIST test failed on the instruction cache way

gmbwifail (0]

Scan Test Interface

These signals provide an interface for testing the core. The use and configuration of these pins are implementation-depe

ndent.

34

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 11 4KEp Signal Descriptions (Continued)

Signal Name Type Description
This signal should be asserted while scanning vectors into or out of the core. The
gscanenable I gscanenablsignal must be deasserted during normal operation and during capture ¢locks
in test mode.
This signal should be asserted during all scan testing both while scanning and during capture
gscanmode | . - A
clocks. Thegscanmodsignal must be deasserted during normal operation.
This signal controls the read and write strobes to the cache SRAMgsbanmodés
gscanramwr |
asserted.
gscanin_X | These signal(s) are the inputs to the scan chain(s).
gscanout_X (0] These signal(s) are the outputs from the scan chain(s).
BistIn[n:0] | Input to user-specified BIST controller.
BistOut[n:0] @) Output from user-specified BIST controller.
EC Interface Transactions Clock # Tl 21 31 41 51 61 71 8
. . . EB_Clk
The 4KEp core Implements the ECTM Interface for |tS bUS Addre$s and Control held uhtil clock aiter EB_ARdy samplefl asserted

. /'
transactions. This interface uses a pipelined, in-order 8 ARdy 775/ 77 '.\\

protocol with independent address, read data, and write ‘
data buses. The following subsections describe the four £8-A352 LTI e LTI

basic bus transactions: single read, single write, burst read,gg_g;;gﬂ]y 7777IX__vdia 77 7717777777777 7777
and burst write. - ‘

EB_Avalid >Dri en by system logi¢

/i

Single Read Es_Roae3L0l/ /11 1111/ 1] /»(EE?/W [T
Figure 7shows the basic timing relationships of signals Fefel /__\,
during a simple read transaction. During a single read EB_RBErT [T\
cycle, the 4KEp core drives the address &o A[35:2]
and byte enable information ori&B_BE[3:0]. To es wie ///)) \\N//7//77 7717777777777 7777
maximize performance, the EC interface does not definea)) o .
maximum number of outstanding bus cycles. Instead it Figure 7 Single Read Transaction Timing Diagram

provides th&eB_ARdynput signal. This signal is driven by _ _ _ _
external logic and controls the generation of addresses o he EB_Instrsignal is only asserted during a single read

the bus. cycle if there is an instruction fetch from non-cacheable
memory space. ThEB_AValidsignal is driven in each

In the 4KEp core, the address is driven whenever it clock thatEB_A[35:2]is valid on the bus. The 4KEp core

becomes available, regard|ess of the Sta@)_fARdy drivesEB_Writelow to indicate a read transaction.

However, the 4KEp core always continues to drive the

address until the clock aft&B_ARdyis sampled asserted. TheEB_RData[31:0]andEB_RdVakignals are first

For examp|e, at the rising edge of the clock Ei'gure 7 Sampled on the rising edge of clock 4, one clock after
theEB_ARdysignal is sampled low, indicating that external EB_ARdyis sampled asserted. Data is sampled on every
logic is not ready to accept the new address. However, thelock thereafter untiEB_RdVais sampled asserted.

4KEp core still drive€€B_A[35:2]in this clock as shown.

On the rising edge of clock 3, the 4KEp core samples If @ bus error occurs during the data transaction, external
EB_ARdyasserted and continues to drive the address untilogic assert&B_RBErrin the same clock &5B_RdVal

the rising edge of clock 4.

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 35

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Single Write

Clock # 1 2 3 4 5 6 7 8
Figure 8shows a typical write transaction. The 4KEp core = [LI LI LI LI L] L] L] L
drives address and control information onto the Addr

EB_ARq) 7
EB. A[35:2]andEB_BE[3:0]signals on the rising edge of " —/ | &/ | \ill/ '\w \
clock 2. As in the single read cycle, these signals remain es_assz //]7/X raa X a2\ s\ X aaa X/ /7]7]T7//TT]]
active until the clock edge after tB8_ARdysignal is \
sampled asserted. The 4KEp core assert&BhaNrite esnsr [777/X e \ LTI
signal to indicate that a valid write cycle is on the bus and g5 gz 77777777]
EB_AValidto indicate that valid address is on the bus. /

EB_Burst
The 4KEp core drives write data orii®3_\WData[31:0]in £B BFirst I\

the same clock as the address and continues to drive data
until the clock edge after theB_ WDRdysignal is sampled ~ £88Last
asserted. If a bus error occurs during a write operation,

en by system logic

external logic asserts ti&B_WBErrsignal one clock after Al —

asserting=B_WDRdy es roaalsioy /77777177 X o) B} w\/I1777]
Clock # 1 2 3 4 5 6 7 8 EB_Rdval] FZ‘?td w) _

o MUUULILIAIL T)\M s
ea s TN R NI e L Qi
eswie [///1/ [TV Figure 9 Burst Read Transaction Timing Diagram

e ses0 7777/X e XZZZZIRIATTITITTITITTITIII]

Figure 9shows an example of a burst read transaction.

£8_AValid / Burst read transactions initiated by the 4KEp core always
‘ Data is Driven until /‘ockafrerEsfwoR contain four data transfers in a sequence determined by the
£8 woatel31.0 /) vefa LT critical word (the address that caused the miss) and
Driten by systém logic EB_SBlockIn addition, the data requested is always a 16-
‘__/ _ L
EB_WDRdy /] _\\\ byte aligned block.

EB_WBErT /—4(

Figure 8 Single Write Transaction Timing Diagram

The order of words within this 16-byte block varies
depending on which of the words in the block is being
requested by the execution unit and the ordering protocol
selected. The burst always starts with the word requested
Burst Read by the execution unit and proceeds in either an ascending
or descending address order, wrapping when the block

The 4KEp core is capable of generating burst transactiongoundary is reachedable 12andTable 13show the
on the bus. A burst transaction is used to transfer multipleduence of address bits 2 and 3.

data items in one transaction. Table 12 Sequential Ordering Protocols
Starting Address Address Progression
EB_A[3:2] of EB_A[3:2]
00 00, 01, 10, 11
01 01, 10, 11, 00
10 10, 11, 00, 01
11 11,00, 01, 10
36 MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Table 13 Sub-Block Ordering Protocols Cook# L 2 8 4 8 6 7 8
Starting Address Address Progression FB-clk l_l—l_l—’_l—ﬂ_l—l_l—’_l—’_l—’_l—l_l—
FB AR orEB A3 ey _ [N N [\ [NQITITITITITT]
00 00, 01, 10, 11 EB _A35:2] f{f{ W Adrt [adz X adr3 X AdrX, | // /// /// ////
01 01, 00, 11, 10
es Be30l ////1/ \\riiiiiiiiia
10 10, 11, 00, 01
eswie ////]/ [N
11 11, 10, 01, OO
EB_Burst / \
The 4KEp core drives address and control information onto e grirst N\
theEB_A[35:2]andEB_BE[3:0]signals on the rising edge] » Drkenty
of clock 2. As in the single read cycle, these signals remain £8-8Last \ Syyrem logie
active until the clock edge after te8_ARdysignal is £B Avalid / \ /
sampled asserted. The 4KEp core continues to drive
EB_Avalidas long as a valid address is on the bus. e8_woaasty [//X__owat X owez [X a3\ oA X//T]]]]]]
S S)
TheEB_Instrsignal is asserted if the burst read is for an £8.worsy /\nay// 7 X/ 7777
instruction fetch. Th&B_Burstsignal is asserted while the
address is on the bus to indicate that the current address is™ " AR ARV/ARV/AR

part of a burst transaction. The 4KEp core asserts the
EB_BFirstsignal in the same clock as the first address is
driven and th&B_BLassignal in the same clock as the last
address to indicate the start and end of a burst cycle.

Figure 10 Burst Write Transaction Timing Diagram

The 4KEp core drives address and control information onto
theEB_A[35:2]andEB_BE][3:0]signals on the rising edge
of clock 2. As in the single read cycle, these signals remain
active until the clock edge after te8_ARdysignal is
sampled asserted. The 4KEp core continues to drive
EB_AValidas long as a valid address is on the bus.

The 4KEp core first samples tB®8 RData[31:0]signals
two clocks afteEB_ARDyis sampled asserted. External
logic assert&£B_RdValo indicate that valid data is on the
bus. The 4KEp core latches data internally whenever

EB_RdVals sampled asserted. The 4KEp core asserts t&®_Write EB_Burst and

EB_AValidsignals during the time the address is driven.

mztgéh?;;\;]ager:;sll?sgszc:gelgg ﬂgggi;@r&dgﬂg:ﬁ gwait EB_Writeindicates that a write operation is in progress.
- 9 P ' g The assertion dEB_Burstindicates that the current

states in the data retqrn. There is also an address Wa.'t S taBeperation is a bursEB_AValidindicates that valid address

caused bEB_ARdyeing sampled deasserted on the rising is on the bus

edge of clock 4. Note that the core holds address 3 on the ‘

EB_Abus for an extra clock becau;e of t.hls walt state. The 4KEp core asserts tB#8_BFirstsignal in the same

External logic asserts theB_RBErrsignal in the same oo L

clock as data if a bus error occurs during that data transfeFlOCk as address 1 is driven to indicate the start of a burst
cycle. In the clock that the last address is driven, the 4KEp

core assertEB_BLastto indicate the end of the burst
Burst Write transaction.

Burst write transactions are used to empty one of the WriteIn Figure 1Qthe first data word (Datal) is driven in clocks

buffers. A burst write transaction is only performed if the i and 3 dlije to;hE_B__WD(Ij?d)si?nlal iezing sampled .
write buffer contains 16 bytes of data associated with the easserted at the rising edge of clock 2, causing a wait state.

same aligned memory block, otherwise individual write WhenEB_WDRdys sampled asserted on _the rising edge of
transactions are performegigure 10shows a timing clock 3, the 4KEp core responds by driving the second

diagram of a burst write transaction. Unlike the read burst,Wom| (Data2).
a write burst always begins wiB_A[3:2] equal to 00b.

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 37

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

External logic drives th&B_WBErrsignal one clock after
the corresponding assertiontEeB_WDRdyif a bus error
has occurred as shown by the arrowBigure 10

38 MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Revision History Please note: Limitations on the authoring tools make it
difficult to place change bars on changes to figures. Change

In the left hand page margins of this document you may Pars onfigure titles are used to denote a potential change in

find vertical change bars to note the location of significant the figure itself. Certain parts of this document (Instruction

changes to this document since its last release. Significaf€t descriptions, EJTAG register definitions) are references

changes are defined as those which you should take note ¢@ Architecture specifications, and the change bars within

as you use the MIPS IP. Changes to correct grammar, these sections indicate alterations since the previous

spelling errors or similar may or may not be noted with version of the relevant Architecture document.

change bars. Change bars will be removed for changes

which are more than one revision old.

Revision Date Description

» Added this revision history table.

02.00 November 8, 2002 | « Various updates to describe new MIPS32 Release 2 capabilities, included in version
3.0 or higher core releases.

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00 39
Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

Copyright ©2001-2002 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies™). Any
copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in
writing by MIPS Technologies or an authorized third party is strictly prohibited. Ata minimum, thisinformati -
protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties ar

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft V
format) is subject to use and distribution restrictions that are independent of and supplemental to any anc
confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURC
FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS
WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve fL

design or otherwise. MIPS Technologies does not assume any liability arising out of the application or us ;
information, or of any error or omission in such information. Any warranties, whether express, statutory, img.
otherwise, including but not limited to the implied warranties of merchantability or fithess for a particular pu

are excluded. Except as expressly provided in any written license agreement from MIPS Technologies o
authorized third party, the furnishing of this document does not give recipient any license to any intellectual

rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported or transferred for the purpose of reexpc
violation of any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement

The information contained in this document constitutes one or more of the following: commercial computt
software, commercial computer software documentation or other commercial items. If the user of this infori

or any related documentation of any kind, including related technical data or manuals, is an agency, depart

other entity of the United States government ("Government”), the use, duplication, reproduction, release,
modification, disclosure, or transfer of this information, or any related documentation of any kind, is restri
accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquis
Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and ¢ 5
covering this information from MIPS Technologies or an authorized third party.

MIPS, R3000, R4000, R5000 and R10000 are among the registered trademarks of MIPS Technologies, | e
United States and other countries, and MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-3D, MIPS-based, Ml

MIPS II, MIPS 1lI, MIPS IV, MIPS V, MIPSsim, SmartMIPS, MIPS Technologies logo, 4K, 4Kc, 4Km, 4Kp, 4t

4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 20Kc, 25Kf, ASMACRO, ATLAS, At the Core of

User Experience., BusBridge, CoreFPGA, CorelLV, EC, JALGO, MALTA, MDMX, MGB, PDtrace, Pipeline,

Pro Series, SEAD, SEAD-2, SOC-it and YAMON are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: D1.06, Build with Conditional Tags: 2B

MIPS32™ 4KEp™ Processor Core Datasheet, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.

	Features
	Architecture Overview
	Pipeline Flow
	4KEp Core Required Logic Blocks
	Execution Unit
	Multiply/Divide Unit (MDU)
	System Control Coprocessor (CP0)
	Interrupt Handling
	GPR Shadow Registers

	Modes of Operation
	Memory Management Unit (MMU)
	Cache Controllers
	Bus Interface (BIU)
	Merge Control
	SimpleBE Mode

	Hardware Reset
	Power Management
	Register-Controlled Power Management
	Instruction-Controlled Power Management
	Local clock gating

	4KEp Core Optional Logic Blocks
	Instruction Cache
	Data Cache
	Cache Memory Configuration
	Cache Protocols
	Scratchpad RAM
	MIPS16e Application Specific Extension
	Coprocessor 2 Interface
	CorExtend User Defined Instruction Extensions
	EJTAG Debug Support
	Debug Registers
	EJTAG Hardware Breakpoints
	EJTAG Trace

	Testability
	Internal Scan
	Memory BIST
	Integrated Memory BIST
	User-specified Memory BIST

	Instruction Set
	External Interface Signals
	EC Interface Transactions
	Single Read
	Single Write
	Burst Read
	Burst Write

	Revision History

