ChipFind - документация

Электронный компонент: SA56203N1

Скачать:  PDF   ZIP

Document Outline

1.
General description
The SA56203 is a one-chip motor driver IC that is capable of driving all motors of CD or
DVD systems e.g. spindle, sled and loading motors and actuators on the optical pick-up
unit. The driver intended for the 3-phase, brushless, Hall-commutated spindle motor uses
PWM switching. Internal regeneration of the back EMF of the spindle motor enables the
driver to operate in current-steering mode without using external power-dissipating sense
resistors. The driver for the 2-phase sled stepper motor operates in current-steering PWM
mode. In addition the IC contains four full-bridge linear channels that can be used to drive
a loading motor and 3D actuators (focus, tracking and tilt).
The SA56203 is available in an exposed die pad HTSSOP56 package.
2.
Features
s
Low heat generation due to power-efficient direct full-bridge switching of spindle motor
driver
s
Controlled spindle motor current during acceleration and brake
s
Reverse torque brake function (full bridge)
s
Adjustable spindle motor current limiter
s
Internal regeneration for EMF of spindle motor
s
Current-steering PWM controlled stepper motor driver for sled
s
Four class-AB linear channels for loading motor and 3D actuators (focus, tracking and
tilt)
s
Tracking actuator driver with back EMF amplifier
s
Loading motor driver with transresistance amplifier for loading current
s
Low on-resistance D-MOSFET output power stages
s
Built-in thermal shutdown and thermal warning
s
Interfaces to 3 V and 5 V logic
s
Package with low thermal resistance to heatsink (reflowable die pad)
s
Lead free package.
3.
Applications
s
DVD+RW, DVD-RW and DVD-RAM
s
Combi
s
CD-RW
s
Other compact disc media.
SA56203
One-chip motor driver
Rev. 01 -- 30 September 2004
Preliminary data sheet
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
2 of 27
Philips Semiconductors
SA56203
One-chip motor driver
4.
Ordering information
Table 1:
Ordering information
Type number
Package
Name
Description
Version
SA56203
HTSSOP56 plastic thermal enhanced thin shrink small outline package; 56 leads; body
width 6.1 mm; exposed die pad
SOT793-1
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
3 of 27
Philips Semiconductors
SA56203
One-chip motor driver
5.
Block diagram
Fig 1.
Block diagram.
001aab244
REVERSE
DETECTION
LEVEL
SHIFT
47 k
VINREF
47 k
VINREF
47 k
VINREF
47 k
VINREF
LEVEL
SHIFT
LEVEL
SHIFT
LEVEL
SHIFT
SLED
LOGIC
CURRENT
REFERENCE
FG
OSCILLATOR
THERMAL
SHUTDOWN
FG
HALL BIAS
ADC
CHARGE
PUMP
MUTE/
STANDBY
FUNCTIONS
SPINDLE
LOGIC
HALL
AMP
1
2
3
4
5
6
7
8
9
10
11
12
13
15
14
16
17
18
28
19
20
21
22
23
24
25
26
27
47 k
VINREF
500 k
VINREF
VINREF
SA56203
VINLD
COSC
HU
+
HU
-
HV
+
HV
-
HW
+
HW
-
HBIAS
RREF
REMF
RLIM
V
SS1(SPN)
U
V
DD1(SPN)
V
V
SS2(SPN)
W
V
DD2(SPN)
FG
V
SSA
VINSPN
VINREF
V
DDA
CP1
CP2
CP3
CTL1
CTL2
TEMP
VINTRK
VINFCS
VINTLT
V
DD(LD)
V
DD(TRK)
LDO
+
LDO
-
V
SS(ACT)
V
DD(ACT)
TLTO
-
FCSO
-
FCSO
+
TRKO
-
TRKO
+
TLTO
+
RSLD1
RSLD2
SLDO2
-
SLDO2
+
SLDO1
-
SLDO1
+
V
SS(SLD)
V
DD(SLD)
VLDTRK
VINSLD1
VINSLD2
31
30
29
33
32
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
51
50
52
53
54
55
56
47 k
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
4 of 27
Philips Semiconductors
SA56203
One-chip motor driver
6.
Pinning information
6.1 Pinning
6.2 Pin description
Fig 2.
Pin configuration.
SA56203
001aab245
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
VINLD
VINTRK
VINFCS
COSC
HU
+
HU
-
HV
+
HV
-
HW
+
HW
-
HBIAS
RREF
REMF
RLIM
V
SS1(SPN)
U
V
DD1(SPN)
V
V
SS2(SPN)
W
V
DD2(SPN)
FG
V
SSA
VINSPN
VINREF
V
DDA
CP1
CP2
CP3
CTL1
CTL2
TEMP
VINTLT
V
DD(LD)
V
DD(TRK)
LDO
+
LDO
-
TRKO
+
V
DD(ACT)
FCSO
+
V
DD(SLD)
TLTO
+
FCSO
-
V
SS(ACT)
TRKO
-
TLTO
-
RSLD1
RSLD2
SLDO2
-
SLDO2
+
SLDO1
-
SLDO1
+
V
SS(SLD)
VLDTRK
VINSLD1
VINSLD2
Table 2:
Pin description
Symbol
Pin
Description
HU+
1
Hall input U positive
HU
-
2
Hall input U negative
HV+
3
Hall input V positive
HV
-
4
Hall input V negative
HW+
5
Hall input W positive
HW
-
6
Hall input W negative
HBIAS
7
Hall element bias
RREF
8
external resistor for current reference
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
5 of 27
Philips Semiconductors
SA56203
One-chip motor driver
REMF
9
external resistor for EMF regeneration
RLIM
10
external resistor for current limit
V
SS1(SPN)
11
spindle driver ground 1
U
12
spindle driver output U
V
DD1(SPN)
13
spindle driver supply voltage 1
V
14
spindle driver output V
V
SS2(SPN)
15
spindle driver ground 2
W
16
spindle driver output W
V
DD2(SPN)
17
spindle driver supply voltage 2
FG
18
frequency generator output
V
SSA
19
analog ground
VINSPN
20
spindle driver input voltage for spindle motor current
VINREF
21
reference input voltage for all motor drivers
V
DDA
22
analog supply voltage
CP1
23
charge pump capacitor connection 1
CP2
24
charge pump capacitor connection 2
CP3
25
charge pump capacitor connection 3
CTL1
26
driver logic control input 1
CTL2
27
driver logic control input 2
TEMP
28
thermal warning
VINSLD1
29
sled driver 1 input for sled motor current
VINSLD2
30
sled driver 2 input for sled motor current
VLDTRK
31
voltage output loader/track
V
SS(SLD)
32
sled driver ground
SLDO2
-
33
sled driver output 2 negative
SLDO2+
34
sled driver output 2 positive
RSLD2
35
sled driver 2 current sense
SLDO1
-
36
sled driver output 1 negative
SLDO1+
37
sled driver output 1 positive
RSLD1
38
sled driver 1 current sense
V
DD(SLD)
39
sled driver sense supply voltage
TLTO
-
40
tilting driver output negative
TLTO+
41
tilting driver output positive
FCSO
-
42
focus driver output negative
FCSO+
43
focus driver output positive
V
DD(ACT)
44
focus/tilt drivers supply voltage
V
SS(ACT)
45
actuator drivers ground
TRKO
-
46
tracking driver output negative
TRKO+
47
tracking driver output positive
LDO
-
48
loading driver output negative
LDO+
49
loading driver output positive
Table 2:
Pin description
...continued
Symbol
Pin
Description
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
6 of 27
Philips Semiconductors
SA56203
One-chip motor driver
7.
Functional description
7.1 Spindle motor control
The control input voltage on pin VINSPN is converted into a digital value by the ADC
where the voltage on pin VINREF is the midpoint reference. The transconductance gain
from input voltage V
VINSPN
to output motor current I
MOT
is:
where I
LIM
can be programmed by means of external resistor R
LIM
. The motor current is
described by
Figure 3
.
For VINSPN voltages larger than V
VINREF
the motor will accelerate with forward torque
control. For VINSPN voltages smaller than V
VINREF
the motor will brake with reverse
torque control.
V
DD(TRK)
50
tracking driver supply voltage
V
DD(LD)
51
loading driver supply voltage
VINTLT
52
tilting driver input for tilt actuator driver
VINFCS
53
focus driver input for focus actuator voltage
VINTRK
54
tracking driver input for tracking actuator voltage
VINLD
55
loading driver input for loading motor voltage
COSC
56
external capacitor for internal oscillator
Table 2:
Pin description
...continued
Symbol
Pin
Description
Fig 3.
Spindle motor current as a function of control input voltage VINSPN.
g
m SPN
(
)
I
MOT
V
VINSPN
V
VINREF
(
)
------------------------------------------------------
I
LIM
V
VINREF
---------------------
=
=
001aaa431
I
LIM
I
MOT
V
VINSPN
-
I
LIM
reverse
torque
brake
0
V
VINREF
2V
VINREF
forward
torque
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
7 of 27
Philips Semiconductors
SA56203
One-chip motor driver
7.2 Spindle brake
Because the U, V and W half-bridges of the spindle motor driver use a direct PWM
full-bridge switching scheme, the motor current can also be controlled and limited during
brake. It should be noted that because of this active brake mechanism energy of the motor
can be recuperated back to the supply. Especially at large speeds, this can result in
currents delivered back to the supply.
If the supply and / or other circuits than the motor driver do not use this recuperated
current, than the supply voltage can rise to unacceptable values. In this event it is
recommended to lower the spindle current during brake by means of the VINSPN setting.
The SA56203 has a clamp incorporated on the spindle driver supply voltage for protecting
the IC against this overvoltage.
Upon detection of reverse rotation all U, V and W driver outputs are connected to
V
DD(SPN)
. This short brake prevents the motor from spinning backwards.
7.3 Internal regeneration of back EMF spindle motor
The spindle motor driver uses the information from the Hall sensors to internally
regenerate the back EMF of the motor (see
Figure 4
).
Rotational speed
is derived from the Hall event frequency. Multiplying
with the k-factor
of the motor gives the back EMF voltage V
EMF
. This V
EMF
is added to the current-limited
scaled spindle input voltage V
VINSPN
. This sum V
MOT
steers the PWM outputs U, V and W.
The result is that the input voltage V
VINSPN
represents the current through the motor. This
explains how the SA56203 spindle motor driver exhibits a current control transfer function
without using external sense resistors.
The simplified motor schematic in
Figure 5
shows the series resistance and back EMF
voltage of the motor.
Fig 4.
Regeneration of back EMF voltage spindle motor.
001aaa438
PWM
SPEED
U
V
W
Hall U
spindle
motor
V
MOT
= V
RI
+ V
EMF
V
RI
= R
m
I
m
V
EMF
=
k
Hall V
Hall W
DIGITAL DOMAIN
VINSPN
torque
control
signal
R
LIM
maximum
motor
current
R
EMF
motor
k-factor
ANALOG DOMAIN
A
D
A
D
A
D
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
8 of 27
Philips Semiconductors
SA56203
One-chip motor driver
Figure 6
shows the motor voltages V
M1
and V
M2
during accelerating and braking. The
back EMF voltage is part of these motor voltages.
7.4 Programming R
LIM
If the supply is connected between the terminals of a non-running spindle motor, then
usually a current will flow that is too large. The motor current can be limited to a value I
LIM
.
I
LIM
can be programmed by means of R
LIM
. In order to calculate the required R
LIM
first a
typical maximum motor current I
MAX
needs to be determined:
I
LIM
can be chosen to be a fraction of this maximum current I
MAX
. By making the ratio
between R
LIM
and R
REF
this same fraction, I
LIM
is programmed as expressed in the
following formula:
Fig 5.
Simplified spindle motor schematic.
Fig 6.
Motor voltages when accelerating and braking with constant motor current.
001aaa450
V
M1
V
M2
V
RM
V
RM
V
EMF
2
V
EMF
2
001aaa432
V
M2
accelerating
braking
V
RM
V
RM
V
M1
V
M1
V
M2
V
EMF
2
V
EMF
2
V
DD(SPN)
2
V
DD(SPN)
0
0
max
0
k
I
MAX
V
DD SPN
(
)
R
motor
R
switches
+
--------------------------------------------
=
I
LIM
R
LIM
R
REF
-------------
I
MAX
=
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
9 of 27
Philips Semiconductors
SA56203
One-chip motor driver
Figure 7
shows the limit current as a function of R
LIM
with R
REF
= 47 k
.
During accelerating and braking the motor current will not exceed I
LIM
. I
LIM
also sets the
transconductance gain I
LIM
/V
VINREF
of the spindle driver.
7.5 Programming R
EMF
The back EMF voltage is internally regenerated. The ratio between R
EMF
and R
REF
is
used to scale the internal EMF regeneration. The value of external resistor R
EMF
depends
on the type of motor (k-factor and number of pole pairs N
PP
) and the motor supply voltage
V
DD(SPN)
. The following formula should be used to determine the R
EMF
resistor:
with k in units Nm/A.
7.6 Frequency Generator (FG)
The raw zero-crossings of the Hall sensors are first filtered and debounced before being
passed to the FG. The FG toggles its output at every filtered Hall zero-crossing. For three
Hall sensors this means that the motor frequency is linked to the FG frequency by:
where N
PP
indicates the number of pole pairs of the motor. The FG has an open-drain
output for easy interfacing to 3 V and 5 V logic.
7.7 Sled motor driver
Two current steering channels are available to drive a stepper motor. Per channel an
external sense resistor R
sense
is used that is connected to V
DD(SLD)
. A peak-current control
loop is implemented that modulates the duty cycle of the PWM signal (see
Figure 8
).
Fig 7.
Limit current I
LIM
as a function of external resistor R
LIM
.
R
LIM
(k
)
0
50
40
20
30
10
001aaa434
40
60
20
80
100
0
I
LIM
(% of I
MAX
)
R
EMF
k
2.6
10
3
R
REF
N
PP
V
DD SPN
(
)
--------------------------------------------------
=
f
motor
FG
3
N
PP
-------------------
=
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
10 of 27
Philips Semiconductors
SA56203
One-chip motor driver
The clock generator has a nominal frequency of
kHz. See
Figure 9
, transfer
function from input voltage V
VINSLD
to output current at a typical R
sense
of 0.5
.
Input-to-output transconductance gain can be scaled down by connecting external resistor
R
ext
in series with the input VINSLD.
Both limiting current and transconductance gain are related to R
sense
in the following way:
Transconductance gain;
Limiting current;
Fig 8.
Peak-current control architecture of sled motor driver.
Fig 9.
Transfer function of sled motor driver.
001aab483
M
R
S
Q
CLOCK
LOGIC
DRIVE
DRIVER
A
VINSLD
RSLD
R
sense
V
DD(SLD)
VSS(SLD)
SLDO
+
SLDO
-
IO
IRSLD
47 k
+
-
47 k
V
VINREF
input amplifier
f
osc
256
---------
70
=
001aaa436
V
VINSLD
-
V
VINREF
(V)
-
1 A
+
1 A/V
+
1 A/V
1 A
I
OUT
(A)
dead zone
30 mV
-
30 mV
I
o
V
in
-------
1
2
R
sense
------------------------
=
I
LIM
1
2
R
sense
------------------------
=
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
11 of 27
Philips Semiconductors
SA56203
One-chip motor driver
7.8 Loading motor driver
One of the linear channels is available to drive a DC loading motor. Pin V
DD(LD)
is used to
set the supply voltage for the loading motor driver. The following voltage-steering bridge
topology is implemented in the SA56203.
7.9 Actuator motor drivers
Three linear channels are available to drive 3D actuators: focus, tracking and tilt. Pin
V
DD(ACT)
is used to set the supply voltage for the focus and tilt actuators (maximum 5.5 V).
A separate pin V
DD(TRK)
sets the supply voltage for the tracking actuator (maximum 14 V).
The voltage-steering bridge topology is the same as depicted in
Figure 10
.
7.10 Charge pump
The on-board charge pump generates a voltage of typically 18.2 V by using the V
DD(SPN)
supply voltage. This boosted voltage is used to turn on the upper n-type DMOS transistors
of the output stages of the spindle driver, sled driver, loading driver and actuator drivers.
Recommended values for the pump and hold capacitor are 10 nF and 22 nF respectively
(see default settings). The charge pump should not be loaded with other components or
circuitry other than these capacitors.
7.11 Thermal protection
If the junction temperature of the SA56203 exceeds 150
C, then a thermal warning signal
is given at pin TEMP. Pin TEMP has an active-LOW open-drain output for easy interfacing
to the 3 V and 5 V logic. The temperature hysteresis for the thermal warning is 20
C. If
the junction temperature of the IC rises to 160
C, then a thermal shutdown is activated
that sets all power outputs in 3-state. The temperature hysteresis for the thermal
shutdown is 30
C. As soon as the thermal shutdown deactivates at 130
C, all motor
drivers continue normal operation. At the same time the thermal warning signal is
deactivated.
Fig 10. Voltage steering bridge topology of linear driver.
001aab246
47 k
47 k
47 k
47 k
47 k
47 k
188 k
188 k
R
R
LDO
-
LDO
+
V
DD(LD)
VINREF
VINLD
188 k
23.5 k
188 k
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
12 of 27
Philips Semiconductors
SA56203
One-chip motor driver
7.12 Oscillator
The RC oscillator uses two external components (R
REF
and C
OSC
) to fix its frequency at
18 MHz. R
REF
is used to generate a reference current. This reference current is used to
charge and discharge C
OSC
. The nominal oscillation frequency f
osc
is 18 MHz with
R
REF
= 47 k
(2 % tolerance) and C
OSC
= 70 pF (5 % tolerance). These values are fixed.
The oscillator can be overruled by applying an 18 MHz clock to pin COSC. The reference
current derived from R
REF
is also used for R
LIM
and R
EMF
. R
REF
should always be
connected.
7.13 Muting Functions
Pins CTL1 and CTL2 are used to mute certain parts of the IC; see
Table 3
.
[1]
Off equals 3-state.
8.
Internal circuitry
Table 3:
Muting functions
[1]
CTL1 CTL2 Loading
motor
Sled
motor
Focus
tilt
Tracking
Spindle
motor
Special
L
L
off
off
off
off
off
standby
L
H
on
off
off
off
off
FG and Hall bias on; pin
VLDTRK for loader motor
H
L
off
on
off
off
on
all actuators off; pin
VLDTRK for tracking
actuator
H
H
off
on
on
on
on
spindle, sled and all
actuators on
Table 4:
Internal circuitry
Symbol
Pin
Equivalent circuit
Hall amplifiers
HU+
1
HU
-
2
HV+
3
HV
-
4
HW+
5
HW
-
6
V
SSA
19
Hall bias
HBIAS
7
V
SSA
19
001aab696
2, 4, 6
1, 3, 5
19
001aab697
off when standby
(CTL1 and CTL2 = LOW)
7
19
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
13 of 27
Philips Semiconductors
SA56203
One-chip motor driver
Current reference
RREF
8
REMF
9
RLIM
10
V
SSA
19
V
DDA
22
Spindle motor driver
V
SS1(SPN)
11
U
12
V
DD1(SPN)
13
V
14
V
SS2(SPN)
15
W
16
V
DD2(SPN)
17
Frequency generator
FG
18
V
SSA
19
Spindle input
V
SSA
19
VINSPN
20
VINREF
21
Charge pump
V
DD1(SPN)
13
V
DD2(SPN)
17
V
SSA
19
CP1
23
CP2
24
CP3
25
Table 4:
Internal circuitry
Symbol
Pin
Equivalent circuit
8
9
10
001aab698
22
1.65 V
19
001aab699
13, 17
12
11, 15
14
16
001aab700
18
19
500 k
001aab701
21
20
19
001aab702
12 k
170 k
13, 17
23
25
19
24
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
14 of 27
Philips Semiconductors
SA56203
One-chip motor driver
Control
V
SSA
19
CTL1
26
CTL2
27
Temperature warning
V
SSA
19
TEMP
28
Sled inputs
V
SSA
19
VINREF
21
VINSLD1
29
VINSLD2
30
VLDTRK output
V
SSA
19
V
DDA
22
VLDTRK
31
Sled motor driver
V
SS(SLD)
32
SLDO2
-
33
SLDO2+
34
RSLD2
35
SLDO1
-
36
SLDO1+
37
RSLD1
38
Linear motor drivers
TLTO
-
40
TLTO+
41
FCSO
-
42
FCSO+
43
V
DD(ACT)
44
V
SS(ACT)
45
Table 4:
Internal circuitry
Symbol
Pin
Equivalent circuit
001aab703
26
27
19
to mute table
001aab704
28
temperature
above 150
C
19
47 k
47 k
001aab705
19
29, 30
21
150
001aab706
19
31
22
001aab707
35
33
32
34
001aab708
38
36
32
37
001aab709
44
40
45
41
001aab710
44
42
45
43
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
15 of 27
Philips Semiconductors
SA56203
One-chip motor driver
9.
Limiting values
V
SS(ACT)
45
TRKO
-
46
TRKO+
47
LDO
-
48
LDO+
49
V
DD(TRK)
50
V
DD(LD)
51
Linear inputs
V
SSA
19
VINREF
21
VINTLT
52
VINFCS
53
VINTRK
54
VINLD
55
Oscillator
V
SSA
19
V
DDA
22
COSC
56
Table 4:
Internal circuitry
Symbol
Pin
Equivalent circuit
001aab711
50
46
45
47
001aab712
51
48
45
49
47 k
47 k
001aab713
19
52, 53, 54, 55
21
001aab714
19
56
22
Table 5:
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
Min
Max
Unit
V
DD1(SPN)
,
V
DD2(SPN)
spindle driver supply
voltage
-
0.5
+16
V
V
DD(SLD)
sled driver sense supply
-
0.5
+16
V
V
DD(LD)
loading driver supply
voltage
-
0.5
+16
V
V
DD(TRK)
tracking driver supply
voltage
-
0.5
+16
V
V
DD(ACT)
focus/tilt drivers supply
voltage
-
0.5
+6.5
V
V
DDA
analog supply voltage
-
0.5
+6.5
V
T
stg
storage temperature
-
55
+150
C
T
amb
operating temperature
range
-
40
+85
C
T
j
junction temperature
-
40
+160
C
I
O(SPN)
spindle output current, pins
12, 14 and 16
-
2.1
A
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
16 of 27
Philips Semiconductors
SA56203
One-chip motor driver
10. Recommended operating conditions
I
O(SLD)
sled output current, pins
33, 34, 35, 36, 37 and 38
-
1.2
A
I
O(ACT)
loading/actuator drivers
output current, pins 40, 41,
42, 43, 46, 47, 48 and 49
-
2.0
A
I
Hall
Hall current on pins 1, 2, 3,
4, 5 and 6
-
1
+1
mA
I
HBIAS
Hall bias current on pin
HBIAS
-
1
+100
mA
I
RPROG
current on external resistor
pins 8, 9 and 10
-
1
+1
mA
I
O(n)
current on pins 18, 28 and
31
-
1
+10
mA
I
DIG
driver logic control current
on pins 26 and 27
-
1
+1
mA
I
CPUMP
charge pump current on
pins 23, 24 and 25
-
20
+20
mA
I
STEER
steering current on pins 20,
21, 29, 30, 52, 53, 54 and
55
-
1
+1
mA
I
COSC
current on pin COSC
-
20
+20
mA
V
esd
electrostatic discharge
voltage
pins 23, 40 to 44 and 51
human body model
-
1000
V
machine model
-
100
V
all other pins
human body model
-
2000
V
machine model
-
200
V
Table 5:
Limiting values
...continued
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
Min
Max
Unit
Table 6:
Recommended operating conditions
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
V
DD1(SPN)
,
V
DD2(SPN)
spindle driver supply
voltage
V
DD1(SPN)
=
V
DD2(SPN)
4.5
12
14
V
V
DDA
analog supply
voltage
4.5
5.0
5.5
V
V
DD(SLD)
sled driver sense
supply
4.5
12
14
V
V
DD(ACT)
focus/tilt drivers
supply voltage
4.5
5
5.5
V
V
DD(TRK)
tracking driver
supply voltage
4.5
12
14
V
V
DD(LD)
loading driver supply
voltage
4.5
12
14
V
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
17 of 27
Philips Semiconductors
SA56203
One-chip motor driver
11. Thermal characteristics
12. Characteristics
Table 7:
Thermal characteristics
Symbol
Parameter
Conditions
Typ
Unit
R
th(j-a)
thermal resistance from
junction to ambient
in free air; multilayer
printed-circuit board
33
K/W
Fig 11. Maximum dissipation as a function of ambient temperature.
001aaa428
T
amb
(
C)
0
150
100
50
2
1
3
4
P
D
(W)
0
Table 8:
Characteristics
V
DDA
= 5 V; V
DD1(SPN)
= V
DD2(SPN)
= 12 V; V
DD(SLD)
= 12 V; V
DD(TRK)
= 12 V; V
DD(ACT)
= 5 V; V
DD(LD)
= 12 V; T
amb
= 25
C; all
characteristics are specified for the default settings (see
Table 9
); all voltages are referenced to V
SS
; positive currents flow
into the device; unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Supplies: pins V
DD1(SPN)
, V
DD2(SPN)
, V
DDA
, V
DD(ACT)
, V
DD(SLD)
, V
DD(LD)
, V
DD(TRK)
and CP3
I
DD(SPN)
spindle driver supply current
I
DD1(SPN)
+ I
DD2(SPN)
2
3
5
mA
I
DDA
analog supply current
14
16
18
mA
I
DD(SLD)
sled driver supply current
-
1
1.5
mA
I
DD(ACT)
focus/tilt drivers supply
current
-
19
26
mA
I
DD(TRK)
tracking driver supply current
2
4
6
mA
I
DD(LD)
loading driver supply current
CTL2 = H
2
4
6
mA
I
stb(tot)
total standby current
CTL1 = CTL2 = L
-
6
9
mA
V
CP3
charge pump output voltage
-
18.7
-
V
V
DDA(POR)
power-on reset voltage on
V
DDA
-
3.5
-
V
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
18 of 27
Philips Semiconductors
SA56203
One-chip motor driver
Spindle motor driver: pins HU+, HV+, HW+ HU
-
, HV
-
, HW
-
, HBIAS, RREF, REMF, RLIM, U, V, W FG, VINSPN, VINREF
and COSC
V
IO
input offset voltage Hall
amplifier
V
HU
-
= V
HV
-
= V
HW
-
= 1.65 V
[1]
-
3.5
-
+3.5
mV
V
i
input voltage range Hall
amplifier
0
-
V
DDA
V
V
HBIAS
voltage on pin HBIAS
I
HBIAS
= 32 mA
-
0.6
-
V
f
osc
oscillator frequency on pin
COSC
-
18
-
MHz
f
PWM
PWM frequency on pins U, V
and W
-
70
-
kHz
R
ds(on)
D-MOSFET on-resistance
(high or low)
I = 100 mA
-
0.35
-
V
VINREF
input voltage range on
reference pin VINREF
1.2
1.65
2.5
V
V
VINSPN
input voltage range on torque
control pin VINSPN
0
-
V
DDA
V
I
U
, I
V
, I
W
spindle motor current limit
see
Figure 3
[2]
R
switches
+ R
motor
= 2
;
V
VINSPN
= 0 V and 3.3 V
-
2.55
-
A
g
m(SPN)
transconductance gain
spindle
see
Figure 3
[3]
R
switches
+ R
motor
= 2
;
V
VINSPN
= 0 V and 3.3 V
-
1.55
-
A/V
Sled motor driver: pins RSLD1, SLDO1+, SLDO1
-
, RSLD2, SLDO2+, SLDO2
-
, VINSLD2 and VINSLD1
I
SLDO
motor current limit
R
sense
= 0.5
; V
VINSLD
= 0 V
and 3.3 V
-
1.0
-
A
f
PWM
PWM frequency on pins
SLDO1+, SLDO1
-
, SLDO2+
and SLDO2
-
-
70
-
kHz
V
i(trip)
input dead zone trip level
[4]
15
30
45
mV
g
m
transconductance gain
[4] [5]
0.60
0.75
0.90
A/V
R
ds(on)
D-MOSFET on-resistance
(high or low)
I = 100 mA; V
VINSLD
= 0 V and
3.3 V
-
1.0
-
Loading motor driver: pins VINLD, LDO+ and LDO
-
I
LDO
current limit (high or low)
CTL1 = L; R
L
= 4
;
V
VINLD
= 0 V and 3.3 V
0.85
1.0
1.5
A
V
OO
output offset voltage
CTL1 = L; no load
-
100
0
+100
mV
G
V
voltage gain
CTL1 = L; no load
[6]
17.2
18.0
18.8
dB
R
ds(on)
D-MOSFET on-resistance
(high or low)
CTL1 = L; I = 100 mA;
V
VINLD
= 0 V and 3.3 V
-
0.7
1.0
Table 8:
Characteristics
...continued
V
DDA
= 5 V; V
DD1(SPN)
= V
DD2(SPN)
= 12 V; V
DD(SLD)
= 12 V; V
DD(TRK)
= 12 V; V
DD(ACT)
= 5 V; V
DD(LD)
= 12 V; T
amb
= 25
C; all
characteristics are specified for the default settings (see
Table 9
); all voltages are referenced to V
SS
; positive currents flow
into the device; unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
19 of 27
Philips Semiconductors
SA56203
One-chip motor driver
Tracking actuator driver: pins VINTRK, TRKO+ and TRKO
-
I
TRKO
current limit
R
L
= 4
; V
VINTRK
= 0 V and
3.3 V
1.0
1.5
2.0
A
V
OO
output offset voltage
no load
-
70
0
+70
mV
G
V
voltage gain tracking driver
[7]
17.2
18.0
18.8
dB
R
ds(on)
D-MOSFET on-resistance
(high or low)
I = 100 mA; V
VINTRK
= 0 V or
3.3 V
-
0.7
1.0
Focus and tilt actuator drivers: pins VINFCS, VINTLT, FCSO+, FCSO
-
, TLTO+ and TLTO
-
I
FCSO
, I
TLTO
current limit
R
L
= 4
;
V
VINFCS
= 0 V or 3.3 V;
V
VINTLT
= 0 V or 3.3 V
1.0
1.5
2.0
A
V
OO
output offset voltage
no load
-
55
0
+55
mV
G
V
voltage gain focus/tilt drivers
[7]
11.2
12
12.8
dB
G
v(m)
gain mismatch between focus
and tilt drivers
[8]
0
-
5
%
R
ds(on)
MOSFET on-resistance (high
or low)
I = 100 mA;
V
VINFCS
= 0 V or 3.3 V;
V
VINTLT
= 0 V or 3.3 V
-
0.6
0.9
Voltage output loader/tracking actuator: pin VLDTRK
G
R
transresistance gain of
current loading motor
CTL1 = L; I
LDO
= 250 mA;
R
L
= 4
1.3
1.5
1.7
V/A
V
OO
output offset transresistance
amplifier
CTL1 = L; no load
-
100
0
+100
mV
G
V
voltage gain of back EMF
voltage tracking actuator
CTL2 = L
[9]
29.2
30.0
30.8
dB
V
OO
output offset back EMF
amplifier
CTL2 = L; R
L
= 4
-
250
0
+250
mV
V
O(CM)
common mode output voltage
-
V
VINREF
-
V
R
VLDTRK
output resistance
I = 0.1 mA
-
150
-
I
O(source/sink)
source and sink current drive
capability
-
-
0.3
mA
Digital inputs and outputs
Inputs: pins CTL1 and CTL2
V
IH
HIGH-level input voltage
2.0
-
-
V
V
IL
LOW-level input voltage
-
-
0.8
V
Outputs: pins FG and TEMP
V
OL
LOW-level output voltage
I = 2 mA
-
-
0.5
V
Table 8:
Characteristics
...continued
V
DDA
= 5 V; V
DD1(SPN)
= V
DD2(SPN)
= 12 V; V
DD(SLD)
= 12 V; V
DD(TRK)
= 12 V; V
DD(ACT)
= 5 V; V
DD(LD)
= 12 V; T
amb
= 25
C; all
characteristics are specified for the default settings (see
Table 9
); all voltages are referenced to V
SS
; positive currents flow
into the device; unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
20 of 27
Philips Semiconductors
SA56203
One-chip motor driver
[1]
The recommended minimum Hall amplifier differential input voltage is 25 mV peak-to-peak value.
[2]
The motor current limit of the spindle is tested by applying VINSPN = 0 V and 3.3 V, measuring the duty-cycles on the U, V and W
spindle driver outputs and calculating the corresponding motor currents with the applied 12 V supply voltage and the 2
motor and
switches resistance.
[3]
The transconductance gain of the spindle is tested by applying VINSPN = 0 V and 3.3 V and calculating the corresponding motor
currents (see
Table note 2
) and determining the slope (see
Figure 3
).
[4]
The sled motor is tested loaded with R
L
= 4
in series with L
L
= 1 mH.
[5]
The transconductance gain of the sled motor driver is tested as:
g
m
= {(I
SLDO
-
at V
VINSLD
= 1.85 V)
-
(I
SLDO
-
at V
VINSLD
= 1.45 V)}/0.4 V.
[6]
The voltage gain of the loading motor driver is tested as:
G
V
= {(V
LDO+
-
V
LDO
-
at V
VINLD
= 2.4 V)
-
(V
LDO+
-
V
LDO
-
at V
VINLD
= 0.9 V)}/1.5 V.
[7]
The voltage gain of the actuator driver is tested as:
G
V
= {(V
ACTO+
-
V
ACTO
-
at V
VINACT
= 2.4 V)
-
(V
ACTO+
-
V
ACTO
-
at V
VINACT
= 0.9 V)}/1.5 V.
[8]
The gain mismatch is related to the absolute gain; an absolute gain of 8 (18 dB) corresponds with a maximum mismatch of 0.4 (5 %)
and an absolute gain of 4 (12 dB) corresponds with a maximum mismatch of 0.2 (5%).
[9]
The voltage gain of the back EMF voltage tracking actuator is tested as:
G
V
= {(V
VLDTRK
at V
TRKO+
= 1.03 V and V
TRKO
-
= 1.00 V)
-
(V
VLDTRK
at V
TRKO+
= 1.00 V and V
TRKO
-
= 1.03 V)}/0.06 V.
Temperature protection: pin TEMP
T
TEMP
thermal warning temperature
-
150
-
C
T
hys(TEMP)
thermal warning hysteresis
-
20
-
C
T
SD
thermal shutdown
temperature
-
160
-
C
T
hys(SD)
thermal shutdown hysteresis
-
30
-
C
Table 8:
Characteristics
...continued
V
DDA
= 5 V; V
DD1(SPN)
= V
DD2(SPN)
= 12 V; V
DD(SLD)
= 12 V; V
DD(TRK)
= 12 V; V
DD(ACT)
= 5 V; V
DD(LD)
= 12 V; T
amb
= 25
C; all
characteristics are specified for the default settings (see
Table 9
); all voltages are referenced to V
SS
; positive currents flow
into the device; unless otherwise specified.
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Table 9:
Default settings
Pin
Default setting
HU+, HV+
5 V
HW+
ground
HU
-
, HV
-
, HW
-
1.650 V
HBIAS
open-circuit
RREF
47 k
to V
SS
, fixed value, should not be changed
REMF
12 k
to V
SS
RLIM
20 k
to V
SS
V
SS1(SPN)
, V
SS2(SPN)
ground
U, V, W
open-circuit
V
DD1(SPN)
, V
DD2(SPN)
12 V supply
FG
open-circuit
V
SSA
ground
VINSPN, VINREF
1.65 V
V
DDA
5 V supply
CP1, CP2
10 nF between CP1 and CP2
CP3
22 nF to ground
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
21 of 27
Philips Semiconductors
SA56203
One-chip motor driver
CTL1, CTL2
logic HIGH input; 5 V
TEMP
open-circuit
COSC
70 pF to ground, fixed value, should not be changed
VINLD, VINTRK, VINFCS, VINTLT
1.65 V
V
DD(LD)
, V
DD(TRK)
12 V supply
LDO+, LDO
-
, TRKO+, TRKO
-
open-circuit
V
SS(ACT)
ground
V
DD(ACT)
5 V supply
FCSO+, FCSO-, TLTO+, TLTO-
open-circuit
V
DD(SLD)
12 V supply
RSLD1
0.5
sense resistor to V
DD(SLD)
SLDO1+, SLDO1
-
open-circuit
RSLD2
0.5
sense resistor to V
DD(SLD)
SLDO2+, SLDO2
-
open-circuit
V
SS(SLD)
ground
VLDTRK
open-circuit
VINSLD2, VINSLD1
1.65 V
Table 9:
Default settings
...continued
Pin
Default setting
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
22 of 27
Philips Semiconductors
SA56203
One-chip motor driver
13. Package outline
Fig 12. Package outline SOT793-1 (HTSSOP56).
UNIT
A
max.
A
1
A
2
A
3
b
p
c
e
H
E
L
L
p
y
w
v
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC
JEDEC
JEITA
mm
1.2
0.15
0.05
1.05
0.80
0.25
0.27
0.17
0.20
0.09
4.3
4.1
0.5
8.3
7.9
0.4
0.1
8
0
o
o
0.08
0.1
0.2
1
DIMENSIONS (mm are the original dimensions)
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.8
0.4
SOT793-1
143E36T
MO-153
03-03-04
D
(1)
14.1
13.9
E
(2)
6.2
6.0
E
h
D
h
Z
(1)
4.3
4.1
v
M
A
Eh
Dh
HE
D
E
c
X
A
Lp
detail X
L
(A3)
A2
A1
y
exposed die pad
pin 1 index
bp
w
M
HTSSOP56: plastic thermal enhanced thin shrink small outline package; 56 leads;
body width 6.1 mm; exposed die pad
SOT793-1
e
A
Z
1
56
28
29
0
2.5
5 mm
scale
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
23 of 27
Philips Semiconductors
SA56203
One-chip motor driver
14. Soldering
14.1 Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology. A more in-depth account of
soldering ICs can be found in our
Data Handbook IC26; Integrated Circuit Packages
(document order number 9398 652 90011).
There is no soldering method that is ideal for all surface mount IC packages. Wave
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch
SMDs. In these situations reflow soldering is recommended.
14.2 Reflow soldering
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement. Driven by legislation and
environmental forces the worldwide use of lead-free solder pastes is increasing.
Several methods exist for reflowing; for example, convection or convection/infrared
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)
vary between 100 seconds and 200 seconds depending on heating method.
Typical reflow peak temperatures range from 215
C to 270
C depending on solder paste
material. The top-surface temperature of the packages should preferably be kept:
below 225
C (SnPb process) or below 245
C (Pb-free process)
for all BGA, HTSSON..T and SSOP..T packages
for packages with a thickness
2.5 mm
for packages with a thickness < 2.5 mm and a volume
350 mm
3
so called
thick/large packages.
below 240
C (SnPb process) or below 260
C (Pb-free process) for packages with a
thickness < 2.5 mm and a volume < 350 mm
3
so called small/thin packages.
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.
14.3 Wave soldering
Conventional single wave soldering is not recommended for surface mount devices
(SMDs) or printed-circuit boards with a high component density, as solder bridging and
non-wetting can present major problems.
To overcome these problems the double-wave soldering method was specifically
developed.
If wave soldering is used the following conditions must be observed for optimal results:
Use a double-wave soldering method comprising a turbulent wave with high upward
pressure followed by a smooth laminar wave.
For packages with leads on two sides and a pitch (e):
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be
parallel to the transport direction of the printed-circuit board;
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
24 of 27
Philips Semiconductors
SA56203
One-chip motor driver
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the
transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
For packages with leads on four sides, the footprint must be placed at a 45
angle to
the transport direction of the printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
During placement and before soldering, the package must be fixed with a droplet of
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the adhesive is cured.
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250
C
or 265
C, depending on solder material applied, SnPb or Pb-free respectively.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most
applications.
14.4 Manual soldering
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be
limited to 10 seconds at up to 300
C.
When using a dedicated tool, all other leads can be soldered in one operation within
2 seconds to 5 seconds between 270
C and 320
C.
14.5 Package related soldering information
[1]
For more detailed information on the BGA packages refer to the
(LF)BGA Application Note (AN01026);
order a copy from your Philips Semiconductors sales office.
[2]
All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn
effect). For details, refer to the Drypack information in the
Data Handbook IC26; Integrated Circuit
Packages; Section: Packing Methods.
[3]
These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with
peak temperature exceeding 217
C
10
C measured in the atmosphere of the reflow oven. The package
body peak temperature must be kept as low as possible.
Table 10:
Suitability of surface mount IC packages for wave and reflow soldering methods
Package
[1]
Soldering method
Wave
Reflow
[2]
BGA, HTSSON..T
[3]
, LBGA, LFBGA, SQFP,
SSOP..T
[3]
, TFBGA, VFBGA, XSON
not suitable
suitable
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,
HVSON, SMS
not suitable
[4]
suitable
PLCC
[5]
, SO, SOJ
suitable
suitable
LQFP, QFP, TQFP
not recommended
[5] [6]
suitable
SSOP, TSSOP, VSO, VSSOP
not recommended
[7]
suitable
CWQCCN..L
[8]
, PMFP
[9]
, WQCCN..L
[8]
not suitable
not suitable
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
25 of 27
Philips Semiconductors
SA56203
One-chip motor driver
[4]
These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink
on the top side, the solder might be deposited on the heatsink surface.
[5]
If wave soldering is considered, then the package must be placed at a 45
angle to the solder wave
direction. The package footprint must incorporate solder thieves downstream and at the side corners.
[6]
Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
[7]
Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
[8]
Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by
using a hot bar soldering process. The appropriate soldering profile can be provided on request.
[9]
Hot bar soldering or manual soldering is suitable for PMFP packages.
15. Revision history
Table 11:
Revision history
Document ID
Release date
Data sheet status
Change notice
Order number
Supersedes
SA56203_1
20040930
Preliminary data sheet
-
9397 750 13365
-
Philips Semiconductors
SA56203
One-chip motor driver
9397 750 13365
Koninklijke Philips Electronics N.V. 2004. All rights reserved.
Preliminary data sheet
Rev. 01 -- 30 September 2004
26 of 27
16. Data sheet status
[1]
Please consult the most recently issued data sheet before initiating or completing a design.
[2]
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at
URL http://www.semiconductors.philips.com.
[3]
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
17. Definitions
Short-form specification -- The data in a short-form specification is
extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.
Limiting values definition -- Limiting values given are in accordance with
the Absolute Maximum Rating System (IEC 60134). Stress above one or
more of the limiting values may cause permanent damage to the device.
These are stress ratings only and operation of the device at these or at any
other conditions above those given in the Characteristics sections of the
specification is not implied. Exposure to limiting values for extended periods
may affect device reliability.
Application information -- Applications that are described herein for any
of these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.
18. Disclaimers
Life support -- These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Right to make changes -- Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status `Production'),
relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no
license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are
free from patent, copyright, or mask work right infringement, unless otherwise
specified.
19. Contact information
For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com
Level
Data sheet status
[1]
Product status
[2] [3]
Definition
I
Objective data
Development
This data sheet contains data from the objective specification for product development. Philips
Semiconductors reserves the right to change the specification in any manner without notice.
II
Preliminary data
Qualification
This data sheet contains data from the preliminary specification. Supplementary data will be published
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in
order to improve the design and supply the best possible product.
III
Product data
Production
This data sheet contains data from the product specification. Philips Semiconductors reserves the
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant
changes will be communicated via a Customer Product/Process Change Notification (CPCN).
Koninklijke Philips Electronics N.V. 2004
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner. The information presented in this document does
not form part of any quotation or contract, is believed to be accurate and reliable and may
be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under
patent- or other industrial or intellectual property rights.
Date of release: 30 September 2004
Document number: 9397 750 13365
Published in The Netherlands
Philips Semiconductors
SA56203
One-chip motor driver
20. Contents
1
General description . . . . . . . . . . . . . . . . . . . . . . 1
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4
Ordering information . . . . . . . . . . . . . . . . . . . . . 2
5
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6
Pinning information . . . . . . . . . . . . . . . . . . . . . . 4
6.1
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
6.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
7
Functional description . . . . . . . . . . . . . . . . . . . 6
7.1
Spindle motor control . . . . . . . . . . . . . . . . . . . . 6
7.2
Spindle brake . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.3
Internal regeneration of back EMF spindle
motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.4
Programming R
LIM
. . . . . . . . . . . . . . . . . . . . . . 8
7.5
Programming R
EMF
. . . . . . . . . . . . . . . . . . . . . . 9
7.6
Frequency Generator (FG) . . . . . . . . . . . . . . . . 9
7.7
Sled motor driver . . . . . . . . . . . . . . . . . . . . . . . 9
7.8
Loading motor driver. . . . . . . . . . . . . . . . . . . . 11
7.9
Actuator motor drivers . . . . . . . . . . . . . . . . . . 11
7.10
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.11
Thermal protection . . . . . . . . . . . . . . . . . . . . . 11
7.12
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.13
Muting Functions . . . . . . . . . . . . . . . . . . . . . . 12
8
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 12
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 15
10
Recommended operating conditions. . . . . . . 16
11
Thermal characteristics. . . . . . . . . . . . . . . . . . 17
12
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 17
13
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 22
14
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
14.1
Introduction to soldering surface mount
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
14.2
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 23
14.3
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 23
14.4
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 24
14.5
Package related soldering information . . . . . . 24
15
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 25
16
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 26
17
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
18
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
19
Contact information . . . . . . . . . . . . . . . . . . . . 26