ChipFind - документация

Электронный компонент: SAA7192A

Скачать:  PDF   ZIP

Document Outline

DATA SHEET
Product specification
Supersedes data of June 1991
File under Integrated Circuits, IC22
1996 Sep 25
INTEGRATED CIRCUITS
SAA7192A
Digital Colour Space Converter
(DCSC)
1996 Sep 25
2
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
CONTENTS
1
FEATURES
2
GENERAL DESCRIPTION
3
ORDERING INFORMATION
4
BLOCK DIAGRAM
5
PINNING
6
FUNCTIONAL DESCRIPTION
6.1
Functional modes
6.2
Control
6.2.1
Control signals
6.2.2
Clock
6.2.3
Error condition
6.3
System I/O interfaces
6.3.1
Video data input signals
6.3.2
Video data output signals
6.3.3
Auxiliary data
6.4
System block description
6.4.1
Input formatter with filter
6.4.2
Conversion matrix
6.4.3
Video look-up table and output stage
6.4.4
I
2
C-bus receiver
7
OPERATING CONDITIONS
7.1
Electrical conditions
7.1.1
Start-up condition
7.1.2
Operating time
7.1.3
Temperature range
7.1.4
Backup
7.1.5
Power-down mode
7.1.6
Handling
8
LIMITING VALUES
9
DC CHARACTERISTICS
10
TIMING CHARACTERISTICS
11
PACKAGE OUTLINE
12
SOLDERING
12.1
Introduction
12.2
Reflow soldering
12.3
Wave soldering
12.4
Repairing soldered joints
13
DEFINITIONS
14
LIFE SUPPORT APPLICATIONS
15
PURCHASE OF PHILIPS I
2
C COMPONENTS
1996 Sep 25
3
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
1
FEATURES
Input formatter with:
multiplexer
Y-delay line
Cr and Cb interpolating filters
Conversion matrix (according to CCIR 601)
Video look-up tables (provide gamma correction)
Pipeline delay line (horizontal reference signal)
I
2
C-bus interface
All functional blocks are bypassable.
2
GENERAL DESCRIPTION
The Digital Colour Space Converter (DCSC) is a digital
matrix which is used to transform 16/24-bit digital input
signals, i.e. Y (luminance), Cr (colour, R-Y) and Cb (colour,
B-Y), into an RGB 24-bit format in accordance with the
"CCIR-601 recommendations".
Accepting inputs from the different formats of the MPC-E
decoder family, the device has a constant propagation
delay and a maximum data rate of 16 MHz. A matched
pipeline delay line is available to permit the HREF signal to
be synchronized with the video data at the output.
3
ORDERING INFORMATION
4
BLOCK DIAGRAM
TYPE NUMBER
PACKAGE
NAME
DESCRIPTION
VERSION
SAA7192AWP
PLCC68
plastic leaded chip carrier; 68 leads
SOT188-2
Fig.1 Block diagram.
handbook, full pagewidth
MGE946
VIDEO
LOOK-UP
TABLES
VIDEO
LOOK-UP
TABLES
VIDEO
LOOK-UP
TABLES
MATRIX
Y
DELAY
Cr AND Cb
FILTER
MULTIPLEXER
PIPELINE DELAY LINE
I
2
C-BUS RECEIVER
59
63
26
64
28
27
29
62
61
CLK_MODE CLOCK
RESET
CREF
SCL
I
2
C-bus
ADDRESS
SDA
VLUTBYPASS
OE
58
HREF_OUT
DATAOUT3
DATAOUT2
DATAOUT1
65
60
HREF
DATAIN3
DATAIN2
DATAIN1
FORMATTER
TEST
SAA7192A
8
8
8
8
8
8
1996 Sep 25
4
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
5
PINNING
SYMBOL
PIN
I/O
DESCRIPTION
DATAIN21
1
I
colour difference signal Cr1
DATAIN22
2
I
colour difference signal Cr2
DATAIN23
3
I
colour difference signal Cr3
DATAIN24
4
I
colour difference signal Cr4
DATAIN25
5
I
colour difference signal Cr5
DATAIN26
6
I
colour difference signal Cr6
DATAIN27
7
I
colour difference signal Cr7
DATAIN30
8
I
colour difference signal Cb0 or multiplexed Cb and Cr
DATAIN31
9
I
colour difference signal Cb1 or multiplexed Cb and Cr
DATAIN32
10
I
colour difference signal Cb2 or multiplexed Cb and Cr
DATAIN33
11
I
colour difference signal Cb3 or multiplexed Cb and Cr
DATAIN34
12
I
colour difference signal Cb4 or multiplexed Cb and Cr
DATAIN35
13
I
colour difference signal Cb5 or multiplexed Cb and Cr
DATAIN36
14
I
colour difference signal Cb6 or multiplexed Cb and Cr
DATAIN37
15
I
colour difference signal Cb7 or multiplexed Cb and Cr
DATAIN10
16
I
luminance signal Y0
DATAIN11
17
I
luminance signal Y1
V
DD
18
-
positive supply, voltage core (+5 V)
V
SS
19
-
negative supply, voltage core (ground)
DATAIN12
20
I
luminance signal Y2
DATAIN13
21
I
luminance signal Y3
DATAIN14
22
I
luminance signal Y4
DATAIN15
23
I
luminance signal Y5
DATAIN16
24
I
luminance signal Y6
DATAIN17
25
I
luminance signal Y7
RESET
26
I
initially resets the functions
I
2
C-bus ADDRESS
27
I
I
2
C-bus slave address selection
SCL
28
I
I
2
C-bus serial clock
SDA
29
I/O
I
2
C-bus serial data
DATAOUT10
30
O
RED0
DATAOUT11
31
O
RED1
DATAOUT12
32
O
RED2
DATAOUT13
33
O
RED3
DATAOUT14
34
O
RED4
1996 Sep 25
5
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
V
DD
35
-
positive supply voltage, output stages (+5 V)
V
SS
36
-
negative supply, output stages
DATAOUT15
37
O
RED5
DATAOUT16
38
O
RED6
DATAOUT17
39
O
RED7
DATAOUT20
40
O
GREEN0
DATAOUT21
41
O
GREEN1
DATAOUT22
42
O
GREEN2
DATAOUT23
43
O
GREEN3
DATAOUT24
44
O
GREEN4
DATAOUT25
45
O
GREEN5
DATAOUT26
46
O
GREEN6
DATAOUT27
47
O
GREEN7
DATAOUT30
48
O
BLUE0
DATAOUT31
49
O
BLUE1
DATAOUT32
50
O
BLUE2
V
DD
51
-
positive supply voltage, output stages (+5 V)
V
SS
52
-
negative supply, output stages
DATAOUT33
53
O
BLUE3
DATAOUT34
54
O
BLUE4
DATAOUT35
55
O
BLUE5
DATAOUT36
56
O
BLUE6
DATAOUT37
57
O
BLUE7
HREF_OUT
58
O
delayed horizontal reference signal
CLK_MODE
59
I
16 MHz or DMSD clock mode selection
TEST
60
I
test mode, active LOW, usually not connected
OE
61
I
output enable (fast switch)
VLUTBYPASS
62
I
fast switch to operate the VLUTs in bypass
CLOCK
63
I
system clock
CREF
64
I
clock reference signal (DMSD mode)
HREF
65
I
horizontal reference signal
DATAIN20
66
I
colour difference signal Cr0
V
DD
67
-
positive supply, voltage core (+5 V)
V
SS
68
-
negative supply, voltage core (ground)
SYMBOL
PIN
I/O
DESCRIPTION
1996 Sep 25
6
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Fig.2 Pin configuration.
handbook, full pagewidth
SAA7192A
MGE933
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
DATAIN32
DATAIN33
DATAIN34
DATAIN35
DATAIN36
DATAIN37
DATAIN10
DATAIN11
VDD
VSS
DATAIN12
DATAIN13
DATAIN14
DATAIN15
DATAIN16
DATAIN17
RESET
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
TEST
CLK_MODE
HREF_OUT
DATAOUT37
DATAOUT36
DATAOUT35
DATAOUT34
DATAOUT33
VSS
VDD
DATAOUT32
DATAOUT31
DATAOUT30
DATAOUT27
DATAOUT26
DATAOUT25
DATAOUT24
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
I
2
C-bus ADDRESS
SCL
SDA
DATAOUT10
DATAOUT11
DATAOUT12
DATAOUT13
DATAOUT14
V
DD
V
SS
DATAOUT15
DATAOUT16
DATAOUT17
DATAOUT20
DATAOUT21
DATAOUT22
DATAOUT23
9
8
7
6
5
4
3
2
1
68
67
66
65
64
63
62
61
DATAIN31
DATAIN30
DATAIN27
DATAIN26
DATAIN25
DATAIN24
DATAIN23
DATAIN22
DATAIN21
V
SS
V
DD
DATAIN20
HREF
CREF
CLOCK
VLUTBYPASS
OE
1996 Sep 25
7
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
6
FUNCTIONAL DESCRIPTION
6.1
Functional modes
Table 1
Functional modes (note 1)
Note
1. Figures 3 to 10 illustrate the functional modes.
MODE
FUNCTION
1
4 : 1 : 1 filter, no matrix, no VLUT; DATAOUT = upsampled DATAIN
2
4 : 1 : 1 filter, matrix, no VLUT; DATAOUT = RGB
3
4 : 1 : 1 filter, no matrix, VLUT; DATAOUT = upsampled DATAIN multiplied by the factor loaded
into the VLUT
4
4 : 1 : 1 filter, matrix, VLUT; DATAOUT = RGB multiplied by the factor loaded into the VLUT
5
4 : 2 : 2 filter, no matrix, no VLUT; DATAOUT = upsampled DATAIN
6
4 : 2 : 2 filter, matrix, no VLUT; DATAOUT = RGB
7
4 : 2 : 2 filter, no matrix, VLUT; DATAOUT = upsampled DATAIN multiplied by the factor loaded
into the VLUT
8
4 : 2 : 2 filter, matrix, VLUT; DATAOUT = RGB multiplied by the factor loaded into the VLUT
9
no filter, no matrix, no VLUT; DATAOUT = DATAIN `Process Bypass'
10
no filter, matrix, no VLUT; DATAOUT = RGB
11
no filter, no matrix, VLUT; DATAOUT = DATAIN multiplied by the factor loaded into the VLUT
12
no filter, matrix, VLUT; DATAOUT = RGB multiplied by the factor loaded into the VLUT
Fig.3 Functional modes 1 and 5.
handbook, full pagewidth
MGE950
Y
DELAY
Cr AND Cb
FILTER
MULTIPLEXER
PIPELINE DELAY LINE
59
63
26
64
28
27
29
62
61
CLK_MODE CLOCK
RESET
CREF
SCL
I
2
C-bus
ADDRESS
SDA
VLUTBYPASS
OE
58
HREF_OUT
DATAOUT3
DATAOUT2
DATAOUT1
65
60
HREF
DATAIN3
DATAIN2
DATAIN1
FORMATTER
TEST
1996 Sep 25
8
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Fig.4 Functional modes 2 and 6.
handbook, full pagewidth
MGE949
MATRIX
Y
DELAY
Cr AND Cb
FILTER
MULTIPLEXER
PIPELINE DELAY LINE
59
63
26
64
28
27
29
62
61
CLK_MODE CLOCK
RESET
CREF
SCL
I
2
C-bus
ADDRESS
SDA
VLUTBYPASS
OE
58
HREF_OUT
DATAOUT3
DATAOUT2
DATAOUT1
65
60
HREF
DATAIN3
DATAIN2
DATAIN1
FORMATTER
TEST
Fig.5 Functional modes 3 and 7.
handbook, full pagewidth
MGE948
VIDEO
LOOK-UP
TABLES
VIDEO
LOOK-UP
TABLES
VIDEO
LOOK-UP
TABLES
Y
DELAY
Cr AND Cb
FILTER
MULTIPLEXER
PIPELINE DELAY LINE
59
63
26
64
28
27
29
62
61
CLK_MODE CLOCK
RESET
CREF
SCL
I
2
C-bus
ADDRESS
SDA
VLUTBYPASS
OE
58
HREF_OUT
DATAOUT3
DATAOUT2
DATAOUT1
65
60
HREF
DATAIN3
DATAIN2
DATAIN1
FORMATTER
TEST
1996 Sep 25
9
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Fig.6 Functional modes 4 and 8.
handbook, full pagewidth
MGE947
VIDEO
LOOK-UP
TABLES
VIDEO
LOOK-UP
TABLES
VIDEO
LOOK-UP
TABLES
MATRIX
Y
DELAY
Cr AND Cb
FILTER
MULTIPLEXER
PIPELINE DELAY LINE
59
63
26
64
28
27
29
62
61
CLK_MODE CLOCK
RESET
CREF
SCL
I
2
C-bus
ADDRESS
SDA
VLUTBYPASS
OE
58
HREF_OUT
DATAOUT3
DATAOUT2
DATAOUT1
65
60
HREF
DATAIN3
DATAIN2
DATAIN1
FORMATTER
TEST
Fig.7 Functional mode 9.
handbook, full pagewidth
MGE945
PIPELINE DELAY LINE
PIPELINE DELAY LINE
PIPELINE DELAY LINE
PIPELINE DELAY LINE
59
63
26
64
28
27
29
62
61
CLK_MODE CLOCK
RESET
CREF
SCL
I
2
C-bus
ADDRESS
SDA
VLUTBYPASS
OE
58
HREF_OUT
DATAOUT3
DATAOUT2
DATAOUT1
65
60
HREF
DATAIN3
DATAIN2
DATAIN1
TEST
1996 Sep 25
10
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Fig.8 Functional mode 10.
handbook, full pagewidth
MGE944
MATRIX
PIPELINE DELAY LINE
59
63
26
64
28
27
29
62
61
CLK_MODE CLOCK
RESET
CREF
SCL
I
2
C-bus
ADDRESS
SDA
VLUTBYPASS
OE
58
HREF_OUT
DATAOUT3
DATAOUT2
DATAOUT1
65
60
HREF
DATAIN3
DATAIN2
DATAIN1
TEST
Fig.9 Functional mode 11.
handbook, full pagewidth
MGE942
VIDEO
LOOK-UP
TABLES
VIDEO
LOOK-UP
TABLES
VIDEO
LOOK-UP
TABLES
PIPELINE DELAY LINE
59
63
26
64
28
27
29
62
61
CLK_MODE CLOCK
RESET
CREF
SCL
I
2
C-bus
ADDRESS
SDA
VLUTBYPASS
OE
58
HREF_OUT
DATAOUT3
DATAOUT2
DATAOUT1
65
60
HREF
DATAIN3
DATAIN2
DATAIN1
TEST
1996 Sep 25
11
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Fig.10 Functional mode 12.
handbook, full pagewidth
MGE943
VIDEO
LOOK-UP
TABLES
VIDEO
LOOK-UP
TABLES
VIDEO
LOOK-UP
TABLES
MATRIX
PIPELINE DELAY LINE
59
63
26
64
28
27
29
62
61
CLK_MODE CLOCK
RESET
CREF
SCL
I
2
C-bus
ADDRESS
SDA
VLUTBYPASS
OE
58
HREF_OUT
DATAOUT3
DATAOUT2
DATAOUT1
65
60
HREF
DATAIN3
DATAIN2
DATAIN1
TEST
1996 Sep 25
12
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
6.2
Control
6.2.1
C
ONTROL SIGNALS
After power-up all internal control signals are in undefined states. The I
2
C-bus receiver must therefore be reset by using
the external RESET signal.
Table 2
I
2
C-bus controls (subaddress 00H)
Table 3
Selection of functional modes and input formats (see Table 1)
Notes
1. FMTCNTRL: bits D0 to D2 of I
2
C-bus.
2. Bit D3 of I
2
C-bus.
3. Pin 62.
SIGNAL
BIT
FUNCTION
FMTCNTRL
D0 to D2 000; 4 : 1 : 1 format, DMSD2 format
001; 4 : 1 : 1 format, customized format
010; 4 : 2 : 2 format, from DMSD2
011; 4 : 2 : 2 format, parallel
100; 4 : 4 : 4 format, parallel; default
101; not used
110; not used
111; not used
MATBYPASS
D3
logic 1; matrix in use
logic 0; matrix bypassed; default state after reset
INRESET
D4
logic 1; input latches at the formatter are always transparent
logic 0; at the end of each active video line the input signal will be set to fixed values
(Y to 16; Cr, Cb to 128; if HREF = 0); default state after reset
IICOE
D5
logic 1; OE enabled
logic 0; switches the output to high impedance mode; default state after reset
FMTCNTRL
(1)
MATBYPASS
(2)
VLUTBYPASS
(3)
FUNCTIONAL MODE/INPUT FORMAT
000
0
0
mode 1, input format 0
000
1
0
mode 2, input format 0
001
0
0
mode 1, input format 1
001
1
0
mode 2, input format 1
010
0
0
mode 5, input format 2
010
1
0
mode 6, input format 2
011
0
0
mode 5, input format 3 (parallel IN)
011
1
0
mode 6, input format 3 (parallel IN)
100
0
0
mode 9, input format 4 (parallel IN)
100
1
0
mode 10, input format 4 (parallel IN)
XXX
X
1
each of the above modes will be multiplied by the factor
loaded into the VLUT
1996 Sep 25
13
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Table 4
Real-time control signals
Table 5
Output enable control
Notes
1. IICOE: D5; output enable control of I
2
C-bus (enables OE).
2. OE: pin 61; output enable (fast switch).
6.2.2
C
LOCK
The CLK_MODE signal is used to select the frequency of the system clock (denoted as CLOCK at the DCSC input) and
may be chosen from two different clock modes.
6.2.2.1
16 MHz mode
DCSC is used in any environment except that of the MPC-E decoder family. The clock reference signal (CREF) is
internally set HIGH.
The maximum CLOCK frequency is 16 MHz.
6.2.2.2
DMSD mode
The DCSC is used in MPC-E digital decoder environment.
The CLOCK signal (pin 63) and the CREF signal (pin 64) are fed by the clock generator circuits or by one of the decoder
circuits (clock = LL27). In the latter case the clock is twice the data rate. Internally the clock is set by referencing to CREF
(see Section 6.2.2.3). This internal clock is denoted as CLOCK_A in Tables 7, 9, 11, 13 and 15.
The data rate on the input (DATAIN) is as follows:
12.2727 MHz; 60 Hz signals (from SAA7191/7110A)
13.5 MHz; CCIR signals (from SAA7151/7111A)
14.75 MHz; 50 Hz signals (from SAA7191/7110A)
16.0 MHz; maximum frequency.
SIGNAL
PIN
FUNCTION
OE
61
logic 1; switches the output to high impedance mode
logic 0; output enable, output stage in use
VLUTBYPASS
62
logic 1; VLUTs in use
logic 0; VLUTs bypassed
RESET
26
logic 1; device in use
logic 0; general reset
CLK_MODE
59
logic 1; DMSD mode (LL27 clock of DMSD feeds the DCSC)
logic 0; DCSC is fed by a clock signal with a maximum data rate of 16 MHz (without
CREF signal).
IICOE
(1)
OE
(2)
STATE OF CONTROL LINE TO DRIVER STAGES
0
X
logic 1; DATAOUT in high impedance mode
1
1
logic 1; DATAOUT in high impedance mode
1
0
logic 0; DATAOUT working
1996 Sep 25
14
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
6.2.2.3
Timing reference
The timing reference signals from the MPC-E decoders are used to synchronize the multiplexer and refers to the LL27
clock. Each alternative positive slope, marked by a CREF signal, is used to obtain data.
The horizontal reference signal, HREF, indicates the active part of a line and also synchronizes the multiplexer.
CREF: the clock reference signal is a clock qualifier signal distributed by the clock generator of the DMSD system.
The frequency is identical to the sample rates denoted in the input and the output formats (see Section 6.3 and also
Chapter 7).
HREF: the horizontal reference signal is the line reference signal of the YUV-bus. A positive slope marks the beginning
of the active part of a line. The length of the active part corresponds to the number of samples (see Chapter 7).
6.2.3
E
RROR CONDITION
No information signal is available to the peripheral circuits to inhibit unwanted operations. In the advent of an error the
DCSC must be re-started by application of the RESET signal.
6.3
System I/O interfaces
6.3.1
V
IDEO DATA INPUT SIGNALS
Table 6
Format 0 (4 : 1 : 1, semi-parallel, MPC-E decoder family format)
Table 7
Timing of Format 0; pin (DATAIN) and bit (U, V) numbers are indicated except clock
Note
1. CLOCK_A is the internal sampling clock of the system. The clock rate of the DMSD and the DCSC is twice that of
CLOCK_A in this mode.
INPUT
FUNCTION
SAMPLING
FREQUENCY
(MHz)
LEVEL
DATAIN1 = Y
luminance signal; 8-bit
12 to 16
0 IRE: black, quantization level 16
100 IRE: white, quantization level 235
DATAIN2
not used
-
-
DATAIN3 = U, V
multiplexed colour difference
signals 4-bit; corresponds to
UV7 to UV4 of DMSD2
1
/
4
of the Y signal
bottom peak; quantization level 16
top peak; quantization level 240
colourless; quantization level 128
Y
Y0
Y1
Y2
Y3
Y4
Y5
Y6
DATAIN37
U7
U5
U3
U1
U7
U5
U3
DATAIN36
U6
U4
U2
U0
U6
U4
U2
DATAIN35
V7
V5
V3
V1
V7
V5
V3
DATAIN34
V6
V4
V2
V0
V6
V4
V2
CLOCK_A
(1)
1
2
3
4
5
6
7
1996 Sep 25
15
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Table 8
Format 1 (4 : 1 : 1, semi-parallel, customized format)
Table 9
Timing of Format 1; the indices show the clock (sample) number
Note
1. CLOCK_A is the internal sampling clock of the system. The external CLOCK may differ from the CLK_MODE.
Table 10 Format 2 (4 : 2 : 2, semi-parallel, DMSD2 format)
Table 11 Timing of Format 2
Note
1. CLOCK_A is the internal sampling clock of the system. The clock of the DMSD (also the CLOCK of the DCSC) is
twice that of CLOCK_A in this mode.
INPUT
FUNCTION
SAMPLING
FREQUENCY
(MHz)
LEVEL
DATAIN1 = Y
luminance signal; 8-bit
12 to 16
0 IRE: black, quantization level 16
100 IRE: white, quantization level 235
DATAIN2
not used
-
-
DATAIN3 = Cr, Cb
multiplexed colour difference
signals, 8-bit
1
/
4
of the Y signal
bottom peak; quantization level 16
top peak; quantization level 240
colourless; quantization level 128
Y
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Cr, Cb
Cb0
-
Cr0
-
Cb4
-
Cr4
CLOCK_A
(1)
0
1
2
3
4
5
6
INPUT
FUNCTION
SAMPLING
FREQUENCY
(MHz)
LEVEL
DATAIN1 = Y
luminance signal; 8-bit
12 to 16
0 IRE: black, quantization level 16
100 IRE: white, quantization level 235
DATAIN2
not used
-
-
DATAIN3 = Cr, Cb
multiplexed colour difference
signals; corresponds to
UV7 to UV0 of DMSD2
1
/
2
of the Y signal
bottom peak; quantization level 16
top peak; quantization level 240
colourless; quantization level 128
Y
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Cr, Cb
Cb0
Cr0
Cb2
Cr2
Cb4
Cr4
Cb6
CLOCK_A
(1)
0
1
2
3
4
5
6
1996 Sep 25
16
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Table 12 Format 3 (4 : 2 : 2, Y-Cr-Cb, parallel)
Table 13 Timing of Format 3
Note
1. CLOCK_A is the internal sampling clock of the system. The external CLOCK may differ from the CLK_MODE.
Table 14 Format 4 (4 : 4 : 4, Y-Cr-Cb, parallel)
Table 15 Timing of Format 4
Note
1. CLOCK_A is the internal sampling clock of the system. The external CLOCK may differ from CLK_MODE.
INPUT
FUNCTION
SAMPLING
FREQUENCY
(MHz)
LEVEL
DATAIN1 = Y
luminance signal; 8-bit
12 to 16
0 IRE: black, quantization level 16
100 IRE: white, quantization level 235
DATAIN2 = Cr
colour difference signal R-Y, 8-bit
1
/
2
of the Y signal
bottom peak; quantization level 16
top peak; quantization level 240
colourless; quantization level 128
DATAIN3 = Cb
colour difference signal B-Y; 8-bit
1
/
2
of the Y signal
bottom peak; quantization level 16
top peak; quantization level 240
colourless; quantization level 128
Y
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Cb
Cb0
-
Cb2
-
Cb4
-
Cb6
Cr
Cr0
-
Cr2
-
Cr4
-
Cr6
CLOCK_A
(1)
0
1
2
3
4
5
6
INPUT
FUNCTION
SAMPLING
FREQUENCY
(MHz)
LEVEL
DATAIN1 = Y
luminance signal; 8-bit
12 to 16
0 IRE: black, quantization level 16
100 IRE: white, quantization level 235
DATAIN2 = Cr
colour difference signal R-Y, 8-bit
as the Y signal
bottom peak; quantization level 16
top peak; quantization level 240
colourless; binary 128
DATAIN3 = Cb
colour difference signal B-Y; 8-bit
as the Y signal
bottom peak; quantization level 16
top peak; quantization level 240
colourless; quantization level 128
Y
Y0
Y1
Y2
Y3
Y4
Y5
Y6
Cb
Cb0
Cb1
Cb2
Cb3
Cb4
Cb5
Cb6
Cr
Cr0
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
CLOCK_A
(1)
0
1
2
3
4
5
6
1996 Sep 25
17
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
6.3.2
V
IDEO DATA OUTPUT SIGNALS
Table 16 Format of DATAOUT (R-G-B if matrix in use)
Table 17 Timing of DATAOUT (R-G-B if matrix in use); note 1
Notes
1. See Fig.24.
2. OE (output enable, fast switch, active LOW) and IICOE (I
2
C-bus output enable, active HIGH) will switch the
DATAOUT lines to their high impedance state or normal mode.
3. CLOCK_A is the internal sampling clock of the system. The system clock may differ from CLK_MODE.
6.3.3
A
UXILIARY DATA
Pipelined external reference signal HREF_OUT (delayed HREF).
The delay line (word length 1-bit) has the same duration as the signal processing of the video data lines.
OUTPUT
FUNCTION
SAMPLING
FREQUENCY
(MHz)
LEVEL
DATAOUT1 = R
red signal
equal to DATAIN1
0 IRE: black, binary 16
100 IRE: white, binary 235
DATAOUT2 = G
green signal
equal to DATAIN1
0 IRE: black, binary 16
100 IRE: white, binary 235
DATAOUT3 = B
blue signal
equal to DATAIN1
0 IRE: black, binary 16
100 IRE: white, binary 235
DATAOUT1
(2)
R0
R1
R2
R3
R4
R5
R6
DATAOUT2
(2)
G0
G1
G2
G3
G4
G5
G6
DATAOUT3
(2)
B0
B1
B2
B3
B4
B5
B6
CLOCK_A
(3)
0
1
2
3
4
5
6
Fig.11 Delayed HREF.
handbook, full pagewidth
MGE951
PIPELINE DELAY LINE
63
CLOCK
58
HREF_OUT
65
HREF
1996 Sep 25
18
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
6.4
System block description
6.4.1
I
NPUT FORMATTER WITH FILTER
The formatter is shown in Fig.12 and consists of five
functional blocks:
The multiplexer, which decodes the luminance and
chrominance input signals
The filter, which interpolates the samples on DATAIN2
and DATAIN3 to the data rate used for DATAIN1
The luminance delay line
The timing control which creates the internal reference
signals from the various inputs
The bypass output multiplexer.
The data applied at DATAIN1 to DATAIN3 is converted as
follows:
FIL1: Y Luminance
FIL2: Cr colour-difference signal R-Y
FIL3: Cb colour-difference signal B-Y.
In the various functional modes the signal FMTCNTRL
switches in the required filters (see Section 6.2).
In all modes the same propagation delay will be realized,
(the reference is Cb0, respective to U7 with format 0).
At all frequencies and in all formats, there is a delay line to
compensate for the delay of the signal processing time
needed in the chrominance section.
The filter for the Cr and Cb signal is realized in one filter
design.
Format 0 and 1; 4 : 1 : 1
An interpolating filter is inserted to convert the original
sampling frequency to the sampling frequency of the
luminance signal i.e. four times that of the colour signal.
Figure 13 illustrates the frequency response of the
chrominance section.
Format 2 and 3; 4 : 2 : 2
An interpolating filter is inserted to convert the original
sampling frequency to the sampling frequency of the
luminance signal i.e. twice the colour signal. Figure 14
illustrates the frequency response of the chrominance
section.
Format 4; 4 : 4 : 4
A bypass with a specified delay is inserted.
Fig.12 Input formatter.
handbook, full pagewidth
MGE938
DATAIN1
DATAIN2
DATAIN3
HREF
FIL1
FIL2
OUTPUT
MULTIPLEXER
FIL3
CLOCK_A
Y
DELAY
Cr and Cb
FILTER
MULTIPLEXER
TIMING CONTROL
format
control
clock
mode
CREF
clock
inreset
1996 Sep 25
19
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Fig.13 Frequency response of 4 : 1 : 1 filter.
handbook, halfpage
0
0.5
0
-
50
-
40
-
30
-
20
-
10
MGE935
0.1
0.2
0.3
0.4
A
(dB)
f
fCLOCK_A
Fig.14 Frequency response of 4 : 2 : 2 filter.
handbook, halfpage
0
0.5
0
-
50
-
40
-
30
-
20
-
10
MGE936
0.1
0.2
0.3
0.4
A
(dB)
f
fCLOCK_A
1996 Sep 25
20
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
6.4.2
C
ONVERSION MATRIX
The properties of the conversion matrix are as follows:
The conversion equations are (according to "
CCIR 601",
with respect to the different quantization on Y, Cb and
Cr)
Red = Y + 1.371(Cr
-
0.5)
Green = Y
-
0.698(Cr
-
0.5)
-
0.336(Cb
-
0.5)
Blue = Y + 1.732(Cb
-
0.5)
The accuracy of the signal processing is within
0.5% of
the accuracy of a theoretical conversion
The input and output data lines are 8-bit
In the advent of non-standard input levels, the limiter
reduces the possible output data values to between
0 and 255
MATBYPASS switches the matrix in bypass which has
the same propagation delay as the matrix itself.
Table 18 shows the levels as normalized to unity for
primary RGB signals, quantized levels according to
"CCIR Report 629-2" for input and output signals at the
DCSC.
The RGB levels at the output of the DCSC are within
1 LSB of the levels according to a theoretical
transformation.
Table 18 Levels of the colour bar signal (note 1)
Note
1. The colour bar signal is described in
"CCIR 601, Rep. 629-2, Table 1". It can be used to check the nominal levels
(at least for black and white) between the functional blocks of the DCSC.
CONDITION
E'
R
E'
G
E'
B
Y
C
R
C
B
R
G
B
White
1.0
1.0
1.0
235
128
128
235
235
235
Black
0
0
0
16
128
128
16
16
16
Red
1.0
0
0
82
240
90
236
17
16
Green
0
1.0
0
145
34
54
16
236
17
Blue
0
0
1.0
41
110
240
16
16
235
Yellow
1.0
1.0
0
210
146
16
235
235
16
Cyan
0
1.0
1.0
170
16
166
16
235
236
Magenta
1.0
0
1.0
106
222
202
235
15
234
1996 Sep 25
21
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
6.4.3
V
IDEO LOOK
-
UP TABLE AND OUTPUT STAGE
6.4.3.1
VLUTDATA, VLUTSELECT and VLUTVALID
These signals are produced by the I
2
C-bus receiver to
control access to the VLUT RAMs.
The I
2
C-bus protocol has four subaddresses implemented
to direct the data into different VLUT RAMs. Each RAM
can be addressed individually or all three RAMs together.
The next byte of the protocol will address the starting
address of the individual RAM, e.g. if only parts of the data
need to be changed.
In computer applications the VLUT is also known as a
Colour Look-Up Table (CLUT). In the DCSC this table
might be used to invert the Gamma-correction of a
camera. This correction is applied to compensate for the
non-linear relationship between the video voltage applied
to the cathode and the light output of the phosphor of a
CRT.
The Gamma-correction function (also known as
Gradation) is given as:
Y = X
The VLUTs are realized by 256
8-bit RAMs.
Fig.15 Block diagram video look-up table.
handbook, full pagewidth
MGE934
MAT1
MAT2
MAT3
VLUT1
DATAVALID
VLUTSELECT
CLOCK_A
MULTIPLEXER
VLUT2
MULTIPLEXER
VLUT3
MULTIPLEXER
RAM3
CONTROL
RAM2
RAM1
VLUTDATA
VLUTBYPASS
1996 Sep 25
22
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
6.4.4
I
2
C-
BUS RECEIVER
The DCSC can be switched to different functional modes via the I
2
C-bus receiver. To carry out this operation the Control
Register is addressed and then loaded with the appropriate data as specified in Table 20. The timing diagram for the
loading operation is shown in Fig.19. The I
2
C-bus receiver is also used to load the VLUT RAMs with data. The timing
diagram for this operation is shown in Fig.21.
Full details of the I
2
C-bus are given in the document
"The I
2
C-bus and how to use it". This document may be ordered
using the code 9398 393 40011.
6.4.4.1
I
2
C-bus receiver functional description
Following power-up, all internal control signals are at undefined values. The I
2
C-bus receiver must therefore be reset to
a known state using the external RESET signal; see Table 19.
Table 19 State of I
2
C-bus internal control signals (subaddress 00H) after an external reset
SIGNAL
BIT
STATE AFTER RESET
IICOE
D5
logic 1; OE pin enabled
INRESET
D4
logic 0; input data set to fixed values
MATBYPASS
D3
logic 0; matrix by-passed
FMTCNTRL
D2 to D0
100; format 4 : 4 : 4
Fig.16 Block diagram of I
2
C-bus receiver.
handbook, halfpage
MBA959
DATAVALID
VLUTLOAD
VLUTDATA
VLUTSELECT
IIOE
MATBYPASS
FMTCNTRL
8
3
SDA
SCL
RESET
CLOCK_A
INRESET
3
I
2
C-bus
address
I
2
C-BUS
RECEIVER
1996 Sep 25
23
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
6.4.4.2
Receiver organisation
Fig.17 The DCSC address.
handbook, full pagewidth
MBA961
1
1
1
0
A2
A1
R/W
A0
A3
A4
A5
A6
0
0
X
0
write only
hardware programmable
address bit
(I
2
C-bus ADDRESS, pin 27)
Fig.18 Addressing the control byte (address 00H).
handbook, full pagewidth
MBA962
1
0
1 1
0 0 0 0 A 0
0
0
0
0 0 0 0 A
A
P
P
DCSC ADDRESS
SUBADDRESS
CONTROL BYTE
(1)
S : = START
A : = Acknowledge
P : = STOP
(1) See Table 20.
1996 Sep 25
24
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Table 20 Selection of functional modes and input formats (note 1)
Notes
1. The functional modes are specified in Table 1.
2. FMTCNTRL: bits D0 to D2 of I
2
C-bus.
3. Bit D3 of I
2
C-bus.
4. Pin 62.
Table 21 Other control signals
Notes
1. Pin of I
2
C-bus.
2. Pin 59.
Table 22 Output enable control
Notes
1. IICOE : D5; output enable control of I
2
C-bus (enables OE).
2. OE : pin 61; output enable (fast switch).
FMTCNTRL
(2)
MATBYPASS
(3)
VLUTBYPASS
(4)
FUNCTIONAL MODE/INPUT FORMAT
000
0
0
mode 1, input format 0
000
1
0
mode 2, input format 0)
001
0
0
mode 1, input format 1
001
1
0
mode 2, input format 1
010
0
0
mode 5, input format 2
010
1
0
mode 6, input format 2
011
0
0
mode 5, input format 3 (parallel IN)
011
1
0
mode 6, input format 3 (parallel IN)
100
0
0
mode 9, input format 4 (parallel IN)
100
1
0
mode 10, input format 4 (parallel IN)
XXX
X
1
each of the above modes will be multiplied by the factor
loaded into the VLUT
SIGNAL
STATE
FUNCTION
INRESET
(1)
logic 1
input latches at the formatter are always transparent
logic 0
at the end of each active video line the input signals will be set to fixed
values (Y to 16; Cr and Cb to 128; if HREF = 0)
CLK_MODE
(2)
logic 1
DMSD mode (LL27 clock of DMSD feeds the DCSC)
logic 0
DCSC is fed by a maximum 16 MHz clock without CREF signal
IICOE
(1)
OE
(2)
STATE OF CONTROL LINE TO DRIVER STAGES
0
X
logic 1; DATAOUT in high impedance mode
1
1
logic 1; DATAOUT in high impedance mode
1
0
logic 0; DATAOUT working
1996 Sep 25
25
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
handbook, full pagewidth
MBA956
A
D
A
T
A
f
or Control Register (4AH)
A
subaddress (00H)
A
sla
v
e
address DCSC (E0H)
S
SD
A
SCL
S :
= ST
AR
T condition
A :
= ac
kno
wledge from DCSC
P :
= ST
OP condition
P
LSB
MSB
LSB
MSB
LSB
MSB
Fig.19 Example of Control Register loading.
In this example the state of the internal control signals are as follows: FMTCNTRL
=
010;
MATBYPASS
=
1
;
INRESET
=
0
and IICOE
=
1
.
1996 Sep 25
26
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
6.4.4.3
VLUTDATA
Four subaddresses are implemented to load data into the different VLUT RAMs. RAM can be addressed as a whole or
each VLUT RAM can be addressed individually, e.g. if only part of the data has to be changed. An example of loading a
VLUT RAM is shown in Fig.21.
Table 23 Subaddresses VLUTDATA
SUBADDRESS (HEX)
VLUT-ADDRESS (HEX)
DATA BYTES
01
XX
VLUTDATA RAM 1 (RED)
02
XX
VLUTDATA RAM 2 (GREEN)
03
XX
VLUTDATA RAM 3 (BLUE)
04
XX
VLUTDATA RAM 1, 2 and 3
Fig.20 Subaddresses VLUTDATA.
handbook, full pagewidth
MBA963
A
A
A
S
DCSC ADDRESS
SUBADDRESS
VLUTADDRESS
S : = START
A : = Acknowledge
P : = STOP
A
A
A
DATA BYTE 1
DATA BYTE 2
DATA BYTE n
P
A
1996 Sep 25
27
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
handbook, full pagewidth
MBA955
A
address of first b
yte (0FH)
A
subaddress (02H)
A
sla
v
e
address DCSC (E0H)
S
SD
A
SCL
A
first BYTE f
or
VLUT (10H)
A
last BYTE f
or
VLUT (FEH)
P
SD
A (contin
ued)
SCL (contin
ued)
S :
= ST
AR
T condition
A :
= ac
kno
wledge from DCSC
P :
= ST
OP condition
Fig.21 Example of VLUT loading.
In this example the second RAM (GREEN) receives new data at the start of address OFH.
The VLUT addresses are automatically incremented by writing data via the SDA line.
1996 Sep 25
28
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
7
OPERATING CONDITIONS
7.1
Electrical conditions
7.1.1
S
TART
-
UP CONDITION
No particular function except the external Power-on-reset
e.g. for I
2
C-bus interface (RESET) is intended.
7.1.2
O
PERATING TIME
As this device will be used in computers, it has been
designed to operate continuously.
7.1.3
T
EMPERATURE RANGE
Refer to Chapter 8.
7.1.4
B
ACKUP
No internal backup capability (standby) is provided.
7.1.5
P
OWER
-
DOWN MODE
No internal Power-down capability is provided.
7.1.6
H
ANDLING
Inputs and outputs are protected against electrostatic
discharge during normal handling. It is desirable, however,
to observe normal handling precautions appropriate to
MOS devices.
8
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
MIN
MAX
UNIT
V
DD
supply voltage
-
0.5
+7
V
V
I
input voltage
-
0.5
+7
V
V
O
output voltage
-
0.5
+7
V
P
tot
total power dissipation
-
1.5
W
T
stg
storage temperature range
-
65
+150
C
T
amb
operating ambient temperature
0
+70
C
1996 Sep 25
29
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
9
DC CHARACTERISTICS
Notes
1. The supply current may vary between 30 and 150 mA depending upon the input data. The minimum may be
achieved with OE disabled and no clock.
2. All inputs except TEST (internal pull-up resistor).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
Supply
V
DD
supply voltage
4.5
5.5
V
I
DD
supply current
note 1
-
150
mA
Inputs
V
IL
LOW level input voltage:
except SDA and SCL
-
0.5
+0.8
V
SDA and SCL
-
0.5
+1.5
V
V
IH
HIGH level input voltage:
except SDA, SCL, RESET and CLK_MODE
2
V
DD
+ 0.5
V
SDA and SCL
3
V
DD
+ 0.5
V
RESET and CLK_MODE
2.4
-
V
I
LI
input leakage current
note 2
-
10
A
C
I
input capacitance
-
10
pF
Outputs
V
OH
HIGH level output voltage
2.4
V
DD
V
V
OL
LOW level output voltage
0
0.4
V
I
OH
HIGH level output current
-
-
4
mA
I
OL
LOW level output current:
except SDA
-
4
mA
SDA
-
3
mA
C
L
output load capacitance
-
40
pF
I
LO
output leakage current
-
10
A
1996 Sep 25
30
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
10 TIMING CHARACTERISTICS
Typical ratings are measured at V
DD
= 5 V; T
amb
= 25
C
Notes
1. DMSD mode designates that the DCSC will work in a DMSD environment. The CLOCK and the clock reference
signal CREF will be fed by the SCGC (SAA7157); see Figs 22 to 24.
2. 16 MHz mode indicates that the DCSC will work in any other environment. The CREF signal will be set internally to
HIGH, the CLOCK signal can be any clock up to 16 MHz; see Figs 23 and 25.
3. Must be set one clock period before DATAOUT; see Fig.25.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
t
C27
clock cycle time
note 1
31
-
45
ns
t
C16
clock cycle time
16 MHz mode; note 2
62
-
83
ns
t
CDL
clock duty time LOW
note 2
25
-
-
ns
t
CDH
clock duty time HIGH
note 2
25
-
-
ns
t
CS
CREF set-up time
11
-
-
ns
t
CH
CREF hold time
3
-
-
ns
t
HS
HREF set-up time
11
-
-
ns
t
HH
HREF hold time
3
-
-
ns
t
RH
RESET hold time
4 clock periods
t
VS
VLUTBYPASS set-up time
note 3
8
-
-
ns
t
VH
VLUTBYPASS hold time
note 3
0
-
-
ns
t
SU
DATAIN set-up time
11
-
-
ns
t
HD
DATAIN hold time
3
-
-
ns
t
OS
DATAOUT set-up time
10
-
-
ns
t
OH
DATAOUT hold time
10
-
-
ns
t
OHS
HREF_OUT set-up time
9
-
-
ns
t
OHH
HREF_OUT hold time
10
-
-
ns
t
HZ
output disable time (to 3-state)
-
10
15
ns
t
ZH
output enable time (from 3-state)
-
15
21
ns
1996 Sep 25
31
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Fig.22 Timing diagram input (DMSD mode).
handbook, full pagewidth
data valid
data valid
tHS
tHH
tSU
tHD
tSU
tHD
CLOCK
LL27
CREF
HREF
INPUT
DATA
tC27
tCS
tCH
MGE941
1996 Sep 25
32
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Fig.23 Timing diagram input (16 MHz mode).i
handbook, full pagewidth
MBA957
t CDL
t CDH
t C16
CLOCK
tHS
tHH
tSU
t HD
HREF
DATA
INPUT
data
valid
data
valid
data
valid
1996 Sep 25
33
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Fig.24 Timing diagram output.
handbook, full pagewidth
data valid
data valid
MGE940
tOHS
tOHH
tOS
tZH
tOH
tHZ
CLOCK
LL27
CREF
HREF_OUT
OUTPUT
DATA
OE
OE will also affect HREF_OUT.
1996 Sep 25
34
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
Fig.25 Timing diagram VLUTBYPASS.
handbook, full pagewidth
MBA958
t C16
CLOCK
t VH
tSU
tHD
DATA
OUTPUT
data
VLUT
data
MATRIX
data
VLUT
t VS
VLUTBYPASS
VLUTBYPASS must be supplied one clock pulse in advance of the desired DATAOUT lines reaction.
1996 Sep 25
35
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
11 PACKAGE OUTLINE
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
EIAJ
Note
1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.
SOT188-2
44
60
68
1
9
10
26
43
27
61
detail X
(A )
3
b
p
w
M
A
1
A
A
4
L
p
b
1
k
1
k
X
y
e
E
B
D
H
E
H
v
M
B
D
Z D
A
Z E
e
v
M
A
pin 1 index
112E10
MO-047AC
0
5
10 mm
scale
92-11-17
95-03-11
PLCC68: plastic leaded chip carrier; 68 leads
SOT188-2
UNIT
A
A
min.
max.
max.
max. max.
1
A
4
b
p
E
(1)
(1)
(1)
e
H
E
Z
y
w
v
mm
4.57
4.19
0.51
3.30
0.53
0.33
0.021
0.013
1.27
0.51
2.16
45
o
0.18
0.10
0.18
DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)
D
(1)
24.33
24.13
H
D
25.27
25.02
E
Z
2.16
D
b
1
0.81
0.66
k
1.22
1.07
k
1
0.180
0.165
0.020
0.13
A
3
0.25
0.01
0.05
0.020
0.085
0.007 0.004
0.007
L
p
1.44
1.02
0.057
0.040
0.958
0.950
24.33
24.13
0.958
0.950
0.995
0.985
25.27
25.02
0.995
0.985
e
E
e
D
23.62
22.61
0.930
0.890
23.62
22.61
0.930
0.890
0.085
0.032
0.026
0.048
0.042
E
e
inches
D
e
1996 Sep 25
36
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
12 SOLDERING
12.1
Introduction
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our
"IC Package Databook" (order code 9398 652 90011).
12.2
Reflow soldering
Reflow soldering techniques are suitable for all PLCC
packages.
The choice of heating method may be influenced by larger
PLCC packages (44 leads, or more). If infrared or vapour
phase heating is used and the large packages are not
absolutely dry (less than 0.1% moisture content by
weight), vaporization of the small amount of moisture in
them can cause cracking of the plastic body. For more
information, refer to the Drypack chapter in our
"Quality
Reference Handbook" (order code 9397 750 00192).
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250
C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45
C.
12.3
Wave soldering
Wave soldering techniques can be used for all PLCC
packages if the following conditions are observed:
A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering
technique should be used.
The longitudinal axis of the package footprint must be
parallel to the solder flow.
The package footprint must incorporate solder thieves at
the downstream corners.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Maximum permissible solder temperature is 260
C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150
C within
6 seconds. Typical dwell time is 4 seconds at 250
C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
12.4
Repairing soldered joints
Fix the component by first soldering two diagonally-
opposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300
C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320
C.
1996 Sep 25
37
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
13 DEFINITIONS
14 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
15 PURCHASE OF PHILIPS I
2
C COMPONENTS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Purchase of Philips I
2
C components conveys a license under the Philips' I
2
C patent to use the
components in the I
2
C system provided the system conforms to the I
2
C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
1996 Sep 25
38
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
NOTES
1996 Sep 25
39
Philips Semiconductors
Product specification
Digital Colour Space Converter (DCSC)
SAA7192A
NOTES
Internet: http://www.semiconductors.philips.com
Philips Semiconductors a worldwide company
Philips Electronics N.V. 1996
SCA51
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 926 5361, Fax. +7 095 564 8323
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 So Paulo, SO PAULO - SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 825 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 615 800, Fax. +358 615 80920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstrae 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. +30 1 4894 339/911, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Printed in The Netherlands
657021/1200/02/pp40
Date of release: 1996 Sep 25
Document order number:
9397 750 01272