ChipFind - документация

Электронный компонент: 24C02C-ST

Скачать:  PDF   ZIP

Document Outline

1997 Microchip Technology Inc.
Preliminary
DS21202A-page 1
M
24C02C
FEATURES
Single supply with operation from 4.5 to 5.5V
Low power CMOS technology
- 1 mA active current typical
- 10
A standby current typical at 5.5V
Organized as a single block of 256 bytes (256 x 8)
Hardware write protection for upper half of array
2-wire serial interface bus, I
2
C compatible
100 kHz and 400 kHz compatibility
Page-write buffer for up to 16 bytes
Self-timed write cycle (including auto-erase)
Fast 1 mS write cycle time for byte or page mode
Address lines allow up to eight devices on bus
1,000,000 erase/write cycles guaranteed
ESD protection > 4,000V
Data retention > 200 years
8-pin PDIP, SOIC or TSSOP packages
Available for extended temperature ranges
DESCRIPTION
The Microchip Technology Inc. 24C02C is a 2K bit
Serial Electrically Erasable PROM with a voltage range
of 4.5V to 5.5V. The device is organized as a single
block of 256 x 8-bit memory with a 2-wire serial inter-
face. Low current design permits operation with typical
standby and active currents of only 10
A and 1 mA
respectively. The device has a page-write capability for
up to 16 bytes of data and has fast write cycle times of
only 1 mS for both byte and page writes. Functional
address lines allow the connection of up to eight
24C02C devices on the same bus for up to 16K bits of
contiguous EEPROM memory. The device is available
in the standard 8-pin PDIP, 8-pin SOIC (150 mil), and
TSSOP packages.
PACKAGE TYPES
BLOCK DIAGRAM
- Commercial (C):
0
C to
+70
C
- Industrial (I):
-40
C to
+85
C
- Automotive (E):
-40
C to +125
C
PDIP/SOIC
TSSOP
A0
A1
A2
Vss
Vcc
WP
SCL
SDA
24C02C
24C02C
1
2
3
4
8
7
6
5
A0
A1
A2
V
SS
V
CC
WP
SCL
SDA
1
2
3
4
8
7
6
5
I/O
Control
Logic
Memory
Control
Logic
XDEC
HV Generator
EEPROM
Array
Write Protect
Circuitry
YDEC
Vcc
Vss
SENSE AMP
R/W CONTROL
SDA SCL
A0 A1 A2
WP
2K 5.0V I
2
C
TM
Serial EEPROM
I
2
C is a trademark of Philips Corporation.
24C02C
DS21202A-page 2
Preliminary
1997 Microchip Technology Inc.
1.0
ELECTRICAL
CHARACTERISTICS
1.1
Maximum Ratings*
V
CC
........................................................................ 7.0V
All inputs and outputs w.r.t. V
SS
...... -0.6V to V
CC
+1.0V
Storage temperature ...........................-65C to +150C
Ambient temp. with power applied.......-65C to +125C
Soldering temperature of leads (10 seconds) ...+300C
ESD protection on all pins
......................................
4 kV
*Notice:
Stresses above those listed under "Maximum ratings" may
cause permanent damage to the device. This is a stress rating only and
functional operation of the device at those or any other conditions
above those indicated in the operational listings of this specification is
not implied. Exposure to maximum rating conditions for extended peri-
ods may affect device reliability.
TABLE 1-1:
PIN FUNCTION TABLE
Name
Function
V
SS
SDA
SCL
V
CC
A0, A1, A2
WP
Ground
Serial Data
Serial Clock
+4.5V to 5.5V Power Supply
Chip Selects
Hardware Write Protect
TABLE 1-2:
DC CHARACTERISTICS
All parameters apply across the speci-
fied operating ranges unless otherwise
noted.
V
CC
= +4.5V to +5.5V
Commercial (C):
Tamb = 0
C to +70
C
Industrial (I):
Tamb = -40
C to +85
C
Automotive (E):
Tamb = -40
C to +125
C
Parameter
Symbol
Min.
Max.
Units
Conditions
SCL and SDA pins:
High level input voltage
V
IH
0.7 V
CC
--
V
Low level input voltage
V
IL
--
0.3 V
CC
V
Hysteresis of Schmitt trigger inputs
V
HYS
0.05 V
CC
--
V
(Note)
Low level output voltage
V
OL
--
0.40
V
I
OL
= 3.0 mA, Vcc = 4.5V
Input leakage current
I
LI
-10
10
A
V
IN
= 0.1V to 5.5V, WP = Vss
Output leakage current
I
LO
-10
10
A
V
OUT
= 0.1V to 5.5V
Pin capacitance (all inputs/outputs)
C
IN
, C
OUT
--
10
pF
V
CC
= 5.0V (Note)
Tamb = 25
C, f = 1 MHz
Operating current
I
CC
Read
--
1
mA
V
CC
= 5.5V, SCL = 400 kHz
I
CC
Write
--
3
mA
V
CC
= 5.5V
Standby current
I
CCS
--
50
A
V
CC
= 5.5V, SDA = SCL = V
CC
Note
: This parameter is periodically sampled and not 100% tested.
24C02C
1997 Microchip Technology Inc.
Preliminary
DS21202A-page 3
TABLE 1-3:
AC CHARACTERISTICS
FIGURE 1-1:
BUS TIMING DATA
All parameters apply across the specified oper-
ating ranges unless otherwise noted.
Vcc = 4.5V to 5.5V
Commercial (C):
Tamb = 0
C to +70
C
Industrial (I):
Tamb = -40
C to +85
C
Automotive (E):
Tamb = -40
C to +125
C
Parameter
Symbol
Tamb
>
+85
C
-40
C
Tamb
+85
C
Units
Remarks
Min.
Max.
Min.
Max.
Clock frequency
F
CLK
--
100
--
400
kHz
Clock high time
T
HIGH
4000
--
600
--
ns
Clock low time
T
LOW
4700
--
1300
--
ns
SDA and SCL rise time
T
R
--
1000
--
300
ns
(Note 1)
SDA and SCL fall time
T
F
--
300
--
300
ns
(Note 1)
START condition hold time
T
HD
:
STA
4000
--
600
--
ns
After this period the first
clock pulse is generated
START condition setup time
T
SU
:
STA
4700
--
600
--
ns
Only relevant for repeated
START condition
Data input hold time
T
HD
:
DAT
0
--
0
--
ns
(Note 2)
Data input setup time
T
SU
:
DAT
250
--
100
--
ns
STOP condition setup time
T
SU
:
STO
4000
--
600
--
ns
Output valid from clock
T
AA
--
3500
--
900
ns
(Note 2)
Bus free time
T
BUF
4700
--
1300
--
ns
Time the bus must be free
before a new transmission
can start
Output fall time from V
IH
minimum to V
IL
maximum
T
OF
--
250
20 + 0.1 C
B
250
ns
(Note 1), C
B
100 pF
Input filter spike suppression
(SDA and SCL pins)
T
SP
--
50
--
50
ns
(Note 3)
Write cycle time
T
WR
--
1.5
--
1
ms
Byte or Page mode
Endurance
1M
--
1M
--
cycles 25
C, V
CC
= 5.0V, Block
Mode (Note 4)
Note 1:
Not 100% tested. C
B
= total capacitance of one bus line in pF.
2:
As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.
3:
The combined T
SP
and V
HYS
specifications are due to Schmitt trigger inputs which provide improved noise
spike suppression. This eliminates the need for a TI specification for standard operation.
4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific appli-
cation, please consult the Total Endurance Model which can be obtained on our BBS or website.
SCL
SDA
IN
T
SU
:
STA
SDA
OUT
T
HD
:
STA
T
LOW
T
HIGH
T
R
T
BUF
T
AA
T
HD
:
DAT
T
SU
:
DAT
T
SU
:
STO
T
SP
T
F
24C02C
DS21202A-page 4
Preliminary
1997 Microchip Technology Inc.
2.0
PIN DESCRIPTIONS
2.1
SDA Serial Data
This is a bi-directional pin used to transfer addresses
and data into and data out of the device. It is an open
drain terminal, therefore the SDA bus requires a pull-up
resistor to V
CC
(typical 10 k
for 100 kHz, 2 k
for
400 kHz).
For normal data transfer SDA is allowed to change only
during SCL low. Changes during SCL high are reserved
for indicating the START and STOP conditions.
2.2
SCL Serial Clock
This input is used to synchronize the data transfer from
and to the device.
2.3
A0, A1, A2
The levels on these inputs are compared with the cor-
responding bits in the slave address. The chip is
selected if the compare is true.
Up to eight 24C02C devices may be connected to the
same bus by using different chip select bit combina-
tions. These inputs must be connected to either V
CC
or
V
SS
.
2.4
WP
This is the hardware write protect pin. It must be tied to
V
CC
or V
SS
. If tied to Vcc, the hardware write protection
is enabled. If the WP pin is tied to Vss the hardware
write protection is disabled.
2.5
Noise Protection
The 24C02C employs a V
CC
threshold detector circuit
which disables the internal erase/write logic if the V
CC
is below 3.8 volts at nominal conditions.
The SCL and SDA inputs have Schmitt trigger and filter
circuits which suppress noise spikes to assure proper
device operation even on a noisy bus.
3.0
FUNCTIONAL DESCRIPTION
The 24C02C supports a bi-directional 2-wire bus and
data transmission protocol. A device that sends data
onto the bus is defined as transmitter, and a device
receiving data as receiver. The bus has to be controlled
by a master device which generates the serial clock
(SCL), controls the bus access, and generates the
START and STOP conditions, while the 24C02C works
as slave. Both master and slave can operate as trans-
mitter or receiver but the master device determines
which mode is activated.
24C02C
1997 Microchip Technology Inc.
Preliminary
DS21202A-page 5
4.0
BUS CHARACTERISTICS
The following bus protocol has been defined:
Data transfer may be initiated only when the bus is
not busy.
During data transfer, the data line must remain
stable whenever the clock line is HIGH. Changes
in the data line while the clock line is HIGH will be
interpreted as a START or STOP condition.
Accordingly, the following bus conditions have been
defined (Figure 4-1).
4.1
Bus not Busy (A)
Both data and clock lines remain HIGH.
4.2
Start Data Transfer (B)
A HIGH to LOW transition of the SDA line while the
clock (SCL) is HIGH determines a START condition. All
commands must be preceded by a START condition.
4.3
Stop Data Transfer (C)
A LOW to HIGH transition of the SDA line while the
clock (SCL) is HIGH determines a STOP condition. All
operations must be ended with a STOP condition.
4.4
Data Valid (D)
The state of the data line represents valid data when,
after a START condition, the data line is stable for the
duration of the HIGH period of the clock signal.
The data on the line must be changed during the LOW
period of the clock signal. There is one bit of data per
clock pulse.
Each data transfer is initiated with a START condition
and terminated with a STOP condition. The number of
the data bytes transferred between the START and
STOP conditions is determined by the master device
and is theoretically unlimited, although only the last six-
teen will be stored when doing a write operation. When
an overwrite does occur it will replace data in a first in
first out fashion.
4.5
Acknowledge
Each receiving device, when addressed, is required to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this acknowledge bit.
The device that acknowledges has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable LOW during the HIGH
period of the acknowledge related clock pulse. Of
course, setup and hold times must be taken into
account. A master must signal an end of data to the
slave by not generating an acknowledge bit on the last
byte that has been clocked out of the slave. In this case,
the slave must leave the data line HIGH to enable the
master to generate the STOP condition (Figure 4-2).
FIGURE 4-1:
DATA TRANSFER SEQUENCE ON THE SERIAL BUS CHARACTERISTICS
FIGURE 4-2:
ACKNOWLEDGE TIMING
Note:
The 24C02C does not generate any
acknowledge bits if an internal program-
ming cycle is in progress.
(A)
(B)
(C)
(D)
(A)
(C)
SCL
SDA
START
CONDITION
ADDRESS OR
ACKNOWLEDGE
VALID
DATA
ALLOWED
TO CHANGE
STOP
CONDITION
SCL
9
8
7
6
5
4
3
2
1
1
2
3
Transmitter must release the SDA line at this point
allowing the Receiver to pull the SDA line low to
acknowledge the previous eight bits of data.
Receiver must release the SDA line at this point
so the Transmitter can continue sending data.
Data from transmitter
Data from transmitter
SDA
Acknowledge
Bit
24C02C
DS21202A-page 6
Preliminary
1997 Microchip Technology Inc.
5.0
DEVICE ADDRESSING
A control byte is the first byte received following the
start condition from the master device (Figure 5-1). The
control byte consists of a four bit control code; for the
24C02C this is set as 1010 binary for read and write
operations. The next three bits of the control byte are
the chip select bits (A2, A1, A0). The chip select bits
allow the use of up to eight 24C02C devices on the
same bus and are used to select which device is
accessed. The chip select bits in the control byte must
correspond to the logic levels on the corresponding A2,
A1, and A0 pins for the device to respond. These bits
are in effect the three most significant bits of the word
address.
The last bit of the control byte defines the operation to
be performed. When set to a one a read operation is
selected, and when set to a zero a write operation is
selected. Following the start condition, the 24C02C
monitors the SDA bus checking the control byte being
transmitted. Upon receiving a 1010 code and appropri-
ate chip select bits, the slave device outputs an
acknowledge signal on the SDA line. Depending on the
state of the R/W bit, the 24C02C will select a read or
write operation.
FIGURE 5-1:
CONTROL BYTE FORMAT
5.1
Contiguous Addressing Across
Multiple Devices
The chip select bits A2, A1, A0 can be used to expand
the contiguous address space for up to 16K bits by add-
ing up to eight 24C02C devices on the same bus. In this
case, software can use A0 of the control byte as
address bit A8, A1 as address bit A9, and A2 as
address bit A10. It is not possible to write or read across
device boundaries.
1
0
1
0
A2
A1
A0
S
ACK
R/W
Control Code
Chip Select
Bits
Slave Address
Acknowledge Bit
Start Bit
Read/Write Bit
24C02C
1997 Microchip Technology Inc.
Preliminary
DS21202A-page 7
6.0
WRITE OPERATIONS
6.1
Byte Write
Following the start signal from the master, the device
code(4 bits), the chip select bits (3 bits), and the R/W
bit which is a logic low is placed onto the bus by the
master transmitter. The device will acknowledge this
control byte during the ninth clock pulse. The next byte
transmitted by the master is the word address and will
be written into the address pointer of the 24C02C. After
receiving another acknowledge signal from the
24C02C the master device will transmit the data word
to be written into the addressed memory location. The
24C02C acknowledges again and the master gener-
ates a stop condition. This initiates the internal write
cycle, and during this time the 24C02C will not generate
acknowledge signals (Figure 6-1). If an attempt is made
to write to the protected portion of the array when the
hardware write protection has been enabled, the device
will acknowledge the command but no data will be writ-
ten. The write cycle time must be observed even if the
write protection is enabled.
6.2
Page Write
The write control byte, word address and the first data
byte are transmitted to the 24C02C in the same way as
in a byte write. But instead of generating a stop condi-
tion, the master transmits up to 15 additional data bytes
to the 24C02C which are temporarily stored in the on-
chip page buffer and will be written into the memory
after the master has transmitted a stop condition. After
the receipt of each word, the four lower order address
pointer bits are internally incremented by one. The
higher order four bits of the word address remains con-
stant. If the master should transmit more than 16 bytes
prior to generating the stop condition, the address
counter will roll over and the previously received data
will be overwritten. As with the byte write operation,
once the stop condition is received an internal write
cycle will begin (Figure 6-2). If an attempt is made to
write to the protected portion of the array when the
hardware write protection has been enabled, the device
will acknowledge the command but no data will be writ-
ten. The write cycle time must be observed even if the
write protection is enabled.
6.3
WRITE PROTECTION
The WP pin must be tied to V
CC
or V
SS
. If tied to V
CC
,
the upper half of the array (080-0FF) will be write pro-
tected. If the WP pin is tied to V
SS
, then write operations
to all address locations are allowed.
FIGURE 6-1:
BYTE WRITE
FIGURE 6-2:
PAGE WRITE
S
P
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
S
T
A
R
T
S
T
O
P
CONTROL
BYTE
WORD
ADDRESS
DATA
A
C
K
A
C
K
A
C
K
S
P
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
S
T
A
R
T
CONTROL
BYTE
WORD
ADDRESS (n)
DATA n
DATA n + 15
S
T
O
P
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
DATA n +1
24C02C
DS21202A-page 8
Preliminary
1997 Microchip Technology Inc.
7.0
ACKNOWLEDGE POLLING
Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the stop condition for a write com-
mand has been issued from the master, the device ini-
tiates the internally timed write cycle. ACK polling can
be initiated immediately. This involves the master send-
ing a start condition followed by the control byte for a
write command (R/W = 0). If the device is still busy with
the write cycle, then no ACK will be returned. If no ACK
is returned, then the start bit and control byte must be
re-sent. If the cycle is complete, then the device will
return the ACK and the master can then proceed with
the next read or write command. See Figure 7-1 for flow
diagram.
FIGURE 7-1:
ACKNOWLEDGE POLLING
FLOW
Send
Write Command
Send Stop
Condition to
Initiate Write Cycle
Send Start
Send Control Byte
with R/W = 0
Did Device
Acknowledge
(ACK = 0)?
Next
Operation
NO
YES
24C02C
1997 Microchip Technology Inc.
Preliminary
DS21202A-page 9
8.0
READ OPERATIONS
Read operations are initiated in the same way as write
operations with the exception that the R/W bit of the
slave address is set to one. There are three basic types
of read operations: current address read, random read,
and sequential read.
8.1
Current Address Read
The 24C02C contains an address counter that main-
tains the address of the last word accessed, internally
incremented by one. Therefore, if the previous read
access was to address n, the next current address read
operation would access data from address n + 1. Upon
receipt of the slave address with the R/W bit set to one,
the 24C02C issues an acknowledge and transmits the
eight bit data word. The master will not acknowledge
the transfer but does generate a stop condition and the
24C02C discontinues transmission (Figure 8-1).
8.2
Random Read
Random read operations allow the master to access
any memory location in a random manner. To perform
this type of read operation, first the word address must
be set. This is done by sending the word address to the
24C02C as part of a write operation. After the word
address is sent, the master generates a start condition
following the acknowledge. This terminates the write
operation, but not before the internal address pointer is
set. Then the master issues the control byte again but
with the R/W bit set to a one. The 24C02C will then
issue an acknowledge and transmits the eight bit data
word. The master will not acknowledge the transfer but
does generate a stop condition and the 24C02C dis-
continues transmission (Figure 8-2). After this com-
mand, the internal address counter will point to the
address location following the one that was just read.
8.3
Sequential Read
Sequential reads are initiated in the same way as a ran-
dom read except that after the 24C02C transmits the
first data byte, the master issues an acknowledge as
opposed to a stop condition in a random read. This
directs the 24C02C to transmit the next sequentially
addressed 8-bit word (Figure 8-3).
To provide sequential reads the 24C02C contains an
internal address pointer which is incremented by one at
the completion of each operation. This address pointer
allows the entire memory contents to be serially read
during one operation. The internal address pointer will
automatically roll over from address FF to address 00.
FIGURE 8-1:
CURRENT ADDRESS READ
FIGURE 8-2:
RANDOM READ
FIGURE 8-3:
SEQUENTIAL READ
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
P
S
S
T
O
P
CONTROL
BYTE
S
T
A
R
T
DATA
A
C
K
N
O
A
C
K
S
P
S
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
S
T
A
R
T
S
T
O
P
CONTROL
BYTE
A
C
K
WORD
ADDRESS (n)
CONTROL
BYTE
S
T
A
R
T
DATA (n)
A
C
K
A
C
K
N
O
A
C
K
BUS ACTIVITY
MASTER
SDA LINE
BUS ACTIVITY
CONTROL
BYTE
DATA n
DATA n + 1
DATA n + 2
DATA n + X
N
O
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
S
T
O
P
P
24C02C
DS21202A-page 10
Preliminary
1997 Microchip Technology Inc.
NOTES:
24C02C
1997 Microchip Technology Inc.
Preliminary
DS21202A-page 11
24C02C PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Sales and Support
Package:
P = Plastic DIP (300 mil Body), 8-lead
SN = Plastic SOIC, (150 mil Body), 8-lead
ST = TSSOP (4.4 mm Body), 8-lead
Temperature
Range:
Blank = 0
C to +70
C
I
= 40
C to +85
C
E = 40
C to +125
C
Device:
24C02C
2K I
2
C Serial EEPROM
24C02CT
2K I
2
C Serial EEPROM (Tape and Reel)
24C02C
--
/P
Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1.
Your local Microchip sales office (see last page).
2.
The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277.
3.
The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or
warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other
intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks
of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.
DS21202A-page 12
Preliminary
1997 Microchip Technology Inc.
W
ORLDWIDE
S
ALES
& S
ERVICE
AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602-786-7200 Fax: 602-786-7277
Technical Support:
602 786-7627
Web:
http://www.microchip.com
Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 972-991-7177 Fax: 972-991-8588
Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 714-263-1888 Fax: 714-263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516-273-5305 Fax: 516-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253
ASIA/PACIFIC
Hong Kong
Microchip Asia Pacific
RM 3801B, Tower Two
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431
India
Microchip Technology India
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Shanghai
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan'an Road West, Hongiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700
Fax: 86 21-6275-5060
Singapore
Microchip Technology Taiwan
Singapore Branch
200 Middle Road
#10-03 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2-717-7175 Fax: 886-2-545-0139
EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44-1628-851077 Fax: 44-1628-850259
France
Arizona Microchip Technology SARL
Zone Industrielle de la Bonde
2 Rue du Buisson aux Fraises
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Mchen, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleone
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-39-6899939 Fax: 39-39-6899883
JAPAN
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Tel: 81-4-5471- 6166 Fax: 81-4-5471-6122
5/8/97
Printed on recycled paper.
All rights reserved. 1997, Microchip Technology Incorporated, USA. 6/97
M