

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

rev 1.0

3/3.3/4.0 V µP Supervisor Circuits

General Description

The ASM706P/R/S/T/J and ASM708R/S/T/J are cost effective CMOS supervisor circuits that monitor power-supply and battery voltage level, and μ P/ μ C operation.

The family offers several functional options. Each device generates a reset signal during power-up, power-down and during brownout conditions. A reset is generated when the supply drops below 2.63V (ASM706P/R, ASM708R), 2.93V (ASM706S, ASM708S), 3.08V (ASM706T, ASM708T) or 4.00 (ASM706J, ASM708J). In addition, the ASM706P/R/S/T/J feature a 1.6 second watchdog timer. The watchdog timer output will trigger a reset if connected to MR. Floating the WDI input pin disables the watchdog timer.

The ASM708R/S/T/J have both active-HIGH and active-LOW reset outputs but no watchdog function. The ASM706P has the same pin-out and functions as the ASM706R but has an active-HIGH reset output.

A versatile power-fail circuit, useful in checking battery levels and non-5V supplies, has a 1.25V threshold. All devices have a manual reset input. All devices are available in 8-pin DIP, SO and the compact MicroSO packages. The MicroSO package requires 50% less PC board area than the conventional SO package.

Features

- Precision power supply minotor •2.63V threshold (ASM706P/R, ASM708R) •2.93V threshold (ASM706S, ASM708S) •3.08V threshold (ASM706T, ASM708T) •New 4.00V threshold (ASM706J, ASM708J)
- Debounced manual reset input
- Auxiliary voltage monitor comparator •1.25V threshold
 - Battery monitor / auxiliary supply monitor
- Watchdog timer (ASM706P/R/S/T/J)
 Watchdog can be disabled by floating WDI
- 200ms reset time delay
- Three reset signal options
 Active HIGH: ASM706P
 Active LOW: ASM706R/S/T/J

•Active HIGH and LOW outputs: ASM708R/S/T/J

- DIP, SO and MicroSO packages
- Guaranteed RESET assertion to V_{CC} = 1.1V

Applications

- Computers and embedded controllers
- CTI applications
- Automotive systems
- Portable/Battery-operated systems
- Intelligent instruments
- Wireless communication systems
- PDAs and hand-held equipment
- Safety systems

Typical Operating Circuit

Alliance Semiconductor

2575 Augustine Drive . Santa Clara, CA 95054 . Tel: 408.855.4900 . Fax: 408.855.4999 . www.alsc.com

Notice: The information in this document is subject to change without notice

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

rev 1.0

Block Diagrams

Pin Configuration

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

rev 1.0

Pin Description

		Pin	Number						
AS	M706P	ASM7	06R/S/T/J	ASM7	08R/S/T/J	Name	Function		
DIP/ SO	MicroSO	DIP/ SO	MicroSO	DIP/ SO	MicroSO				
1	3	1	3	1	3	MR	Manual reset input. The active LOW input triggers a reset pulse. It is pulled HIGH by a $20k\Omega$ pull-up resistor. It is compatible with TTL/CMOS signals when V _{CC} = 5V. It can be shorted to ground through a mechanical switch. Leave folating or connect to V _{CC} if the function is not used.		
2	4	2	4	2	4	V _{CC}	Monitored power supply input.		
3	5	3	5	3	5	GND	Ground.		
4	6	4	6	4	6	PFI	Power-fail input voltage monitor. With PFI less than 1.25V, PFO goes LOW. Connect PFI to Ground when not in use.		
5	7	5	7	5	7	PFO	Power-fail output. The output is active LOW and sinks current when PFI is less than 1.25V. If not used, leave the pin unconnected.		
6	8	6	8	-	-	WDI	Watchdog input. WDI controls the internal watch- dog timer. A HIGH or LOW signal for 1.6sec at WDI allows the internal timer to run-out, setting WDO low. A rising or falling edge must occur at WDI within 1.6 seconds or WDO goes LOW. The watchdog function is disabled by floating WDI. The internal watchdog timer clears when: RESET is asserted; WDI is three-stated ; or WDI sees a ris- ing or falling edge.		
-	-	-	-	6	8	NC	Not Connected		
-	-	7	1	7	1	RESET	Active LOW reset output. Pulses LOW for 200ms when triggered, and stays LOW whenever V_{CC} is below the reset threshold. RESET remains LOW for 200ms after V_{CC} rises above the reset threshold or $\overline{\text{MR}}$ goes from HIGH to LOW. A watchdog timeout will not trigger RESET unless $\overline{\text{WDO}}$ is connected to $\overline{\text{MR}}$.		

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

October 2003

rev 1.0

		Pin	Number						
AS	M706P	ASM7	06R/S/T/J	ASM7	08R/S/T/J	Name	Function		
DIP/ SO	MicroSO	DIP/ SO	MicroSO	DIP/ SO	MicroSO				
8	2	8	2	-	-	WDO	Watchdog output. WDO goes LOW when the 1.6 second interval watchdog timer times-out and does not go HIGH until a transition occurs at WDI. In addition, when V_{CC} falls below the reset threshold, WDO goes LOW. Unlike RESET, WDO does not have a minimum pulse width and as soon as V_{CC} exceeds the reset threshold, WDO becomes HIGH with no delay.		
7	1	-	-	8	2	RESET	Active HIGH reset output. The inverse of \overline{RESET} .		

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

rev 1.0

Detailed Descriptions

A proper reset input enables a microprocessor/ microcontroller to start in a known state. ASM706 P/ R/ S/ T/ J and ASM708 R/ S/ T/ J assert reset to prevent code execution errors during power-up, power-down and brownout conditions.

RESET/RESET Operation

The RESET/RESET signals are designed to start or return a $\mu P/\mu C$ to a known state.

With V_{CC} above 1.2V, RESET and RESET are guaranteed to be asserted. During a power-up sequence, the reset outputs remain asserted until the supply rises above the threshold level. The resets are deasserted approximately 200ms after crossing the threshold.

In a brownout situation where V_{CC} falls below the threshold level, the reset outputs are asserted. If a brownout occurs during an already initiated reset period, the reset period will extend for an additional reset period of 200ms.

The ASM708 devices have dual reset outputs, one active LOW and one active HIGH. The ASM706P has a single active HIGH reset and the ASM706/R/S/T/J devices have an active LOW reset output.

Alliance Part #	RESET Polarity	Threshold	Watchdog Timer
ASM706P	HIGH	2.63V	YES
ASM706R	LOW	2.63V	YES
ASM706S	LOW	2.93V	YES
ASM706T	LOW	3.08V	YES
ASM706J	LOW	4.00V	YES
ASM708R	HIGH & LOW	2.63V	NO
ASM708S	HIGH & LOW	2.93V	NO
ASM708T	HIGH & LOW	3.08V	NO
ASM708J	HIGH & LOW	4.00V	NO

Manual Reset (MR)

The active-LOW manual reset input is pulled high by an internal $20k\Omega$ pull-up resistor and can be driven low by CMOS/TTL logic or a mechanical switch to ground. An external debounce circuit is

unnecessary since the 140ms minimum reset time will debounce mechanical pushbutton switches. The minimum $\overline{\text{MR}}$ input pulse width is $0.5\mu s$ with a 3V V_{CC} input and $0.15\mu s$ with a 5V V_{CC} input. If not used, tie $\overline{\text{MR}}$ to V_{CC} or leave floating.

Figure 1: WDI Three-state operation

By connecting the watchdog output (\overline{WDO}) and \overline{MR} , a watchdog timeout forces a RESET to be generated.

Watchdog Timer

A watchdog timer available on the ASM706P/R/S/T/J monitors μ P/ μ C activity. An output line on the processor is used to toggle the WDI line. If the line is not toggled within 1.6 seconds on the Watchdog Input (WDI), the internal timer puts the Watchdog Output (WDO) into a LOW state. WDO will remain LOW until a toggle is detected at WDI.

The watchdog function is disabled, meaning it is cleared and not counting, if WDI is floated or connected to a three-stated circuit. The watchdog timer is also disabled if RESET is asserted. When RESET becomes inactive and the WDI input sees a high or low transition as short as 100ns ($V_{CC} = 2.7V$)/

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

rev 1.0

50ns (V_{CC} = 4.5V), the watchdog timer will begin a 1.6 second countdown. Additional transitions at WDI will reset the watchdog timer and initiate a new countdown sequence. WDO will also become LOW and remain so, whenever the supply voltage, V_{CC}, falls below the device threshold level. WDO goes HIGH as soon as V_{CC} transitions above the threshold. There is no minimum pulse width for WDO as there is for the RESET outputs. If WDI is floated, WDO essentially acts as a low supply voltage output indicator.

Power-failure Detection With Auxiliary Comparator

All devices have an auxiliary comparator with 1.25V trip point. The output, \overline{PFO} , is active LOW and the noninverting input is PFI. This comparator can be used as a supply voltage monitor with an external resistor voltage divider. As the monitored voltage level falls, PFI is reduced causing the \overline{PFO} output to go LOW. Normally \overline{PFO} interrupts the processor so the system can be shut down in a controlled manner.

Figure 2: Watchdog timing

Application Information

Bi-directional Reset Pin Interfacing

The ASM706/8 can interface with $\mu P/\mu C$ bi-directional reset pins by connecting a 4.7k Ω resistor in series with the RESET output and the $\mu P/\mu C$ bi-directional reset pin.

Figure 3: Bi-directional reset pin interfacing

Ensuring the RESET is Valid Down to $V_{CC} = 0V$

When V_{CC} falls below 1.2V, the ASM706R/S/T/J and 708R/S/T/J RESET reset outputs no longer pull down; it becomes indeterminate. To avoid the possibility that stray charges could build up and force RESET to the wrong state, a pull-down resistor should be connected to the RESET pin, thus draining such charges to ground. The resistor value is not critical. A100k Ω resistor will pull RESET to ground without loading it.

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

rev 1.0

Monitoring Voltages Other Than V_{CC}

The ASM706/708 can monitor voltages other than V_{CC} using the Power Fail circuitry. If a resistive divider is connected from the voltage to be monitored to the PFI input, the \overline{PFO} will go LOW if the voltage at PFI goes below 1.25V reference. Should hysteresis be desired, connect a resistor (equal to approximately 10 times the sum of the two resistors in the divider) between the PFI and \overline{PFO} pins. A capacitor between PFI and GND will reduce circuit sensitivity to input high frequency noise. If it is desired to assert a reset in addition to the \overline{PFO} flag, this may be achieved by connecting the \overline{PFO} output to \overline{MR} .

Figure 4: Monitoring +5V and an additional supply VIN

Parameter	Min	Мах	Unit				
Pin Terminal Voltage with Respect to Ground							
V _{CC}	-0.3	6.0	V				
All other inputs	-0.3	V _{CC} + 0.3	V				
Input Current at V_{CC} and GND		20	mA				
Output Current: All outputs		20	mA				
Rate of Rise at V_{CC}		100	V/µs				
Plastic DIP Power Dissipation (Derate 9mW/°C above 70°C)		700	mV				
SO Power Dissipation (Derate 5.9mW/°C above 70°C)		470	mW'				
MicroSO POwer Disspation (Derate 4.1mW/°C above 70°C)		330	mW				
Operating Temperature Range		· ·	-				
ASM706xE, ASM708xE	-40	+85	°C				
ASM706xC, ASM708xC	0	70	°C				
Storage Temperature Range	-65	160	°C				
Lead Temperature Soldering (10sec)		300	°C				
Note: These are stress ratings only and functional operat	ion is noy implied. Exposure to	absolute maximum r	atings for pro-				

Absolute Maximum Ratings

rev 1.0

Electrical Characteristics

Unless otherwise noted, specifications are over the operating temperature range and V_{CC} supply voltages are 2.7V to 5.5V (ASM706P, ASM708R), 3.0 V to 5.5V (ASM706/708S), 3.15V to 5.5V (ASM706/708T) and 4.1V to 5.5.V (ASM706/708J)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Voltage	Vee	ASM706xC, ASM708xC	1.1		5.5	V
Range	VCC	ASM706xE, ASM708xE	1.2		5.5	v
Supply Current		ASM706xC, ASM706xE, MR = V _{CC} , WDI Float- ing		75	140	
V _{CC} < 3.6V	'CC	ASM708xC, ASM708xE, MR = V _{CC} , WDI Float- ing		50	140	μΑ
Supply Current		ASM706xC, ASM706xE, MR = V _{CC} , WDI Float- ing		75	140	
V _{CC} < 5.5V	'CC	ASM708xC, ASM708xE, MR = V _{CC} , WDI Float- ing		50	140	μΑ
		P and R devices	2.55	2.63	2.70	
DESET Throphold	V _{RT}	S devices	2.85	2.93	3.00	V
RESET THIESHOLD		T devices 3.0		3.08	3.15	v
		J devices	3.89	4.00	4.10	
RESET Threshold Hysteresis				40		mV
		V _{CC} = 3V (ASM706/8, P/R devices).				
		V _{CC} = 3.3V (ASM706/8, S/T devices).	140	200	280	
RESET Pulse Width	^I RS	V _{CC} = 4.4V (ASM706/8, J devices).				ms
		V _{CC} = 5V		200		
		4.5V < V _{CC} < 5.5V	150			
MR Pulse Width	t _{MR}	3.6V < VCC < 4.5V (ASM706/8J devices) $V_{RST (MAX)} < V_{CC} < 3.6V$ (ASM706/8/P/R/S/T devices)	500			ns
MR to RESET Out Delay	t _{MD}	$3.6V < VCC < 4.5V (AS706/8J devices)$ $V_{RST (MAX)} < V_{CC} < 3.6V$ $(ASM706/8/P/R/S/T devices)$			750	ns
		4.5V < V _{CC} < 5.5V			250	

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

rev 1.0

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
	V _{IH}	$V_{RST(MAX)} < V_{CC} < 4.5V$	0.7V _{CC}			
MD Input Threshold	V _{IL}	$V_{RST(MAX)} < V_{CC} < 4.5V$			0.6	V
MR Input Threshold	V _{IH}	4.5V < V _{CC} < 5.5V	2.0			v
	V _{IL}	4.5V < V _{CC} < 5.5V			0.8	
MR Pullup resistor	R _P		10	20	40	kΩ
	V _{OH}	I _{SOURCE} = 800μA, 4.5V < V _{CC} < 5.5V	V _{CC} - 1.5			
	V _{OL}	I _{SINK} = 3.2mA, 4.5V < V _{CC} < 5.5V			0.4	
RESET Output Volt-	V _{OH}	I_{SOURCE} =500µA, $V_{RST(MAX)}$ < V_{CC} < 4.5V	0.8V _{CC}			
age	V _{OL}	I_{SINK} =1.2mA, $V_{RST(MAX)} < V_{CC} < 4.5V$			0.3	V
(All R/S/T/J devices)	V _{OL}	I _{SINK} = 50μA, V _{CC} = 1.1V (ASM706xC, ASM708xC devices)			0.3	
		I _{SINK} =100μA, V _{CC} = 1.2V (ASM706xE, ASM708xE devices)			0.3	
	V _{OH}	I _{SOURCE} = 800μA, 4.5V < V _{CC} < 5.5V	V _{CC} - 1.5			
RESET Output Volt-	V _{OL}	I _{SINK} = 3.2mA, 4.5V < V _{CC} < 5.5V			0.4	Ň
ASM706P	V _{OH}	I _{SOURCE} =500μA, V _{RST(MAX)} < V _{CC} <3.6V	0.8V _{CC}			v
	$ \begin{array}{ c c c c c c } \hline V_{\rm RST(MAX)} < V_{\rm CC} < 4.5V \\ \hline V_{\rm IL} & V_{\rm RST(MAX)} < V_{\rm CC} < 4.5V \\ \hline V_{\rm IH} & 4.5V < V_{\rm CC} < 5.5V \\ \hline V_{\rm IL} & 4.5V < V_{\rm CC} < 5.5V \\ \hline V_{\rm IL} & 4.5V < V_{\rm CC} < 5.5V \\ \hline V_{\rm IL} & 4.5V < V_{\rm CC} < 5.5V \\ \hline V_{\rm OH} & I_{\rm SOURCE} = 800\muA, 4.5V < V_{\rm CC} < 5.5V \\ \hline V_{\rm OL} & I_{\rm SINK} = 3.2mA, 4.5V < V_{\rm CC} < 5.5V \\ \hline V_{\rm OL} & I_{\rm SOURCE} = 500\muA, V_{\rm RST(MAX)} < V_{\rm CC} < 4.5V \\ \hline V_{\rm OL} & I_{\rm SINK} = 1.2mA, V_{\rm RST(MAX)} < V_{\rm CC} < 4.5V \\ \hline V_{\rm OL} & I_{\rm SINK} = 100\muA, V_{\rm CC} = 1.1V (ASM706xC, ASM708xC devices) \\ \hline & I_{\rm SINK} = 100\muA, V_{\rm CC} = 1.2V (ASM706xE, ASM708xE devices) \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 800\muA, 4.5V < V_{\rm CC} < 5.5V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 800\muA, 4.5V < V_{\rm CC} < 5.5V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 500\muA, V_{\rm RST(MAX)} < V_{\rm CC} < 3.6V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 500\muA, V_{\rm RST(MAX)} < V_{\rm CC} < 3.6V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 800\muA, 4.5V < V_{\rm CC} < 5.5V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 800\muA, V_{\rm RST(MAX)} < V_{\rm CC} < 3.6V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 800\muA, 4.5V < V_{\rm CC} < 5.5V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 3.2mA, 4.5V < V_{\rm CC} < 5.5V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 3.2mA, 4.5V < V_{\rm CC} < 4.5V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 500\muA, V_{\rm RST(MAX)} < V_{\rm CC} < 4.5V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 3.2mA, 4.5V < V_{\rm CC} < 4.5V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 3.00\muA, V_{\rm RST(MAX)} < V_{\rm CC} < 4.5V \\ \hline & V_{\rm OL} & I_{\rm SUNCE} = 3.00\muA, V_{\rm RST(MAX)} < V_{\rm CC} < 4.5V \\ \hline & V_{\rm CC} = 3.V (ASM706, P/R devices). \\ \hline & V_{\rm CC} = 3.0V (ASM706, P/R devices). \\ \hline & V_{\rm CC} = 0.4V, V_{\rm H} = 0.8V_{\rm CC}, \\ \hline & V_{\rm RST(MAX)} < V_{\rm CC} < 4.5V \\ \hline & V_{\rm IL} = 0.4V, V_{\rm H} = 0.8V_{\rm CC}, \\ \hline & V_{\rm RST(MAX)} < V_{\rm CC} < 5.5V \\ \hline \end{array}$			0.3		
	V _{OH}	I _{SOURCE} = 800μA, 4.5V < V _{CC} < 5.5V	V _{CC} - 1.5			
RESET Output Volt- age	V _{OL}	I _{SINK} = 3.2mA, 4.5V < V _{CC} < 5.5V			0.4	V
ASM708R/S/T/J	V _{OH}	I_{SOURCE} =500µA, $V_{RST(MAX)}$ < V_{CC} < 4.5V	0.8V _{CC}			v
	V _{OL}	I_{SINK} =1.2mA, $V_{RST(MAX)} < V_{CC} < 4.5V$			0.3	
		V _{CC} = 3V (ASM706, P/R devices).				
Watchdog Timeout Period	t _{WD}	V _{CC} = 3.3V (ASM706 S/T devices).	1.0	1.6	2.25	s
		V _{CC} = 4.4V (ASM706, J devices).				
		V_{IL} = 0.4V, V_{IH} =0.8 V_{CC} , $V_{RST(MAX)}$ < V_{CC} < 4.5V	100			
WDI Pulse Width	t _{WP}	$V_{IL} = 0.4V, V_{IH} = 0.8V_{CC},$ 4.5V < V_{CC} < 5.5V	50			ns

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

rev 1.0

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
	V _{IH}	$V_{CC} = 5V$	3.5			
	V_{IL}				0.8	V
WDI Input Theshold	$V_{\rm IH}$	$V_{RST(MAX)} < V_{CC} < 4.5V$	0.7V _{CC}			v
	V _{IL}				0.6	
		WDI = V _{CC} , ASM706 only		50	150	
WDI Input Current		WDI = 0V, ASM706 only	-150	-50		μΑ
	V _{OH}	I _{SOURCE} = 800μA, 4.5V < V _{CC} < 5.5V	V _{CC} - 1.5			
	V _{OL}	I _{SINK} = 1.2mA, 4.5V < V _{CC} < 5.5V			0.4	V
WDO Output voltage	V _{OH}	I_{SOURCE} =500µA, $V_{RST(MAX)} < V_{CC} < 4.5V$	0.8V _{CC}			v
	V _{OL}	I_{SINK} =1.2mA, $V_{RST(MAX)} < V_{CC} < 4.5V$			0.3	
PFI Input Threshold		PFI falling. For P/R devices V_{CC} = 3V. For S/T devices V_{CC} = 3.3V. For J devices V_{CC} = 4.4V	1.2	1.25	1.3	V
PFI Input Current			-25	0.01	25	nA
	V _{OH}	I _{SOURCE} = 800μA, 4.5V < V _{CC} < 5.5V	V _{CC} - 1.5			
	V _{OL}	I _{SINK} = 3.2mA, 4.5V < V _{CC} < 5.5V			0.4	N
	V _{OH}	I_{SOURCE} =500µA, $V_{RS(MAX)}$ < V_{CC} < 4.5V	0.8V _{CC}			v
	V _{OL}	I _{SINK} =1.2mA, V _{RS(MAX)} < V _{CC} < 4.5V			0.3	

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

rev 1.0

Package Dimensions

MicroSO (8-Pin) apa

	Inc	hes	Millir	neters
	Min	Max	Min	Max
А	-	0.0433	-	1.10
A1	0.0020	0.0059	0.050	0.15
A2	0.0295	0.0374	0.75	0.95
b	0.0098	0.0157	0.25	0.40
С	0.0051	0.0091	0.13	0.23
D	0.1142	0.1220	2.90	3.10
e	0.0256		0.65BS	
Е	0.193B		4.90BS	
E1	0.1142	0.1220	2.90	3.10
L	0.0157	0.0276	0.40	0.70
a	0°	6°	0°	6°

SO(8-pin)

D

в

À1

e

	Inc	hes	Millimeters		
	Min	Max	Min	Max	
А	0.053	0.069	1.35	1.75	
A1	0.004	0.010	0.10	0.25	
В	0.013	0.020	0.33	0.51	
С	0.007	0.010	0.19	0.25	
е	0.050		1.27		
Е	0.150	0.157	3.80	4.00	
Н	0.228	0.244	5.80	6.20	
L	0.016	0.50	0.40	1.27	
D	0.189	0.197	4.80	2.00	

SO (8-Pinjapa

rev 1.0

	Inc	hes	Millimeters		
	Min	Max	Min	Max	
А	-	0.210	-	5.33	
A1	0.015	-	0.38	-	
A2	0.115	0.195	2.92	4.95	
b	0.014	0.022	0.36	0.56	
b2	0.045	0.070	1.14	1.78	
b3	0.030	0.045	0.080	1.14	
D	0.355	0.400	9.02	10.16	
D1	0.005	-	0.13	-	
Е	0.300	0.325	7.62	8.26	
E1	0.240	0.280	6.10	7.11	
e	0.100	-	2.54		
eA	0.300	-	7.62		
eB	-	0.430	-	10.92	
eC	-	0.060			
L	0.115	0.150	2.92	3.81	

ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J

rev 1.0

Ordering Codes

Part Number	Package	Operating Temperature Range (°C)	Reset Threshold	Reset Polarity	Watchdog Timer
ASM706PCPA	8- Plastic DIP	0 to +70	2.63	HIGH	YES
ASM706PCSA	8-SO	0 to +70	2.63	HIGH	YES
ASM706PCUA	8-MicroSO	0 to +70	2.63	HIGH	YES
ASM706PEPA	8-Plastic DIP	-40 to +85	2.63	HIGH	YES
ASM706PESA	8-SO	-40 to +85	2.63	HIGH	YES
ASM706RCPA	8- Plastic DIP	0 to +70	2.63	LOW	YES
ASM706RCSA	8-SO	0 to +70	2.63	LOW	YES
ASM706RCUA	8-MicroSO	0 to +70	2.63	LOW	YES
ASM706REPA	8-Plastic DIP	-40 to +85	2.63	LOW	YES
ASM706RESA	8-SO	-40 to +85	2.63	LOW	YES
ASM706SCPA	8- Plastic DIP	0 to +70	2.93	LOW	YES
ASM706SCSA	8-SO	0 to +70	2.93	LOW	YES
ASM706SCUA	8-MicroSO	0 to +70	2.93	LOW	YES
ASM706SEPA	8-Plastic DIP	-40 to +85	2.93	LOW	YES
ASM706SESA	8-SO	-40 to +85	2.93	LOW	YES
ASM706TCPA	8- Plastic DIP	0 to +70	3.08	LOW	YES
ASM706TCSA	8-SO	0 to +70	3.08	LOW	YES
ASM706TCUA	8-MicroSO	0 to +70	3.08	LOW	YES
ASM706TEPA	8-Plastic DIP	-40 to +85	3.08	LOW	YES
ASM706TESA	8-SO	-40 to +85	3.08	LOW	YES
ASM706JCPA	8- Plastic DIP	0 to +70	4.00	LOW	YES
ASM706JCSA	8-SO	0 to +70	4.00	LOW	YES
ASM706JCUA	8-MicroSO	0 to +70	4.00	LOW	YES
ASM706JEPA	8-Plastic DIP	-40 to +85	4.00	LOW	YES
ASM706JESA	8-SO	-40 to +85	4.00	LOW	YES
ASM708RCPA	8- Plastic DIP	0 to +70	2.63	Dual: HIGH & LOW	NO
ASM708RCSA	8-SO	0 to +70	2.63	Dual: HIGH & LOW	NO
ASM708RCUA	8-MicroSO	0 to +70	2.63	Dual: HIGH & LOW	NO

October 2003

rev 1.0

Part Number	Package	Operating Temperature Range (°C)	Reset Threshold	Reset Polarity	Watchdog Timer
ASM708REPA	8-Plastic DIP	-40 to +85	2.63	Dual: HIGH & LOW	NO
ASM708RESA	8-SO	-40 to +85	2.63	Dual: HIGH & LOW	NO
ASM708SCPA	8- Plastic DIP	0 to +70	2.93	Dual: HIGH & LOW	NO
ASM708SCSA	8-SO	0 to +70	2.93	Dual: HIGH & LOW	NO
ASM708SCUA	8-MicroSO	0 to +70	2.93	Dual: HIGH & LOW	NO
ASM708SEPA	8-Plastic DIP	-40 to +85	2.93	Dual: HIGH & LOW	NO
ASM708SESA	8-SO	-40 to +85	2.93	Dual: HIGH & LOW	NO
ASM708TCPA	8- Plastic DIP	0 to +70	3.08	Dual: HIGH & LOW	NO
ASM708TCSA	8-SO	0 to +70	3.08	Dual: HIGH & LOW	NO
ASM708TCUA	8-MicroSO	0 to +70	3.08	Dual: HIGH & LOW	NO
ASM708TEPA	8-Plastic DIP	-40 to +85	3.08	Dual: HIGH & LOW	NO
ASM708TESA	8-SO	-40 to +85	3.08	Dual: HIGH & LOW	NO
ASM708JCPA	8- Plastic DIP	0 to +70	4.00	Dual: HIGH & LOW	NO
ASM708JCSA	8-SO	0 to +70	4.00	Dual: HIGH & LOW	NO
ASM708JCUA	8-MicroSO	0 to +70	4.00	Dual: HIGH & LOW	NO
ASM708JEPA	8-Plastic DIP	-40 to +85	4.00	Dual: HIGH & LOW	NO
ASM708JESA	8-SO	-40 to +85	4.00	Dual: HIGH & LOW	NO

October 2003

rev 1.0

Feature Summary

	ASM706P	ASM706R	ASM706S	ASM706 T	ASM706J	ASM708R	ASM708S	ASM708T	ASM708J
Power fail detector	•	•	•	•	•	•	•	•	•
Brownout detection	•	•	•		•	•	•	•	•
Debounced Manual RESET	•	•	*	*	•	•	•	•	•
Power-up/ down RESET	•	•	•	•	•	•	•	•	•
Watchdog Timer	•	•	•		•				
Active HIGH RESET	•								
Active LOW RESET		•	•	•	•				
Active LOW and HIGH RESETs						•	•	•	٠
RESET Threshold (V)	2.63	2.63	2.93	3.08	4.00	2.63	2.93	3.08	4.00

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel: 408 - 855 - 4900 Fax: 408 - 855 - 4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Part Number: ASM706 P/ R/ S/ T/ J ASM708 R/ S/ T/ J Document Version: 1.0

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale. The purchase of products from Alliance). All sales of convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.