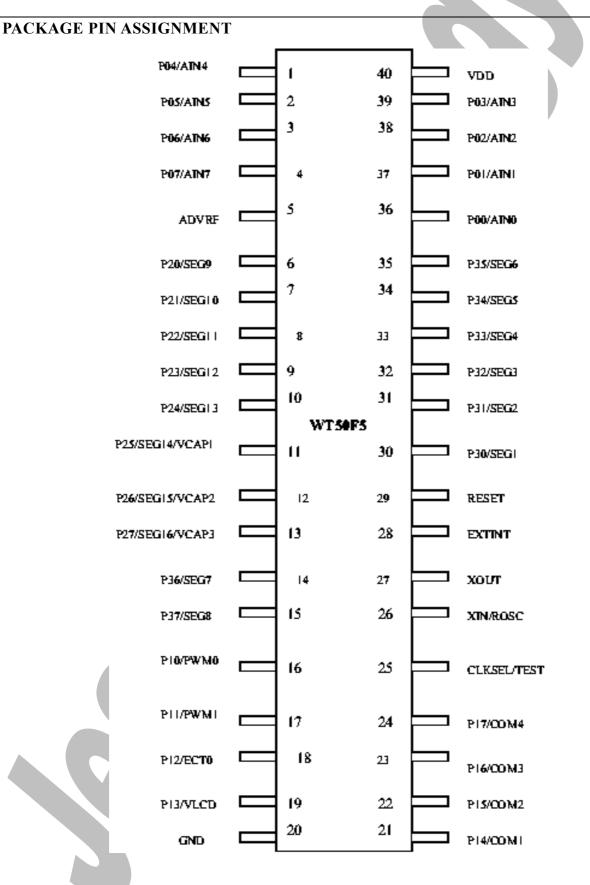


8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

DESCRIPTION

The WT50F5 is a high-performance, low-cost, CMOS 8-bit single-chip microcontroller with on-chip 12-bit analog to digital converter and 128 segments LCD driver. This chip can be used in variable applications where analog (sensor) to digital signal processing and LCD display are required, including industrial control, consumer, communications, and security products.

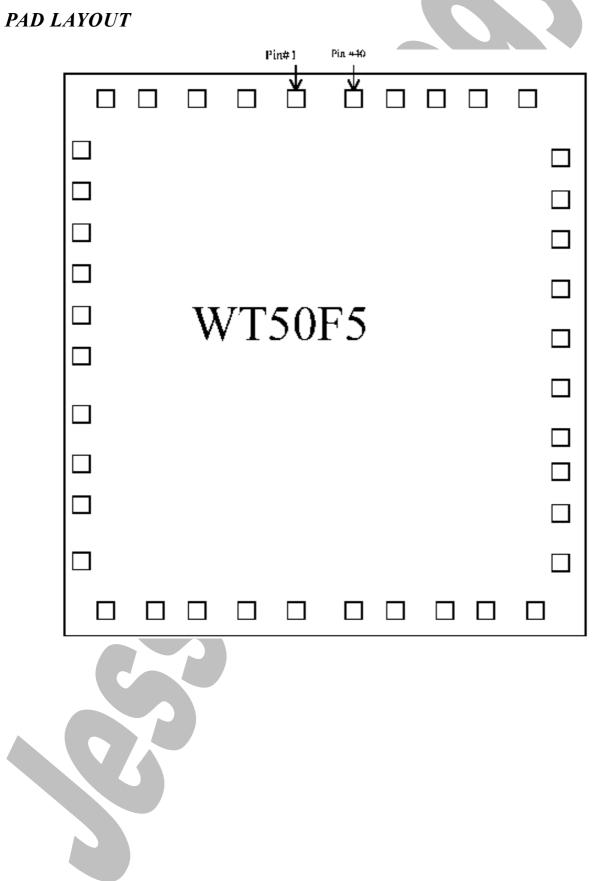
This chip has 8-bit CPU, RAM, ROM, I/Os, dual 16-bit timer/counters, interrupt controller, 16x4 LCD Driver and an 8-channel 12-bit A/D converter. To be suitable for portable battery-powered applications, A power saving function is included.


FEATURES

- 8-bit single chip microcontroller with 8KbytesTM ROM and 384bytes SRAM
- Wide voltage operating range from 2.7 V to 5.5 V
- On-chip RC oscillator runs at 2MHz and crystal oscillator can run up to 6.0 MHz
- 6 interrupt sources (external: 1; internal:5); all sources have independent latches each and multiple interrupt control is available
- ♦ I/O port (32 pins)
 - Port P0 8 pins (shared wth analog inputs; 4 pins with 20mA sink current)
 - Port P1
 8 pins(20mA sink current)
 - Port P28 pins (shared with SEG9 ~ SEG16)
- Interval Timer (Internal time base generator)
- ◆ Operating current 2mA/4MHz@5V; providing standby mode (OSC is stopped and current consumption < 1 uA@5V) and key wake-up mode
- ♦ Watchdog timer
- Dual PWM
- Dual 16-bit timer/counters
- ♦ A/D converter module
 - ♦ 8 analog inputs multiplexed into one A/D converter
 - Sample and hold
 - 20 μ S conversion time/per channel
 - 12-bit resolution with ± 2 LSB accuracy
 - External reference input, AD_{VRF}
 - LCD driver (automatically display)
 - LCD direct driver (max. 16-digit display at 1/4 duty)
 - 1/4, 1/3, 1/2 duties and 1/2, 1/3 biases can be selected by programming
- Programming lock for software security; read/write protection (signature compare)
- Package: 40-pin PDIP

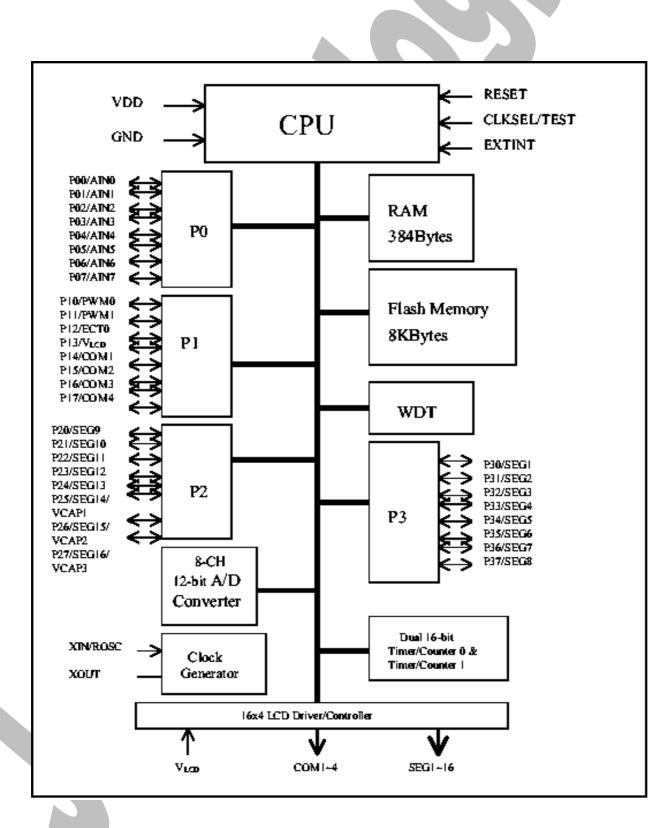
WT50F5

Jess Technology Co., Ltd. 珍氏科技有限公司 R tech


8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

tech

WT50F5


8-bit μ C with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

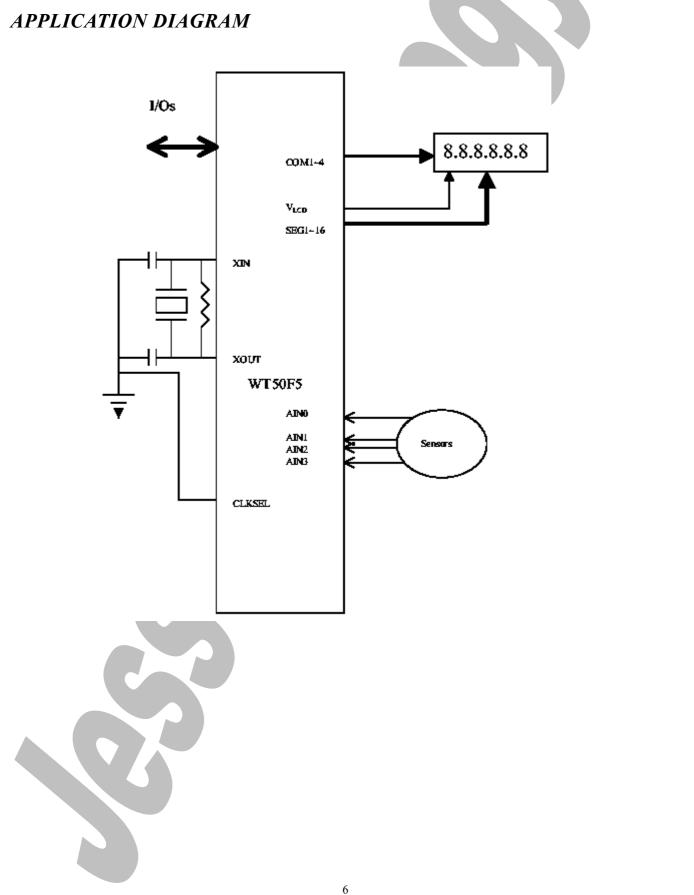
WT50F5 8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

BLOCK DIAGRAM

4

WT50F5

8-bit μ C with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver


PIN FUNCTION

PIN NAME	40-pin	In/Out	FUNCTIONS
P00/AIN0~ P03/AIN3	36~39	I/O	8-bit I/O port; internal pull-up;
P04/AIN4~P07/AIN7	14		o/p: sink 20mA(P04~P07); i/p: external pull-low
			(shared with analog inputs)
P10/PWM0	16	I/O	(shared with PWM output); 8-bit I/O port; internal pull
PI1/PWM1	17		up; o/p: sink 20mA; i/p: external pull-low
P12/ECT0	18		(External counter)
P13/V _{LCD}	19		(Bias voltage to LCD)
PI4/COMI	21		(LCD common output)
P15/COM2	22		(LCD common output)
P16/COM3	23		(LCD common output)
P17/COM4	24		(LCD common output)
P20/\$EG9	6	I/O	8-bit I/O port; internal pull-up;
P21/\$EG10	7		i/p: external pull-low
P22/SEG11	8		(shared with LCD segment output)
P23/SEG12	9		P20P23 support key wake-up
P24/\$EG13	10		
P25/\$EG14/VCAP1	11		
P26/SEG15/VCAP2	12		
P27/SEG16/VCAP3	13		
P30/\$EG1	30	I/O	8-bit I/O port; internal pull-up;
P31/\$EG2	31		i/p: external pull-low
P32/\$EG3	32		(shared with LCD segment output)
P33/\$EG4	33		
P34/SEG5	34		
P35/\$EG6	35		
P36/\$EG7	14		
P37/SEG8	15		
XIN/ROSC	26	Input	Crystal input/ROSC input
XOUT	27	Output	Crystal output
RESET	29	Input	System reset signal input; low active
VDD	40	Input	Power source
GND	20	Input	Ground
AD _{VRF}	5	Input	Reference voltage input to A/D
EXTINT	28	Input	External interrupt input
CLKSEL/TEST	25	Input	Clock sources select, connected to VDD for ROSC of
			to GND for Crystal (Test Pin)

WT50F5 8-bit μ C with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

8-bit μ C with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

FUNCTION DESCRIPTION

(1) I/O PORTS

The WT50F5 has 4 ports (32 pins) each as follows:

- ♦ 8-bit I/O port (shared with analog input AIN0~AIN7)
- ♦ 8-bit I/O port (shared with PWM0/PWM1, COM1-4, ECT0, V~D)
- ♦ 8-bit I/O port (shared with SEG9-16)
- ♦ 8-bit I/O port (shared with SEG1-8)

<1> Port PO (PO0 -PO7)

Port PO is an 8-bit bi-directional I/O port and its Data Register and Direction Control Register are located in PODR (\$00) and PODCR (\$26), respectively. All port pins have individually selectable pull-up resistors, and among them, P04-P07 output buffers are designed to have the capability to sink 20mA and thus can drive LED directly.

Port PO pins are shared with analog inputs (in this case, POx must be configured as input). When used as digital FO pins, then POx is configured as output pin if PODCRx is set to "1"; otherwise, if PODCRx is cleared to "0", then POx is configured as an input pin. For more detail about the PO port configuration, please refer to Table 1

Note: When pins of port PO are used as inputs and externally pulled low, then they will source current if the internal pins are pulled up.

1.1 Port P0 Data Register(P0DR; \$00); R/W; Initial value 00H

B7	B6	B5	B4	B3	B2	B1	B0
P0DR7	P0DR6	P0DR5	P0DR4	P0DR3	P0DR2	P0DR1	P0DR0

1.2 Port P0 Data Direction Control Register (P0DCR; \$26); R/W; Initial value 00_H

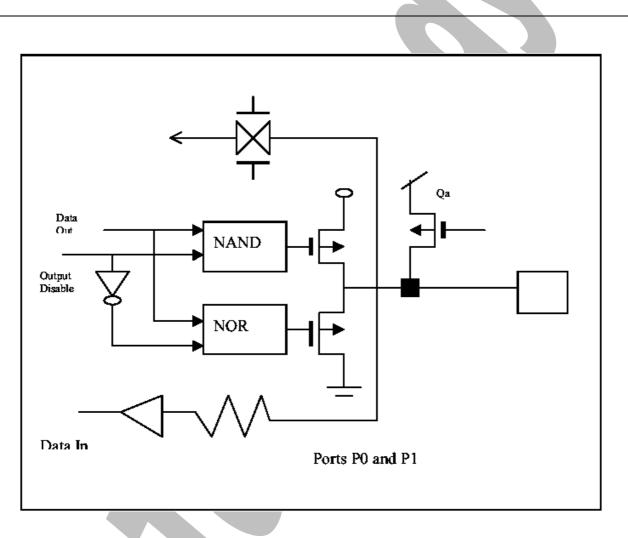

B7	B6	B5	B4	B3	B2	B1	B0
P0DCR7	P0DCR6	P0DCR5	P0DCR4	P0DCR3	P0DCR2	P0DCR1	P0DCR0

Table 1. Port P0 Configuration

P0DCR 0 ~ 7	P0DCR 0 ~ 7	I/O	Pull-up	Results
0	0	In	No	Tri-state (Hi-Z)
0	1	In	Yes	P00~P07 with Pull-up resistor (MOS) ^(NOTE)
1	0	Output	No	Output "0"
1	1	Output	No	Output "1"

WT50F5

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

< 2 > Port P1 (P10 - P17)

Port P1 is an 8-bit bi-directional I/O port and its Data Register and Direction Control Register are located in P1DR (\$01) and P1DCR (\$27), respectively. All port pins have individually selectable pull-up resistors and all their output buffers are designed to have the capability to sink 20mA and thus can drive LED directly.

When used as digital I/O pins, then Plx is configured as output pin ifP1DCRx is set to 1, otherwise, ifP1DCRx is cleared to 0, then Plx is configured as input pin. For more detail about the configuration, please refer to Table 2.

Note: When pins of port P1 are used as inputs and externally pulled low, then they will source current if the internal pins are pulled up.

2.1 Port P1 Data Register (P1DR; \$01); R/W; Initial value 00_H

8-bit μ C with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

B7	B6	B5	B4	B3	B2	B1	B0
P1DR7	P1DR6	P1DR5	P1DR4	P1DR3	P1DR2	P1DR1	P1DR0

2.2 Port P1 Data Direction Control Register (P1DCR; \$27); R/W; Initial value 00_H

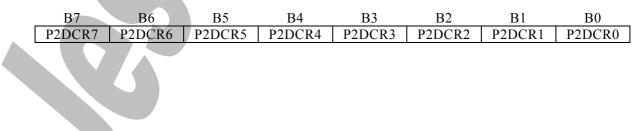
B7	B6	B5	B4	B3	B2	B1	B0
P1DCR7	P1DCR6	P1DCR5	P1DCR4	P1DCR3	P1DCR2	P1DCR1	P1DCR0

Table 2: Port P1 Configuration

P0DCR 0 ~ 7	P0DCR 0 ~ 7	I/O	Pull-up	Results
0	0	In	No	Tri-state (Hi-Z)
0	1	In	Yes	P10~P17 with Pull-up resistor (MOS) ^(NOTE)
1	0	Output	No	Output "0"
1	1	Output	No	Output "1"

< 3 > Port P2 (P20 - P27)

Port P2 is an 8-bit bi-directional I/O port and all port pins have individually selectable pull-up resistors. The Data Register and Direction Control Register of port P2 are located in P2DR (\$02) and P2DCR (\$28), respectively.


When used as digital I/O pins, then P2x is configured as an output pin if P2DCRx is set to" 1" otherwise, if P2DCRx is cleared to "0", then P2x is configured as input pin. For more detail about the configuration of port P2, please refer to Table 3.

Note: When pins of port P2 are used as inputs and externally pulled low, then they will source current if the internal pins are pulled up.

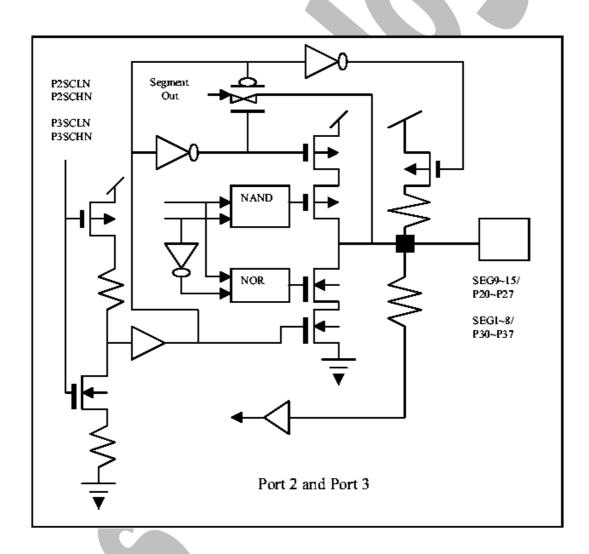
3.1 Port P2 Data Register (P2DR; \$02); R/W; Initial value 00_H

B7	B6	B5	B4	B3	B2	B1	B0
P2DR7	P2DR6	P2DR5	P2DR4	P2DR3	P2DR2	P2DR1	P2DR0

3.2 Port P2 Data Direction Control Register (P2DCR; \$28); R/W; Initial value $00_{\rm H}$

Table 3: The	e Configuration	of port P2
--------------	-----------------	------------

POD	CR 0 ~ 7	P0DCR 0 ~ 7	I/O	Pull-up	Results
				â	


Jess Technology Co., Ltd.

珍氏科技有限公司

8-bit μ C with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

0	0	In	No	Tri-state (Hi-Z)
0	1	In	Yes	P20~P27 with Pull-up resistor (MOS) ^(NOTE)
1	0	Output	No	Output "0"
1	1	Output	No	Output "1"

< 4 > Port P3 (P30~P37)

Port P3 is an 8-bit bi-directional I/O port and all port pins have individually selectable pull-up resistors. The Data Register and Direction Control Register of port P3 are located in P3DR (\$03) and P3DCR (\$29).

When used as digital I/O pins, then P3x is configured as output pin if P3DCRx is set to "1", otherwise, if P3DCRx is cleared to "0", then P3x is configured as input pin. For more detail about the configuration of port P3, please refer to Table 4.

Note: When pins of port P3 are used as inputs and externally pulled low, then they will source current if the internal pins are pulled up.

WT50F5

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

4.1 Port P3 Data Register (P3DR; 03); R/W; Initial value $00_{\rm H}$	

		DI	D 5	D_{2}		B0
P3DR7 P3D	R6 P3DR5	P3DR4	P3DR3	P3DR2	P3DR1	P3DR0

4.2 Port P3 Data Direction Control Register (P3DCR; \$29); R/W; Initial value $00_{\rm H}$

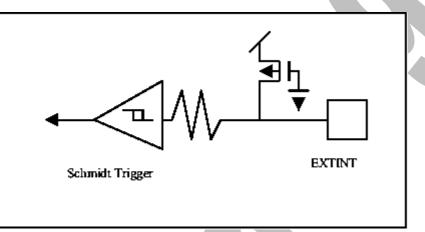
B7	B6	B5	B4	B3	B2	B1	B0
P3DCR7	P3DCR6	P3DCR5	P3DCR4	P3DCR3	P3DCR2	P3DCR1	P3DCR0

Table 4: The Configuration of Port P4

P0DCR 0 ~ 7	P0DCR 0 ~ 7	I/O	Pull-up	Results
0	0	In	No	Tri-state (Hi-Z)
0	1	In	Yes	P30~P37 with Pull-up resistor (MOS) ^(NOTE)
1	0	Output	No	Output "0"
1	1	Output	No	Output "1"

< 5 > PORTSEL (\$11); R/W; Initial 00_H

B7	B6	В5	B4	B3	B2	B1	B0
CAPSEL	P3SCHN	P3SCLN	P2SCHN	P2SCLN	P1LCD	P1PWM1	P1PWM0


- B7: CAPSEL; 'T': external capacitors are connected to pins VCAP1, VCAP2, and VCAP3; "0": I/O (P25~27) or SEG14~16 is selected
- B6: P3SCHN; P3 segments or I/Os select (high nibble); 0: I/Os, 1: segments
- B5: P3SCLN; P3 segments or I/Os select (low nibble); 0: I/Os, 1: segments
- B4: P2SCHN; P2 segments or FIDs select (high nibble); 0: I/Os, 1: segments
- B3: P2SCLN; P2 segments or I/Os select (low nibble); 0: I/Os, 1: segments
- B2: P1LCD; LCD commons/ V_{LCD} or I/Os select; 0: I/Os, 1: LCD commons/V_{LCD}
- B1: P1PWM1; PWM1 or FO select; 0: I/O, I:PWM1 output
- B0: P1PWM0; PWM0 or FO select; 0: I/O, 1 :PWM0 output

WT50F5

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

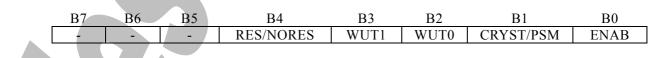
< 6 > EXTINT Input Pads

< 7 > NMI Source

INT1 from T/C 1

< 8 > INT Sources

- INT0 from T/C0
- INT1 from T/C1
- FQL INT
- FQH INT
- A/D conversion completion interrupt
- EXTINT (rising edge)


[2] CLOCK SOURCE

CPU clock from RC oscillator: CLKSEL pin is connected to VDD CPU clock from Crystal oscillator: CLKSEL pin is connected to GND

[3] TIMER/COUNTERS

CRYC register (\$05); Oscillator control

B3~B0: R/W

B0: ENAB; 0: enable (default), 1: disable

Note: b0 is set to 1 in normal operation, and can be set to 0 to stop the crystal (sleep mode)

B1: CRYST/PSM; 0: crystal starts (default), 1: power saving mode

8-bit μ C with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

Note: While crystal is being started (strong current mode), b1 is set to 0; once it starts, b1 can be set to 1 in order to switch the crystal from "strong current mode" to "weak current mode" for power saving

B3: B2: WUT0 (set the warm-up time at release of the hold operating mode)

00: 2¹⁸/fc..... 65.5 ms (when fc=4MHz) 01: 2¹⁴/fc..... 4.1 ms (when fc=4MHz) 10: reserved 00: 2⁶/fc..... 16 μ s (when fc=4MHz)

B4: RES/NORES; 0: go through reset process, 1: without going through reset process

3.1 Timer/counters interrupt sources

INTC Register (\$06); Interrupt control command register; R/W

Read: read interrupt flag

Write: Interrupt enable/disable control

B7	B6	B5	B4	B3	B2	B1	B0	FUNCTION
*	*	*	*	*	*	*	1 Low frequency interrupt enable	
*	*	*	*	*	*	*	0	Low frequency interrupt disable & clear
*	*	*	*	*	*	1	*	T/CO INT0 interrupt enable
*	*	*	*	*	*	0	* T/CO INT0 interrupt disable & clear	
*	*	*	*	*	1	*	* T/C1 INT1 interrupt enable	
*	*	*	*	*	0	*	* * T/C1 INT1 interrupt disable & clear	
*	*	*	*	1	*	* * T/C1 NMI interrupt enable		T/C1 NMI interrupt enable
*	*	*	*	0	*	*	* * T/C1 NMI interrupt disable & clear	
*	*	*	1	*	*	*		
*	*	*	0	*	*	*	*	External interrupt disable & clear
*	*	1	*	*	*	*		
*	*	0	*	*	*	* * High frequency interrupt disable & clear		High frequency interrupt disable & clear
*	1	*	*	*	*	*	*	A/D converter interrupt enable (hold & conversion start)
*	0	*	*	*	*	*	*	A/D converter interrupt disable & clear (sampling start)

3.2 TIMER/COUNTERS

WT50F5 has two 16-bit timer/counters, namely T/CO and T/C1, one low-frequency timer, and one high-frequency timer. Both T/CO and T/C 1 can be used as either a timer or a counter, and T/C 1 has auto-reload capability.

IN COUNTER MODE

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

If T/CO (T/C1) is used as an internal counter, by loading zero into register T/COH (T/C1H) and T/COL (T/C1L), the user can reset the timer. When the specified timer is activated, the count value can be read from registers T/COH (T/C1H) & T/COL (T/C1L) by reading registers T/COH (T/C1H) and then registers T/COL (T/C1L) will be latched automatically. While writing registers T/COH (T/C1H) and T/COL (T/C1L), the register T/COL (T/C1L) must be written first and then followed by writing T/COH (T/C1H). To guarantee correct counting, it is not allowed to write ONLY either register T/COH (T/C 1 It) or T/COL (T/C 1 L).

Registers for loading T/C0&1 16 bit data

LDT/C0 (\$0A); Write	Load (&latch) T/C0 16-bit data
LDT/C1 (\$0A); Write	Load (&latch) T/C1 16-bit data

T/C0&1 16-bit data locations

	High Byte Data (D15 ~ D8)	Low Byte Data (D7 ~ D0)
T/C0	T/C0H (\$0B) ; B7 ~ B0	T/C0L (\$0C) ; B7 ~ B0
T/C1	T/C0H (\$0E) ; B7 ~ B0	T/C0L (\$0F) ; B7 ~ B0

TMC Register (\$07); Timer control register, Write

B7	B6	B5	B4	B3	B2	B1	B0
T1AUTO	T1TCS2	T1TCS1	T1TCS0	-	T0TCS2	T0TCS1	T0TCS0

B3: reserved

B7: T/C1 Auto-reload selection (can be stop on-the -fly)

"0": disable; "1": enable

 $B2 \sim B0$: T/C0 timer sources and timer/counter mode selection

T/C0 Clock Source Table

ĺ	TATA	TOTOCI	TOTOOO		α 1 \rightarrow 1 α
	T0TCS2	T0TCS1	T0TCS0	Mode	Selected Source
	0	0	0	Timer	CPU Clock (T)
	0	0	1	Timer	T/4
	0	1	0	Timer	T/8
	0		1	Timer	T/16
	1	0	0	Timer	T/32
	1	0	1	Timer	T/64
	1	1	0	Timer	T/128
	1		1	Timer	External counter (ETC0)

 $B6 \sim B4$: T/C1 timer sources and timer/counter mode selection

T/C1 Clock Source Table

WT50F5

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

	T0TCS2	T0TCS1	T0TCS0	Mode	Selected Source
	0	0	0	Timer	CPU Clock (T)
	0	0	1	Timer	T/4
ĺ	0	1	0	Timer	T/8
	0	1	1	Timer	T/16
	1	0	0	Timer	T/32
	1	0	1	Timer	T/64
	1	1	0	Timer	T/128
	1	1	1	Timer	Clock source from T/C0 output

IN TIMER MODE

In regular timer mode, T/CO and T/C1 can be re-loaded and always counts down from the value set by the user. If the specified bit is enabled in INTC register (\$06) and the timer counts down from the value set by the user toward 0000m then once it hits 0000H and becomes underflow, an interrupt signal will be generated. The value set by the user will be re-loaded to the timer automatically, and, again, the timer counts down from the value set by the user toward $0000_{\rm H}$.

When the PWM mode is selected, incorporated with the output compare registers OCR10 and OCR11 performs a dual 8, 9 or 10-bit, free-running, glitch-free and phase correct PWM with outputs on the P10/PWM0 and P11/PWM1 pins. The PWM output frequency is depends on the resolutions, i.e., 8, 9, or 10-bit, and the OSC frequency, F_{osc} . Referring to Table 5 for more detail

In this mode T/C 1 acts as an up/down counter, counting up from 0000H to MAX and counts down again to zero before the cycle is repeated. When the counter value matches the contents of the 10 least significant bits (for 10-bit PWM case) of OCR10 or OCR11, the P10 (PWM0) / P11 (PWM1) pins are set or cleared according to the setting of the CPA0 or CPB0 bits in the T/C1 control register TCCR10.

Write procedure for PWM operation should OCR10H(\$2A), and then finally TCCR10(\$10).

TCCR10 (10); R/W; Initial value $00_{\rm H}$

B7	B6	B5	B4	B3	B2	B1	B0
-	CPA0	-	CPB0	-	-	PWMS1	PWMS0
PWMS1		PWMS0			Descri	ption	
0		0		PW	M function is	disable (defau	ılt)
0		1			T/C1 is an 8	8-bit PWM	
1		0			T/C1 is an 9	9-bit PWM	
1		1			T/C1 is an 1	0-bit PWM	
			<u>,</u>				

CPA0/CPB0	Results on PWM0/PWM1
0	Up counting and output is cleared when compare match.

B Jess Technology Co., Ltd. 珍 氏 科 技 有 限 公司 WT50F5

8-bit μ C with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

	Down counting and output is set when compare match
1	Down counting and output is cleared when compare match.
1	Up counting and output is set when compare match

OCR 10H (\$2A)/OCR 10L(\$2B); T/C1 output compare register; R/W; Initial value 00_H

OCR10H	B7(MSB)	B6	B5	B4	B3	B2	B1	B0
OCR10L	B7	B6	B5	B4	B3	B2	B1	B0(LSB)

OCR 11H (\$2C)/OCR 11L(\$2D); T/C1 output compare register; R/W; Initial value 00_H

OCR11H	B7(MSB)	B6	B5	B4	B3	B2	B1	B0
OCR11L	B7	B6	B5	B4	B3	B2	B1	B0(LSB)

To avoid the false counting of the PWM pulse in the event of abnormal OCR10/OCR11 write (glitch case), the OCR10/OCR11contents while being written, are copied to a temporary location and are latched when T/C 1 reaches the value MAX.

Note: The value in OCR10/OCR11 can NOT be 0000a or MAX; The minimal value is 0001 u and the maximal value is MAX-1.

WDTMR register (\$12)

Watchdog timer must reset within TWDT seconds; otherwise the system will be reset.

B7	B6	В5	B4	B3	B2	B1	B0
FQHS2	FQHS1	FQHS0	WDTCS	WDTEN	WDTS2	WDTS1	WDTS0

B2: B0: Watchdog timer or FQL output frequencies select (f_{WDT})

WDTS2	WDTS2 WDTS1		Output Frequency(f_{WDT}) @ OSC = 4MHz
0	0	0	OSC1/2 ¹⁷ (0.25Hz)
0	0	1	OSC1/2 ¹⁶ (0.5Hz)
0	1	0	OSC1/2 ¹⁵ (1.0Hz)
0	1	1	OSC1/2 ¹⁴ (2.0Hz)
1	0	0	OSC1/2 ¹³ (4.0Hz)
1	0	1	OSC1/2 ¹² (8.0Hz)
1	1	0	OSC1/2 ¹¹ (16.0Hz)
1	1	1	OSC1/2 ¹⁰ (32.0Hz)

Where OSC1=OSC/2⁷, so when OSC=4MHz then OSCI=32KHz

B3: WDTEN: Watchdog timer/FQL select; 1: watchdog enable & FQL disable,

0:watchdog disable & FQL enable

B7:B5: FQS2-FQH0; FQH output frequencies select

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

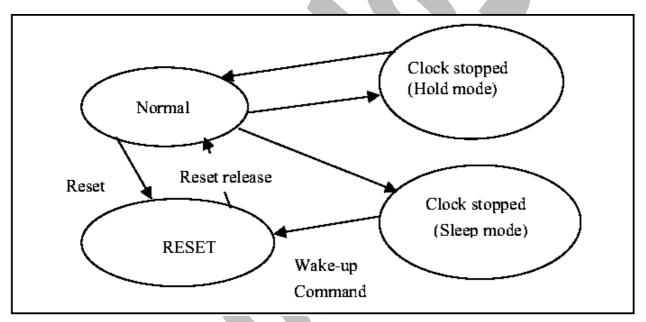
FQHS2	FQHS1	FQHS0	Output Frequency @ OSC = 4MHz
0	0	0	OSC1(32KHz)
0	0	1	OSC1/2 (16KHz)
0	1	0	OSC1/2 ² (8KHz)
0	1	1	OSC1/2 ³ (4Hz)
1	0	0	OSC1/2 ⁴ (2KHz)
1	0	1	OSC1/2 ⁵ (1KHz)
1	1	0	OSC1/2 ⁶ (512Hz)
1	1	1	OSC1/2 ⁷ (256Hz)

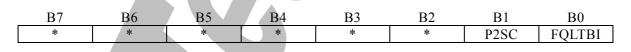
[4] MEMORY MAP

The following figure shows the location of memory mapping

CPL	J ADDRESS						
\$0000~\$002D I/O register							
\$002E~\$007F	Reserved						
\$0080~\$00FF	SRAM (page0)						
\$0100~\$01FF	SRAM& STACK (pagel)						
\$0200~\$DFFF	Reserved						
\$E000							
\$FFFF	Program RQM						

[5] CLOCK MODES


For portable battery-powered applications, stand-by mode is required for saving power. In this chip, by


WT50F5 8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

writing the SLPST register (\$09), user can stop the CPU clock such that CPU goes to stand-by mode.

The wake-up sources can be enable by setting the SLWC register (\$08) (there are two sources in this chip, namely port P20~P23 and FQL wake-ups). After receiving a wake-up signal, the CPU is reset.

SLWC register (\$08); Sleep/wake-up control register; R/W

Bl: P2SC: P20 ~ P23 port keyboard state change

0: wake-up disable; 1' wake-up enable

B0: FQLTBI: FQL time base interrupt

0: wake-up disable; 1: wake-up enable

SLPST register (\$09), Write

Write: Sleep start

To get into sleep mode, the program should be written as below(two consecutive instructions):

 STA
 08_H

 STA
 09_H

[6] A/D CONVERTER

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

A 12-bit successive approximation method is used in this A/D converter, as shown in the following figure. By multiplexing method, this A/D converter can manage up to eight analog inputs. A/D conversion is started by a write operation to the analog input selection bit in the A/D control register and by selecting the analog voltage input pins. When the conversion is completed, the A/D interrupt request bit in the interrupt request register is set. The result of A/D conversion is stored in the A/D register. During A/D conversion stage, the A/D register must not be read, otherwise the incorrect value may be obtained.

ADCR (\$13): A/D control register;

b7: A/D On/Off control; b7=0, A/D Off(default); b7=l, A/D On (write) b3:b0: High-nibble of A/D data

B7 B6	В5	B4	B3	B2	B1	B0
ADON CKS1	CKS0	-	B3	B2/ADS2	B1/ADS1	B0/ADS0

CKS1	CKS0	Input Clock Selection
0	0	ϕ o/4(when CPU clock is 1MHz, this option is recommended)
0	1	Φ n/8 (when CPU clock is 2MHz, this option is recommended)
1	0	ϕ o/16 (when CPU clock is 4 MHz, this option is recommended)
1	1	ϕ n/32 (when CPU clock is 8MHz, this option is recommended)

* φ o represents CPU/System clock

ADS2	ADS1	ADS0	Input Selection		
0	0	0	AIN0		

Jess Technology Co., Ltd.

氏科技有限公司

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

0	0	1	AIN1
0	1	0	AIN2
0	1	1	AIN3
1	0	0	AIN4
1	0	1	AIN5
1	1	0	AIN6
1	1	1	AIN7

ADR (\$14): A/D register; Low Byte of A/D data (D7 ~ D0; note: Dll-D8 in register ADCR (\$13))

[7] LCD DRIVER/CONTROLLER

The WT50F5 contains 64-segment LCD driver/controllers and it has circuit that directly drives the Liquid Crystal Display (LCD) and its control circuit.

The WT50F5 has the following connecting pins with

(1) Segment output; 16 pins (SEG1-SEG16)

(2) Common output; 4 pins (COM1-COM4)

In addition, VCAP1, VCAP2, VCAP3, and VLCD are bias voltage input pins to drive the LCD.

In power saving mode, VCAP1, VCAP2 and VCAP3 should be connected with 0.01uF capacitors.

The devices that can be directly driven is selected for LCD drivers of following drive methods

(1) 1/4 duty (1/3 bias) LCD; Max. 64 segments (8 segments X 8 digits)

(2) 1/3 duty (1/3 bias) LCD; Max. 48 segments (8 segments X 6 digits)

(3) 1/3 duty (1/2 bias) LCD; Max. 48 segments (8 segments X 6 digits)

(3) 1/2 duty (1/2 bias) LCD; Max. 32 segments (8 segments X 4 digits)

7.1 Control of LCD Driver

LCDC (\$15); bl-b0, Write

B7		B6	В5	B4	B3	B2	B1	B0	
*		*	*	LCDPS	LFS1	LFS0	DTY1	DTY0	
DTY1		DTY0			Duty & l	Bias Selectio	n		
0		0		1/4 duty(1/3 bias)					
0				1/3 duty($1/3$ bias)					
1 0				1/3duty(I/2 bias)					
1 1				1/2duty(1/2bias)					

Note: Initial value: bl=0; b0=0

LFS1	LFS0	Select guide (frequency = 64Hz)
0	0	When $OSC = 4MHz$, this option is recommended
0	1	When $OSC = 8MHz$, this option is recommended

WT50F5

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

1	0	When $OSC = 2MHz$, this option is recommended
1	1	When $OSC = 1MHz$, this option is recommended

LCDPS: "0": Normal mode

"1": Power saving mode

Note: Initially this system is in normal mode, once the LCD is lit then, after around 1 second, this system can be switched to power saving mode for power saving. But, please be careful that the LCD can ONLY be tamed on by using normal mode (can't use power saving mode) when it being turned off and would like to mm it on again.

7.2 Frame Frequency

Base Freq. @ 64Hz	1/4 Duty	1/3 Duty	1/2 Duty
Frame Freq.	F = 256 Hz	F = 192 Hz	F = 128 Hz

7.3 LCD Drive Voltage

The LCD is on only when the difference in potential between the segment output and value on VLcD pin. If CPU and LCD drive voltage are different, VicD pin is connected to VDD through a 100K ohm variable resister, R; otherwise, if CPU and LCD drive voltage are the same, VLCD pin is connected to VDD directly. If VR is the voltage drop on R, then $V_{ON} = V_{DD} - V_R$

7.4 LCD Display Operation

The display data stored to the display data area are read automatically and sent to the LCD The LCD driver generates the segment signals and common signals in accordance with the display data and drive method. Thus, display patterns can be changed easily by overwriting the contents of the display data area with a program, Write the following assigned area with a program.

DISPLAY DATA AREA

Write the following assigned area

	SEG1 - SEG8	SEG9 - SEG16
COM1	DDA11 (\$16)	DDA12 (\$17)
COM2	DDA21 (\$1A)	DDA22 (\$1B)
COM3	DDA31 (\$1E)	DDA32 (\$1F)
COM4	DDA41 (\$22)	DDA42 (\$23)

1/4 DUTY	COM4	COM3	COM2	COM1
1/3 DUTY	****	COM3	COM2	COM1
1/2 DUTY	****	****	COM2	COM1

WT50F5

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

[8] I/O REGISTER SUMMARY

NAME	ADDR	R/₩	D7	D6	DS	D4	D3	D2	DI	D0
PODR	\$00	R/₩	P0DR7	P0DR6	PODRS	P0DR4	PODRJ	PODR2	PODRI	PODRO
PIDR	\$01	R/₩	PIDR7	PIDR6	PIDRS	PIDR4	PIDRJ	PIDR2	PIDRI	PIDRO
P2DR	\$0 2	R/₩	P2DR7	P2DR6	P2DR5	P2DR4	P2DR3	P2DR2	P2DR1	P2DR0
PJDR	\$0 3	R/₩	P3DR7	P3DR6	PJDRS	P3DR4	PIDRJ	P3DR2	PIDRI	P3DR0
Reserved	\$0 4	-	-	-	-	-	-	-	-	-
CRYC	\$05	R/₩	-	-	-	RES/	WUTI	WUT0	CRYST/PSM	ENAB
						NORES				
INTC	\$06	R/₩	-	ADCI	FQHINT	EXTINT	T/CINM1	T/CIINT	T/COINT	FQLINT
TMC	\$07	W	TIAUTO	TITCS2	TITCSI	TITCS0	-	T0TCS2	TOTESI	TOTCSO
SLWC	\$08	R/₩	-	-	-	-	-	-	P2SC	FQLTB1
SLPST	\$09	W	-	-	-	-	-	-	-	-
LDT/C0	\$0A	¥	-	-	-	-	-	-	-	-
T/C0H	\$0B	R/₩	B7	B6	BS	B4	B3	B 2	BI	BÛ
TACOL	\$0C	R/₩	87	B6	BS	B4	B3	B 2	BI	B0
LDT/C1	\$0D	W	-	-	-	-	-	-	-	-
T/CI H	\$0E	R/₩	87	B6	BS	B4	B3	B 2	BI	B0
TICIL	\$0F	R/₩	B7	B6	B <i>\$</i>	B4	B3	B 2	BI	B0
TCCR10	\$10	R/₩	-	CPA0	-	CPB0	-	-	PWMS1	PWMS0
PORTSEL	\$I I	R/₩	CAPSEL	PISCHN	P3SCLN	P2SCHN	P2SCLN	PILCD	PIPWMI	PIPWM0
WDTMR	\$ 12	W	-	-	-	-	WDTEN	WDTS2	WDTS1	WDTS0
ADCR	\$13	R/₩	ADON	CKSI	CKS0	-	B3	B2/ADS2	BI/ADSI	B0/ADS0
ADR	\$14	R	B7	B6	B <i>\$</i>	B4	B3	B2	BI	B0
LCDC	\$15	W	-	-	-	LCDPS	LFSI	LF50	DTYI	DTYO
DDAII	\$16	W	87	B6	BS	B4	B3	B2	BI	BÛ
DDA12	\$17	W	87	B6	B\$	B4	B3	B2	BI	BÛ
Reserved	\$18-19	¥	-	-	-	-	-	-	-	-
DDA21	\$IA	W	B7	B6	BS	B4	B3	B2	BI	BÛ
DDA22	\$IB	W	B7	B6	B <i>\$</i>	B4	B3	B2	BI	BÛ
Reserved	\$IC+ID	¥	-	-	-	-	-	-	-	-
DDA31	\$IE	W	87	B6	BS	B4	B3	B2	BI	BÛ
DDA32	\$IF	¥	87	B6	BS	B4	B3	162 162	BI	BO
Reserved	\$20-21	W	-	-	-	-	-	-	-	-
DDA4I	\$22	W	87	B6	B\$	B4	B3	B2	BI	B0
DDA 42	\$23	¥	B7	B6	B\$	B4	B3	B2	BI	B0
Reserved	\$24-25									
PODCR	\$26	R/₩	P0DCR7	P0DCR6	PODERS	P0DCR4	PODCR3	P0DCR2	PODCRI	PODCR0
PIDCR	\$27	R/₩	PIDCR7	PIDCR6	PIDCRS	PIDCR4	PIDCR3	PIDCR2	PIDCRI	PIDCR0
P2DCR	\$28	R/₩	P2DCR7	P2DCR6	P2DCR5	P2DCR4	P2DCR3	P2DCR2	P2DCR1	P2DCR0
P3DCR	\$29	R/₩	P3DCR7	P3DCR6	PIDCRS	P3DCR4	P3DCR3	P3DCR2	P3DCRI	PIDCR0
OCRIOH	\$2A	R/₩	87	B6	B\$	B4	B3	B 2	BI	BÛ
OCRIGL	\$2B	R/₩	B7	B6	B\$	B4	83	B 2	BI	Bû
OCRIIH	\$2C	R/₩	B7	B6	B\$	B4	B3	B 2	BI	BÛ
OCRIIL	\$2D	R/₩	B7	B6	B\$	B4	B3	B 2	BI	BÛ

[9] ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (VSS = 0V)

PARAMETER	SYMBOL	RATING	UNIT
DC Supply Voltage	VDD	< +7	V

WT50F5

8-bit μC with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

Input Voltage Range	Vin	-0.5 ~ VDD +0.5	V
Operating Temperature	T _{opr}	$0 \sim +70$	°C
Storage Temperature	T _{stg}	-50 ~ +150	°C

ELECTRICAL CHARACTERISTICS (VSS = 0V, $T_{opr} = 0$ to 70 °C)

PARAMETER	SYMBOL	Min.	Тур.	Max.	Unit	CONDITIONS
Operating Voltage	V _{DD}	2.7	-	5.5	V	
Operating Current	I _{OP}			2	mA	OSC 4MHz @ 5.0V
Standby Current	I _{STB}		-	1.0	μA	VDD = 5.0V
OSC Frequency	F _{osc}			6.0	MHz	VDD = 5.0V
Input High Level	V_{IH}	4.0			V	VDD = 5.0V
		2.5				VDD = 3.0V
Input Low leve1	V _{IL}			0.8	V	VDD = 5.0V
_				0.5		VDD = 3.0V
P04 ~ P07 & Port1	I _{OH}	10			mA	VDD = 5.0V
Output High I (I/O)						Voh = 4.0V
P04 ~ P07 & Port1	I _{OL}	20			mA	VDD = 5.0V
Output Sink I (I/O)						Vol = 0.8V
Port 2 & Port3 Output	I _{OH}	4			mA	VDD = 5.0V
High I (I/O)						Voh = 4.0V
Port 2 & Port3 Output	I _{OL}	4			mA	VDD = 5.0V
Sink I (I/O)						Vol = 0.8V
CPU Clock	F _{CPU}	0.03		6.0	MHz	$F_{CPU} = F_{OSC} @5.0V$

A/D CONVERSION CHARACTERISTICS (Topr = 0 to 70 °C)

			-			
PARAMETER	SYMBOL	CONDITIONS	Min.	Тур.	Max.	UNIT
Analog Reference Voltage	AD _{VRF}		3.0	-	AV _{DD}	V
Valid Voltage Range	V _{RNG}	$AD_{VRF} = 5V$	0.5		4.0	V
Valid Voltage Range	V_{RNG}	$AD_{VRF} = 3V$	0.5		2.0	V
Analog Input Voltage	AV _{IN}		AV _{SS}	-	AV _{DD}	V
Analog Supply Current	I _{REF}		-	0.5	1	mA
Input Impedance	Ζ		-	230		KΩ
Differential nonlinear error ¹	ENL				± 1	LSB
Integral nonlinear error2	EINL				±2	LSB
Offset error3	EOS				± 2	LSB
Absolute Error4	EABS	VDD=5V, VSS=0V ADVRF=5V, AVSS = 0V			±3	LSB
Conversion Time	TCV				30	M s

1. The differential nonlinear error (E~) is the step width difference of the actual and the ideal The integral nonlinear error (EmL) is the peak difference between the centers of the actual and the ideal transfer curves.

- 2. The offset error (Eos) is the absolute difference of the straight lines, which fit the actual and the ideal transfer curves.
- 3. The absolute error (EMs) is the maximum difference between the center of the steps of the actual and the

WT50F5

8-bit μ C with 8KB Flash Memory, an 8-CH 12-bit A/D Converter and 16x4 LCD Driver

ideal transfer curves for a non-calibrated ADC.