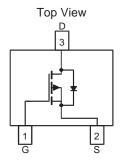


General Description

The AAT8401 is a low threshold P-channel MOS-FET designed for the battery, cell phone, and PDA markets. Using AnalogicTech's ultra-high-density proprietary TrenchDMOS™ technology, this product demonstrates high power handling and small size.


Applications

- Battery Packs
- Battery-Powered Portable Equipment
- Cellular and Cordless Telephones

Features

- Drain-Source Voltage (max): -20V
- Continuous Drain Current¹ (max):
 -2.4A @ 25°C
- Low On-Resistance:
 - 100mΩ @ V_{GS} = -4.5V
 - 175mΩ @ V_{GS} = -2.5V

SC59 Package

Absolute Maximum Ratings

 $T_A = 25$ °C, unless otherwise noted.

Symbol	Description		Value	Units	
V _{DS}	Drain-Source Voltage		-20	V	
V_{GS}	Gate-Source Voltage		±12	V	
ı	Continuous Drain Current @ T _J = 150°C¹	T _A = 25°C	±2.4		
I _D		T _A = 70°C	±2.0	^	
I _{DM}	Pulsed Drain Current ²		±9	A	
I _S	Continuous Source Current (Source-Drain Diode) ¹		-0.9		
T _J	Operating Junction Temperature Range		-55 to 150	°C	
T _{STG}	Storage Temperature Range		-55 to 150	°C	

Thermal Characteristics¹

Symbol	Description		Value	Units	
$R_{\theta JA}$	Typical Junction-to-Ambient Steady State		145	°C/W	
$R_{\theta JA2}$	Maximum Junction-to-Ambient t<5 Seconds		125	°C/W	
$R_{\theta JF}$	Typical Junction-to-Foot		50	°C/W	
P _D	Maximum Power Dissipation	$T_A = 25^{\circ}C$	1.0	W	
		T _A = 70°C	0.6	VV	

^{1.} Based on thermal dissipation from junction to ambient while mounted on a 1" x 1" PCB with optimized layout. A 5-second pulse on a 1" x 1" PCB approximates testing a device mounted on a large multi-layer PCB as in most applications. $R_{\theta JF} + R_{\theta FA} = R_{\theta JA}$ where the foot thermal reference is defined as the normal solder mounting surface of the device's leads. $R_{\theta JF}$ is guaranteed by design; however, $R_{\theta CA}$ is determined by the PCB design. Actual maximum continuous current is limited by the application's design.

8401.2005.04.1.0

^{2.} Pulse test: Pulse Width = 300µs.

Electrical Characteristics

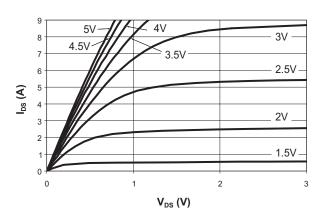
 $T_J = 25$ °C, unless otherwise noted.

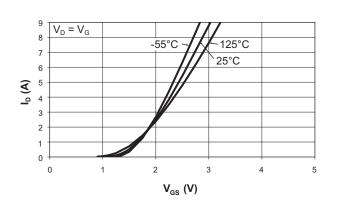
Symbol	Description	Conditions	Min	Тур	Max	Units	
DC Chara	cteristics			•	•		
BV _{DSS}	Drain-Source Breakdown	$V_{GS} = 0V, I_{D} = -250\mu A$	-20			V	
	Voltage						
R _{DS(ON)}	Drain-Source On-Resistance ¹	$V_{GS} = -4.5V, I_D = -2.4A$		88	100	mΩ	
		$V_{GS} = -2.5V, I_D = -1.8A$		146	175		
I _{D(ON)}	On-State Drain Current ¹	$V_{GS} = -4.5V$, $V_{DS} = -5V$ (pulsed)	-9			Α	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = -250\mu A$	-0.6			V	
I _{GSS}	Gate-Body Leakage Current	$V_{GS} = \pm 12V, V_{DS} = 0V$			±100	nA	
I _{DSS}	Drain Source Leakage Current	$V_{GS} = 0V$, $V_{DS} = -20V$			-1		
		$V_{GS} = 0V, V_{DS} = -16V, T_{J} = 70^{\circ}C^{2}$			-5 µA		
9 _{fs}	Forward Transconductance ¹	$V_{DS} = -5V, I_{D} = -2.4A$		4		S	
Dynamic	Characteristics ²		-				
Q_G	Total Gate Charge	$V_{DS} = -15V, R_D = 5.6\Omega, V_{GS} = -4.5V$		4			
Q_{GS}	Gate-Source Charge	$V_{DS} = -15V$, $R_D = 5.6\Omega$, $V_{GS} = -4.5V$		0.6		nC	
Q_{GD}	Gate-Drain Charge	$V_{DS} = -15V, R_D = 5.6\Omega, V_{GS} = -4.5V$		1.4			
t _{D(ON)}	Turn-On Delay	$V_{DS} = -15V$, $R_{D} = 5.6\Omega$, $V_{GS} = -4.5V$, $R_{G} = 6\Omega$		6.5			
t _R	Turn-On Rise Time	$V_{DS} = -15V$, $R_{D} = 5.6\Omega$, $V_{GS} = -4.5V$, $R_{G} = 6\Omega$		13		no	
t _{D(OFF)}	Turn-Off Delay	$V_{DS} = -15V$, $R_{D} = 5.6\Omega$, $V_{GS} = -4.5V$, $R_{G} = 6\Omega$		15		ns	
t _F	Turn-Off Fall Time	$V_{DS} = -15V$, $R_{D} = 5.6\Omega$, $V_{GS} = -4.5V$, $R_{G} = 6\Omega$		20			
Source-Drain Diode Characteristics							
V _{SD}	Source-Drain Forward	$V_{GS} = 0, I_{S} = -2.4A$			-1.3	V	
	Voltage ¹						
Is	Continuous Diode Current ³				-0.9	Α	

2 8401.2005.04.1.0

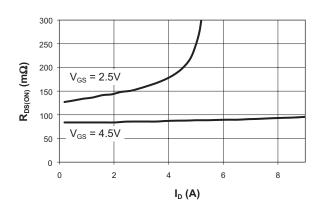
^{1.} Pulse test: Pulse Width = 300µs.

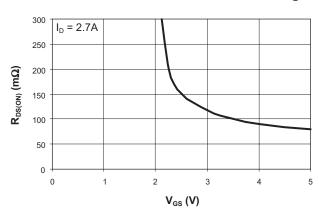
^{2.} Guaranteed by design. Not subject to production testing.

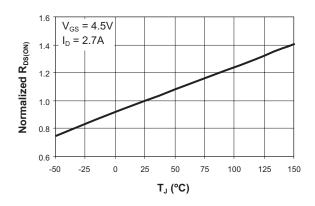

^{3.} Based on thermal dissipation from junction to ambient while mounted on a 1" x 1" PCB with optimized layout. A 5-second pulse on a 1" x 1" PCB approximates testing a device mounted on a large multi-layer PCB as in most applications. $R_{\theta JF} + R_{\theta FA} = R_{\theta JA}$ where the foot thermal reference is defined as the normal solder mounting surface of the device's leads. $R_{\theta JF}$ is guaranteed by design; however, $R_{\theta CA}$ is determined by the PCB design. Actual maximum continuous current is limited by the application's design.

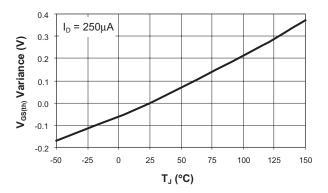

Typical Characteristics

 $T_{\rm J} = 25$ °C, unless otherwise noted.


Output Characteristics

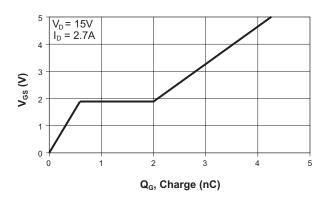

Transfer Characteristics

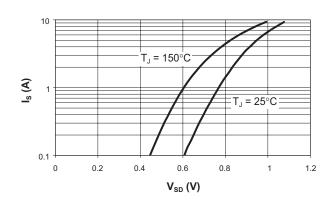

On-Resistance vs. Drain Current


On-Resistance vs. Gate-to-Source Voltage

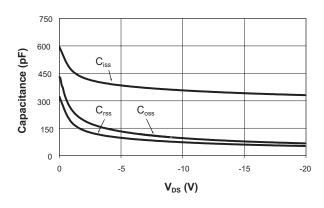
On-Resistance vs. Junction Temperature

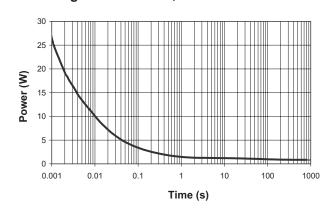
Threshold Voltage

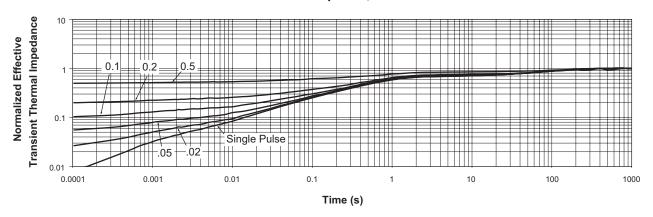

8401.2005.04.1.0


Typical Characteristics

 $T_{\rm J} = 25$ °C, unless otherwise noted.


Gate Charge

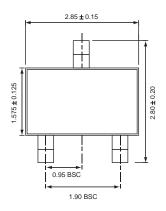

Source-Drain Diode Forward Voltage

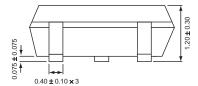

Capacitance

Single Pulse Power, Junction to Ambient

Transient Thermal Response, Junction to Ambient

4 8401.2005.04.1.0




Ordering Information

Package	Marking ¹	Part Number (Tape and Reel) ²
SC59	IGXYY	AAT8401IGY-T1

Package Information

SC59

8401.2005.04.1.0

^{1.} XYY = assembly and date code.

^{2.} Sample stock is generally held on part numbers listed in BOLD.

AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied.

AnalogicTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

AnalogicTech warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnalogicTech's standard warranty. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.

Advanced Analogic Technologies, Inc.

830 E. Arques Avenue, Sunnyvale, CA 94085 Phone (408) 737-4600 Fax (408) 737-4611

6 8401.2005.04.1.0