ChipFind - документация

Электронный компонент: TH7120

Скачать:  PDF   ZIP

Document Outline

TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 1 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
Features
!
Single chip solution with only a few external
components
!
Stand-alone fixed-frequency user mode
!
Programmable multi-channel user mode
!
Low current consumption in active mode and
very low standby current
!
PLL-stabilized RF VCO (LO) with internal
varactor diode
!
Lock detection in programmable user mode
!
On-chip AFC option for extended input
frequency acceptance range
!
3wire bus serial control interface
!
FSK/ASK modulation selection
!
FSK for digital data and FM for analog signal
reception
!
RSSI allows signal strength indication and ASK
reception
!
Switchable LNA gain for improved dynamic
range
!
Automatic PA turn-on after PLL lock
!
ASK modulation achieved by PA on/off keying
!
AFC option for extended input frequency
acceptance range
!
32-pin Low profile Quad Flat Package (LQFP)
Ordering Information
Part No.
Temperature Code
Package Code
TH7120
E (-40 C to 85 C)
NE (LQFP32)
Application Examples
!
General bi-directional half duplex digital data
transmission or analog signal transmission
!
Low-power
telemetry
!
Alarm and security systems
!
Remote Keyless Entry (RKE)
!
Tire Pressure Monitoring System (TPMS)
!
Garage door openers
!
Intelligent remote control
!
Home
automation
Pin Description
General Description
The TH7120 is a single chip FSK/FM/ASK transceiver IC. It is designed to operate in low-power multi-channel
programmable or single-channel stand-alone, half-duplex data transmission systems. It can be used for ISM,
SRD or any other application operating in the frequency ranging of 300 MHz to 930 MHz. In programmable
user mode, the transceiver can operate down to 27 MHz by employing an external VCO varactor diode.
IN
_
I
F
A
IN
_D
E
M
IN
T
2
R
SSI
OU
T
_
D
E
M
OU
T
_
D
T
A
IN
T
1
VC
C
_
I
F
FS
0
/
S
D
E
N
VEE_
PL
L
V
CC_
P
L
L
F
S
1/
LD
VEE_
D
I
G
LF
TN
K
_
L
O
OUT_PA
IN_LNA
OUT_LNA
VEE_IF
OUT_MIX
GAIN_LNA
IN_MIX
VEE_LNA
RE/SCLK
IN_DTA
ASK/FSK
FSK_SW
RO
VEE_RO
VCC_DIG
1
32
8
9
24
25
TH7120
17
16
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 2 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
Document Content
1
Theory of Operation...................................................................................................4
1.1 General .............................................................................................................................. 4
1.2 Technical Data Overview ................................................................................................... 4
1.3 Block Diagram.................................................................................................................... 5
1.4 User Mode Features .......................................................................................................... 5
2
Pin Definitions and Descriptions ..............................................................................6
3
Functional Description ............................................................................................10
3.1 PLL Frequency Synthesizer ............................................................................................. 10
3.1.1
Reference Oscillator....................................................................................................................11
3.1.2
Reference Divider .......................................................................................................................11
3.1.3
Feedback Divider ........................................................................................................................11
3.1.4
Phase-frequency Detector ..........................................................................................................12
3.1.5
Lock Detector ..............................................................................................................................12
3.1.6
Voltage Controlled Oscillator with external Loop Filter ...............................................................13
3.1.7
Loop Filter ...................................................................................................................................13
3.2 Receiver Part ................................................................................................................... 13
3.2.1
LNA .............................................................................................................................................13
3.2.2
Mixer ...........................................................................................................................................13
3.2.3
IF Amplifier ..................................................................................................................................14
3.2.4
ASK Demodulator .......................................................................................................................14
3.2.5
FSK Demodulator........................................................................................................................14
3.3 Transmitter Part ............................................................................................................... 14
3.3.1
Power Amplifier ...........................................................................................................................14
3.3.2
Output Power Adjustment ...........................................................................................................14
3.3.3
Modulation Schemes...................................................................................................................15
3.3.4
ASK Modulation...........................................................................................................................15
3.3.5
FSK Modulation...........................................................................................................................15
3.3.6
Crystal Pulling .............................................................................................................................15
4
Description of User Modes......................................................................................16
4.1 Stand-alone User Mode Operation................................................................................... 16
4.1.1
Frequency Selection ...................................................................................................................16
4.2 Programmable User Mode Operation............................................................................... 17
4.2.1
Serial Control Interface Description ............................................................................................17
5
Register Description ................................................................................................18
5.1 Register Overview............................................................................................................ 18
5.1.1
Register Default Settings vs FS0, FS1........................................................................................19
5.1.2
A word ......................................................................................................................................20
5.1.3
B - word.......................................................................................................................................21
5.1.4
C - word.......................................................................................................................................22
5.1.5
D - word.......................................................................................................................................23
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 3 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
6
Technical Data..........................................................................................................24
6.1 Absolute Maximum Ratings.............................................................................................. 24
6.2 Normal Operating Conditions ........................................................................................... 24
6.3 DC Characteristics ........................................................................................................... 25
6.4 AC System Characteristics of the Receiver Part .............................................................. 26
6.5 AC System Characteristics of the Transmitter Part .......................................................... 27
6.6 Serial Control Interface .................................................................................................... 27
6.7 Crystal Parameters .......................................................................................................... 27
7
Application Circuit Examples .................................................................................28
7.1 Programmable User Mode - FSK Application Circuit (internal AFC option) ...................... 28
7.2 Stand-alone User Mode - FSK Application Circuit ............................................................ 29
7.3 FSK test circuit component list (Fig. 12 and Fig. 13) ........................................................ 30
7.4 Programmable User Mode - FSK Application Circuit (external AFC option) ..................... 31
7.5 Stand-alone User Mode - FSK Application Circuit (external AFC option) ......................... 32
7.6 FSK (with external AFC) test circuit component list (Fig. 14 and Fig. 15)......................... 33
7.7 Programmable User Mode - ASK Application Circuit........................................................ 34
7.8 Stand-alone User Mode - ASK Application Circuit............................................................ 35
7.9 ASK test circuit component list (Fig. 16 and Fig. 17)........................................................ 36
8
Extended Frequency Range....................................................................................37
8.1 Board Component List (Fig. 18) ....................................................................................... 37
9
TX/RX Combining Network......................................................................................38
9.1 Board Component List (Fig. 19) ....................................................................................... 38
9.2 LNA input impedances in receive mode ........................................................................... 38
9.3 LNA input impedances in transmit mode.......................................................................... 38
9.4 PA load impedances ........................................................................................................ 38
10 Package Dimensions ...............................................................................................39
11 Reliability Information .............................................................................................40
12 ESD Precautions ......................................................................................................40
13 Disclaimer.................................................................................................................42
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 4 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
1
Theory of Operation
1.1 General
The main building block of the transceiver is a programmable PLL frequency synthesizer that is based on an
integer-N topology. The PLL is used for generating the carrier frequency during transmission and for gener-
ating the LO signal during reception. The carrier frequency can be FSK-modulated by pulling the crystal and
ASK-modulated by on/off keying of the power amplifier. The receiver is based on the principle of a single
conversion superhet. Therefore the VCO frequency has to be changed between transmit and receive mode.
In receive mode, the preferred LO injection type is low-side injection.
The TH7120 transceiver IC consists of the following building blocks:
"
Low-noise amplifier (LNA) for high-sensitivity
RF signal reception with switchable gain
"
Mixer (MIX) for RF-to-IF down-conversion
"
IF amplifier (IFA) to amplify and limit the IF
signal and for RSSI generation
"
Phase-coincidence demodulator with external
ceramic discriminator (FSK Demodulator)
"
Operational amplifier, connected to demodula-
tor output (OA1)
"
Operational amplifier, integrator circuit for
external AFC mode (OA2)
"
Control logic with 3wire bus serial control inter-
face (SCI)
"
Reference oscillator (RO) with external crystal
"
Reference divider (R counter)
"
Programmable divider (N/A counter)
"
Phase-frequency detector (PFD)
"
Charge pump (CP)
"
Voltage controlled oscillator (VCO) with internal
varactor
"
Power amplifier (PA) with adjustable output
power
1.2 Technical Data Overview
!
Frequency range: 300 MHz to 930 MHz in
programmable user mode
!
Extended frequency range with external VCO
varactor diode: 27 MHz to 930 MHz
!
315 MHz, 433 MHz, 868 MHz or 915 MHz fixed-
frequency settings in stand-alone user mode
!
Power supply range: 2.2 V to 5.5 V
!
Temperature range: -40 C to +85 C
!
Standby current: 50 nA
!
Operating current: 7.5 mA in receive mode
at low gain
!
Operating current 12 mA in transmit mode
at -2 dBm output power
!
Adjustable output power range from 20 dBm
to +10 dBm
!
Sensitivity: -105 dBm at FSK with 150 kHz IF
filter BW
!
Sensitivity: -107 dBm at ASK with 150 kHz
IF filter BW
!
Maximum data rate: 40 kbit/s NRZ
!
Maximum input level: 10 dBm at FSK
and -20 dBm at ASK
!
Input frequency acceptance:
50 kHz (with
external AFC option)
!
Input frequency acceptance:
20 kHz (with
internal AFC option)
!
Frequency deviation range:
8 kHz to
80 kHz
!
Analog modulation frequency: max. 10 kHz
!
Crystal reference frequency: 3 MHz to 12 MHz
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 5 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
1.3 Block
Diagram
Fig. 1:
TH7120 block diagram
1.4 User Mode Features
The transceiver can operate in two different user modes. It can be used either as a 3wire-bus-controlled pro-
grammable or as a stand-alone fixed-frequency device. After power up, the transceiver is set to fixed-
frequency mode the Stand-alone User Mode (SUM). In this mode, pins FS0/SDEN and FS1/LD must be
connected to V
EE
or V
CC
in order to set the desired frequency of operation. The logic levels at pins FS0/SDEN
and FS1/LD must not be changed after power up in order to remain in fixed-frequency mode.
After the first logic level change at pin FS0/SDEN, the transceiver enters into Programmable User Mode
(PUM) while pin FS1/LD is now a PLL lock detector output. In this mode, the user can set any PLL frequency
or mode of operation by the SCI. In SUM pins FS0/SDEN and FS1/LD are used to set the desired frequency,
while in PUM pin FS0/SDEN is part of the 3-wire serial control interface (SCI) and pin FS1/LD is the look
detector output signal of the PLL synthesizer.
The following four fixed-frequency settings can be selected in SUM:
Channel frequency
433.92 MHz
868.3 MHz
315 MHz
915 MHz
Please refer to para. 4 for detailed information.
A mode control logic allows four different operational modes. In addition to standby, transmit and receive
mode, idle mode can be used to run only the reference oscillator and the PLL.
The different operational modes can be set in SUM and PUM as well. In SUM, the user can set the trans-
ceiver operational modes via control pins RE/SCLK and TE/SDTA, please refer to para. 4 for detailed infor-
mation.
The register bits OPMODE select the desired operation mode in PUM. It should be noted that the pin notifi-
cation RE/SCLK and TE/SDTA describes the modes Receive Enable and Transmit Enable in SUM. These
pins are part of the 3-wire SCI during PUM.
IN_LNA
LNA
GA
I
N
_
L
N
A
O
U
T_
LN
A
IN
_
M
I
X
OUT_DTA
OA2
bias
IF
MIX
OU
T
_
M
I
X
1
IN
_
I
F
A
V
EE_
IF
IFA
IN_DEM
26
29
28
30
32
31
1
VC
C
_
I
F
2
3
OUT_DEM
6
OA1
8
INT1
5
INT2
4
RSSI
7
1.5pF
200k
VE
E_
L
N
A
27
MIX
Demodulator
FSK
VEE_PLL
OUT_PA
FSK
ASK
LO
IN
_
D
T
A
AS
K
/
F
S
K
RE
/
S
C
L
K
TE
/
S
D
T
A
F
S
0
/
SD
EN
25
PS_PA
24
FS
K
_
S
W
FS
1
/
LD
VE
E
_
R
O
11
19
9
17
16
15
13
12
RO
RO
R
counter
N
counter
RO
10
SC
L
K
SD
T
A
SD
EN
Control Logic
SCI
VCO
PA
VCC_PLL
20
TNK_LO
23
22
LF
21
18
VE
E
_
D
I
G
14
VC
C
_
D
I
G
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 6 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
2
Pin Definitions and Descriptions
Pin No.
Name
I/O Type
Functional Schematic
Description
1
IN_IFA
input
50
IN_IFA
1
VCC
VCC
140A
VEE
VEE
2.2k
IF amplifier input, approx.
2 k
single-ended
2
VCC_IF
supply
positive supply of LNA, MIX,
IFA, FSK Demodulator, PA,
OA1 and OA2
3
IN_DEM
analog I/O
VCC
VEE
IN_DEM
3
10A
VCC
VEE
100A
90k
60k
1.5p
IF amplifier output and de-
modulator input, connection
to external ceramic discrimi-
nator
4
INT2
output
integrator output OA2
8
OUT_DTA output
VCC
VEE
INT2
4
8
OUT_DTA
output OA1
5
INT1
input
inverting inputs of OA1 and
OA2
6
OUT_DEM analog I/O
OA2
bias
VEE
VCC
INT1
5
VEE
OUT_DEM
6
VCC
120
VEE
VCC
10p
55
0k
55
0k
1k
10p
OA1
+
200k
12
0
12
0
demodulator output and non-
inverting input OA1
7
RSSI
output
VCC
VEE
RSSI
7
120
VEE
VCC
5A
5A
RSSI output
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 7 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
Pin No.
Name
I/O Type
Functional Schematic
Description
9
VEE_RO
ground
ground of RO
10
RO
analog I/O
36p
VEE
VCC
RO
10
2.6A
39k
36p
RO input, base of bipolar
transistor
11
FSK_SW
analog I/O
VCC
VEE
FSK_SW
11
FSK pulling pin, switch to
ground or OPEN
12
IN_DTA
input
ASK/FSK modulation data
input, pull down resistor
120k
15
RE/SCLK
input
receiver enable input / clock
input for the shift register,
pull down resistor 120k
16
TE/SDTA
input
VEE
VCC
IN_DTA
12
RE/SCLK
15
16
TE/SDTA
120k
120
transmitter enable input /
serial data input, pull down
resistor 120k
13
ASK/FSK
input
ASK/FSK mode select input
17
FS0/SDEN input
VEE
VCC
ASK/FSK
13
17
FS0/SDEN
120
frequency select input / se-
rial data enable input
14
VCC_DIG
supply
positive supply of serial port
and control logic
18
VEE_DIG
ground
ground of serial port and
control logic
19
FS1/LD
input
VEE
VCC
FS1/LD
19
120
frequency select input / lock
detector output
20
VCC_PLL
supply
positive supply of PLL fre-
quency synthesizer
22
VEE_PLL
ground
ground of PLL frequency
synthesizer
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 8 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
Pin No.
Name
I/O Type
Functional Schematic
Description
21
LF
analog I/O
charge pump output, con-
nection to external loop filter
23
TNK_LO
analog I/O
VCC
VCC
VEE
VCOCUR
6.3pF
VD
VEE
TNK_LO
23
120
6.5k
VCC
LF
21
VCO open-collector output,
connection to external LC
tank
24
PS_PA
analog I/O
VEE
VEE
VCC
VCC
120
PS_PA
24
10A
power-setting input
25
OUT_PA
output
VEE
VEE
VCC
OUT_PA
25
1k
20p
power amplifier open-
collector output
27
VEE_LNA
ground
ground of LNA and PA
28
OUT_LNA output
LNA open-collector output,
connection to external LC
tank at RF
26
IN_LNA
input
IN_LNA
26
VEE
VEE
VEE
3.8k
OUT_LNA
28
bias
37
0.8p
LNA input, single-ended
29
GAIN_LNA input
VCC
GAIN_LNA
29
120
LNA gain control input
Low gain
pin connected to V
CC
High gain
pin connected to GND
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 9 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
Pin No.
Name
I/O Type
Functional Schematic
Description
30
IN_MIX
input
VCC
210
bias
LO
IN_MIX
30
VEE
VEE
mixer input, approx. 200
single-ended
31
VEE_IF
ground
ground of IFA, Demodulator,
OA1 and OA2
32
OUT_MIX
output
VCC
VEE
OUT_MIX
32
100
mixer output, approx. 330
single-ended
Your Notes
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 10 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
3
Functional Description
3.1 PLL Frequency Synthesizer
The TH7120 contains an integer-N PLL frequency synthesizer. A PLL circuit performs the frequency synthe-
sis, via a feedback mechanism. The output frequency f
VCO
is generated as an integer multiple of the phase
detector comparison frequency f
R
.This reference frequency f
R
is generated by dividing the output frequency
f
RO
of a crystal oscillator. The phase detector utilizes this signal as a reference to tune the VCO and in the
locked state it must be equal to the desired output frequency, divided by the feedback divider ratio N.
Fig. 2:
Integer-N PLL Frequency Synthesizer Topology
Thus, the output frequency the synthesizer generates can be set by programming the feedback divider.
Therefore the VCO can be tuned across the frequency band of interest. The only constraint to the frequency
output of the system is that the minimum frequency resolution, or minimum channel spacing, is equal to
f
R
with:
R
f
f
RO
R
=
.
Where R is the reference divider factor.
When the PLL is in the unlocked state (e.g. during power up or during the reprogramming of a new feedback
divider ratio), the phase detector will create an error voltage proportional to the phase difference of the two
input signals. This error voltage is low-pass filtered by an external loop filter and will change the output fre-
quency of the VCO so that it satisfies the following equation:
R
f
N
f
RO
VCO
=
.
There are four registers available to set different output frequencies in receive (registers RR and NR) and in
transmit mode (registers RT and NT). These registers can be programmed using the Serial Control Interface
in the Programmable User Mode (PUM). In case of Stand-alone User Mode (SUM), the registers are set fixed
values (refer to para. 4.1.1)
Reference
Oscillator
Reference
Divider
Feedback
Divider
Voltage Controlled
Oscillator
Phase-frequency
Detector
Charge
Pump
VCO
f
RO
f
N
f
R
f
External
Loop Filter
LF
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 11 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
3.1.1 Reference
Oscillator
The reference oscillator is based on a Colpitts topology with two
integrated functional capacitors as shown in figure 3. The circuitry
is optimized for a load capacitance range of 10 pF to 15 pF. The
equivalent input capacitance C
RO
offered by the oscillator input pin
RO is about 18pF.
To ensure a fast and reliable start-up and a very stable frequency
over the specified supply voltage and temperature range, the os-
cillator bias circuitry provides an amplitude regulation. The ampli-
tude on pin RO is monitored in order to regulate the current of the
oscillator core I
RO
. There are two limits ROMAX and ROMIN be-
tween the regulation is maintained. These values can be changed
via serial control interface in Programmable User Mode (PUM). In
Stand-alone User Mode (SUM), ROMAX and ROMIN are set to
default values (refer to para. 5.1.3). ROMAX defines the start-up
current of the oscillator. The ROMIN value sets the desired
steady-state current. If ROMIN is sufficient to achieve an ampli-
tude of about 400 mV on pin RO, the current I
RO
will be set to
ROMIN. Otherwise the current will be permanently regulated be-
tween ROMIN and ROMAX. If ROMIN and ROMAX are equal, no
regulation takes place. For most of the applications ROMIN and
ROMAX should not be changed from default.
Fig. 3:
Reference oscillator circuit
3.1.2 Reference
Divider
The reference divider provides the input signal of the phase detector by dividing the signal of the reference
oscillator. The ratio of the reference divider ranged is
1023
R
4
.
3.1.3 Feedback
Divider
The feedback divider of the PLL is based on a pulse-swallow topology. It contains a 4-bit swallow A-counter,
a 13-bit program B-counter and a prescaler. The divider ratio of the prescaler is controlled by the program
counter and the swallow counter. During one cycle, the prescaler divides by 17 until the swallow A-counter
reaches its terminal count. Afterwards the prescaler divides by 16 until the program counter reaches its ter-
minal count. Therefore the overall feedback divider ratio can be expressed as:
(
)
A
B
A
N
-
+
=
*
16
*
17
.
The A-counter configuration represents the lower bits in the feedback divider register (N
0-3
= A
0-3
) and the
upper bits the B-counter configuration (N
4-16
= B
0-12
) respectively. According to that, the following counter
ranges are implemented:
15
A
0
;
8191
B
4
and therefore the range of the overall feedback divider ratio results in:
131071
N
64
.
The user does not need to care about the A- and B-counter settings. It is only necessary to know the overall
feedback divider ratio N to program the register settings.
36pF
XTAL
RO
FSKSW
CX2
CX1
VCC
I
RO
36pF
VEE
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 12 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
3.1.4 Phase-frequency
Detector
The phase detector creates an error voltage proportional to the phase difference between the reference sig-
nal f
R
and f
N
. The implementation of the phase detector is a phase-frequency type. That circuitry is very useful
because it decreases the acquisition time significantly. The gain of the phase detector can be expressed as:
2
I
K
CP
PD
=
,
where I
CP
is the charge pump current which is set via register CPCUR. In the TH7120 design the VCO fre-
quency control characteristic is with negative polarity. This means the VCO frequency increases if the loop
filter output voltage decreases and vice versa. In case an external varactor diode is added to the VCO tank,
the tuning characteristic can be changed between positive and negative depending on the particular varactor
diode circuitry. Therefore the PDFPOL register can be used to define the phase detector polarity.
3.1.5 Lock
Detector
In Programmable User Mode a lock-detect signal LD is available at pin FS1/LD (pin 19). The lock detection
circuitry uses Up and Down signals from the phase detector to check them for phase coherency. Figure 4
shows an overview of the lock signal generation. The locked state and the unlock condition will be decided on
the register settings of LDTM and ERTM respectively. In the start-up phase of the PLL, Up and Down signals
are quite unbalanced and counter CNT_LD receives no clock signal. When the loop approaches steady state,
the signals Up and Down begin to overlap and CNT_LD counts down. Herein register LDTM sets the number
of counts which are necessary to set the lock detection signal LD. If an unlock condition occurs, the counter
CNT_LD will be reloaded and therefore its CARRY falls back.
Fig. 4:
Lock Detection Circuit
The CNT_ER supervises the unlock condition. If Up and Down are consecutive, the counter CNT_ER will be
reloaded permanently and its CARRY will not be set, otherwise the counter level of CNT_ER will be reduced
by the reference oscillator clock (1/f
RO
). The register ERTM decides on the maximum number of clocks dur-
ing Up and Down signals can be non-consecutive without loosing the locked state.
The transceiver offers two ways of analyzing the locked state. If the register LOCKMODE is set to `0', only
one occurrence of the locked state condition is needed to remain LD = 1 during the whole active mode, oth-
erwise the state of the PLL will be observed permanently.
RESET LD
Control
Logic
CNT_LD
D
CR
CARRY
LOAD
Q
R
S
LD
2
2
&
=
&
Down
Up
PFD
LDTM [1 : 0]
LOCKMODE
F
RO
RO
&
ERTM [1 : 0]
CNT_ER
D
CR
CARRY
LOAD
MUX
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 13 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
3.1.6 Voltage Controlled Oscillator with external Loop Filter
The transceiver provides a LC-based voltage-controlled oscillator with an
external inductance element connected between VCC and pin TNK_LO.
An internal varactor diode in series with a fixed capacitor forms the vari-
able part of the oscillator tank. The oscillation frequency is adjusted by the
DC-voltage at pin LF. The tuning sensitivity of the VCO is approximately
20MHz/V for 433MHz operations and 40MHz/V at 868MHz. Since the
internal varactor is connected to VCC, a lower voltage on pin LF causes
the capacitance to decrease and the VCO frequency to increase. For this
reason the phase detector polarity should be negative (PFDPOL = 0). If
the operation frequency is below 300MHz, an external varactor diode
between pin TNK_LO and VCC_PLL is necessary. The corresponding
application schematic is shown in section 8. The VCO current VCOCUR
can be adjusted via serial control interface in order to ensure stable os-
cillations over the whole frequency range.
Fig. 5:
VCO schematic
3.1.7 Loop
Filter
Since the loop filter has a strong impact on the function of the PLL, it must
be chosen carefully. For FSK operation the bandwidth of the loop filter
must be selected wide enough for a fast relock of the PLL during crystal
pulling. Also the bandwidth should be wider than the rate of the data bit
stream. In case of ASK or OOK modulation the bandwidth can be smaller
since the operating frequency will not be changed. The suggested filter
topology is shown in Fig. 6. The dimensions of the loop filter elements can
be derived using well known formulas in application notes and other ref-
erence literature.
Fig. 6:
2
nd
order Loop filter
3.2 Receiver
Part
The RF front-end of the receiver part is a heterodyne configuration that converts the input radio-frequency
(RF) signal into an intermediate frequency (IF) signal. The most commonly used IF frequency is 10.7 MHz,
but IF frequencies in the range of 455 kHz to 20.4 MHz can also be used. According to the block diagram, the
front-end consists of a LNA, a Mixer and an IF limiting amplifier with received signal strength indicator (RSSI).
The local oscillator (LO) signal for the mixer is generated by the PLL frequency synthesizer.
3.2.1 LNA
The LNA is based on a cascode topology for low-noise, high gain and good reverse isolation. The open col-
lector output has to be connected two an external resonance circuit which is tuned to the receive frequency.
The gain of the LNA can be changed in order to achieve a high dynamic range. There are two possibilities for
the gain setting which can be selected by the register bit LNACTRL. External control can be done via the pin
GAIN_LNA, internal control is given by the register bit LNAGAIN. In case of external gain control, a hysteresis
of about 340 mV can be chosen via the register bit LNAHYST. This configuration is useful if an automatic
gain control loop via the RSSI signal is established. In transmit mode the LNA-input is shorted to protect the
amplifier from saturation and damaging.
3.2.2 Mixer
The mixer is a double-balanced mixer which downconverts the receive frequency to the IF frequency. The
preferred LO injection type is low side. The output of the mixer is about 330Ohm in order to match the IF
channel selection filter.
LF
VCO
CF1
CF2
RF1
+
VEE
Charge Pump
6.3pF
VD
External
Loop Filter
VCC
VCC
TNK_LO
LF
VCOCUR
+
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 14 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
3.2.3 IF
Amplifier
After passing the channel select filter which sets the IF bandwidth the signal is limited by means of an high
gain limiting amplifier. The small signal gain is about 80 dB. The RSSI signal is generated within the IF ampli-
fier. The output of the RSSI signal is available at pin RSSI. The voltage at this pin is proportional to the input
power of the receiver in dBm. Using this RSSI output signal the signal strength of different transmitters can
be distinguished.
3.2.4 ASK
Demodulator
The RSSI signal is also used for ASK reception. ASK demodulation is done by means of adaptive threshold
slicing. Therefore the OA1 is used. The capacitor at pin RSSI smoothes the RSSI signal and the capacitor at
pin INT1 adjusts the data filter corner frequency f
c
according to
3
200
2
1
C
K
f
c
=
.
This value has to be matched according to the desired data rate.
3.2.5 FSK
Demodulator
The implemented FSK demodulator is based on the phase-coincidence principle. A 90-degree phase shifter,
which can either consists of a ceramic resonator or an LC tank, is connected to pin IN_DEM.
3.3 Transmitter
Part
The output of the PLL frequency synthesizer feeds a power amplifier (PA) in order to setup a complete RF
transmitter. The VCO frequency is identical to the carrier frequency.
3.3.1 Power
Amplifier
The power amplifier (PA) has been designed to deliver up to 10 dBm in the specified frequency bands. The
power amplifier output pin OUT_PA is an open collector output. Naturally, the greater the output voltage
swing can be the better the power efficiency will be. The PA must be matched to deliver the best efficiency in
terms of output power and current consumption.
3.3.2 Output Power Adjustment
The output power can be adjusted via the
external resistor RPS. The relationship be-
tween the output power and RPS is shown in
Figure 7. There are four predefined attenua-
tion steps available in programmable user
mode which are selected by the register
TXPOWER. Herein the output power can be
reduced from 6 dB to 20 dB. In stand-alone
user mode the attenuation is 0 dB.
Fig. 7:
Output power vs. RPS
0
10
20
30
40
50
60
70
80
90
100
RPS / kOhm
-40,00
-30,00
-20,00
-10,00
0,00
10,00
20,00
P
/ dB
m
0
315MHz
433MHz
868MHz
915MHz
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 15 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
3.3.3 Modulation
Schemes
The RF carrier generated by the PLL frequency synthesizer can be ASK or FSK modulated. In dependency
on the selected user mode the modulation type can be either selected by the ASK/FSK pin or via the serial
control interface. The input data has always to be applied at the pin IN_DTA.
3.3.4 ASK
Modulation
IN_DTA
Description
0
Power amplifier is turned off
1
Power amplifier is turned on
(according to the selected output power)
The transceiver can be ASK-modula-
ted by turning-on and -off the power
amplifier and therefore it leads to an
ASK signal at the output.
3.3.5 FSK
Modulation
FSK modulation can be achieved by pulling the crystal oscillator
frequency. A CMOS-compatible data stream applied at the pin
IN_DTA digitally modulates the XOSC via an integrated NMOS
switch. Two external pulling capacitors CX1 and CX2 allow the
FSK deviation
f and center frequency f
c
to be adjusted inde-
pendently. At IN_DTA = Low CX2 is connected in parallel to CX1
leading to the low-frequency component of the FSK spectrum
(f
min
); while at IN_DTA = High CX2 is deactivated and the XOSC is
set to its high frequency, leading to f
max
.
IN_DTA
Description
0
f
min
= f
c
-
f (FSK switch is closed)
1
f
max
= f
c
+
f (FSK switch is open)
An external reference signal can be directly AC-coupled to the
reference oscillator input pin RO. Then the transceiver is used
without a XTAL. Now the reference signal sets the carrier fre-
quency and has to contain the FSK (or FM) modulation.
Fig. 8:
Crystal Pulling Circuit
3.3.6 Crystal
Pulling
A crystal is tuned by the manufacturer to the re-
quested oscillation frequency f
0
for a certain load
capacitance CL within the specified calibration
tolerance. The only way to tune this oscillation fre-
quency is to vary the effective load capacitance
CL
eff
seen by the crystal.
Figure 8 shows the oscillation frequency of a crys-
tal in dependency on the effective load capaci-
tance. This capacitance changes in accordance
with the logic level of IN_DTA around the specified
load capacitance. The figure illustrates the relation-
ship between the external pulling capacitors and
the frequency deviation.
Fig. 9:
Crystal Pulling Characteristic
36pF
XTAL
RO
FSKSW
CX2
CX1
VCC
36pF
VEE
I
RO
f
min
f
o
f
f
max
eff
CL
eff
CL
R1
C1
C0
L1
XTAL
CL
CX1 CRO
CX1+CRO
(CX1+CX2) CRO
CX1+CX2+CRO
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 16 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
4
Description of User Modes
4.1 Stand-alone User Mode Operation
After power up the transceiver is set to stand-alone user mode. In this mode, pins FS0/SDEN and FS1/LD
must be connected to V
EE
or V
CC
to set the desired frequency of operation. The logic levels at pins FS0/SDEN
and FS1/LD must not be changed after power up in order to remain in stand-alone user mode. The default
settings of the control word bits in stand-alone user mode are described in the frequency selection table.
4.1.1 Frequency
Selection
Channel frequency
433.92 MHz
868.3 MHz
315 MHz
915 MHz
FS0/SDEN
1
0
1
0
FS1/LD
0
0
1
1
Reference oscillator frequency
7.1505 MHz
R counter ratio in RX mode
16
16
18
30
PFD frequency in RX mode
446.91 kHz
446.91 kHz
397.25 kHz
238.35 kHz
N/A counter ratio in RX mode
947
1919
766
3794
VCO frequency in RX mode
423.22 MHz
857.60 MHz
304.30 MHz
904.30 MHz
RX frequency
433.92 MHz
868.30 MHz
315.00 MHz
915.00 MHz
R counter ratio in TX mode
16
16
18
30
PFD frequency in TX mode
446.91 kHz
446.91 kHz
397.25 kHz
238.35 kHz
N/A counter ratio in TX mode
971
1943
793
3839
VCO frequency in TX mode
433.92 MHz
868.30 MHz
315.00 MHz
915.00 MHz
TX frequency
433.92 MHz
868.30 MHz
315.00 MHz
915.00 MHz
IF in RX mode
10.7 MHz
10.7 MHz
10.7 MHz
10.7 MHz
In the stand-alone user mode, the transceiver can be set the to Standby, Receive, Transmit or Idle (only PLL
synthesizer active) mode via control pins RE/SCLK and TE/SDTA.
Operation mode
Standby
Receive
Transmit
Idle
RE/SCLK
0
1
0
1
TE/SDTA
0
0
1
1
Note: Pins with internal pull-down
In this mode, the modulation type selection can be done via pin ASK/FSK
Modulation type
ASK
FSK
ASK / FSK
0
1
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 17 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
4.2 Programmable User Mode Operation
The transceiver can also be used in the programmable user mode. After power-up the first logic change at
pin FS0/SDEN enters into this mode. Now the full functionality is accessable via the Serial Control Interface
(SCI).
4.2.1 Serial Control Interface Description
A 3-wire (SCLK, SDTA, SDEN) Serial Control Interface (SCI) is used to program the transceiver in program-
mable user mode. At each rising edge of the SCLK signal, the logic value on the SDTA pin is written into a
24-bit shift register. The data stored in the shift register are loaded into one of the 4 appropriate latches on
the rising edge of SDEN. The control words are 24 bits lengths: 2 address bits and 22 data bits. The first two
bits (bit 23 and 22) are latch address bits. As additional leading bits are ignored, only the least significant 24
bits are serial-clocked into the shift register. The first incoming bit is the most significant bit (MSB). To pro-
gram the transceiver in multi-channel application, four 24-bit words may be sent: A-word, B-word, C-word and
D-word. If individual bits within a word have to be changed, then it is sufficient to program only the appropriate
24-bit word. The serial data input timing and the structure of the control words are illustrated in Fig. 10 and
11
.
Fig. 10: SCI Block Diagram
Due to the static CMOS design, the SCI consumes virtually no current and it can be programmed in active as
well as in standby mode.
Fig. 11: Serial Data Input Timing
t
EH
t
EW
t
ES
t
CWH
t
CWL
t
CH
t
CS
bit 22
bit 1
bit 0
bit 23
data
Invalid
LSB
MSB
SDTA
SCLK
SDEN
data
Invalid
A - LATCH
ADDR DECODER
B - LATCH
C - LATCH
D - LATCH
22
A-word
22
22
` '
00
` '
10
` '
11
` '
01
2
22
22
22
22
B-word
22
D-word
22
C-word
24-BIT
SHIFT REGISTER
SDEN
SDTA
SCLK
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 18 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
5
Register Description
As shown in the previous section there are four control words which stipulates the operation of the whole
chip. In Stand-alone User Mode SUM the intrinsic default values with respect to the applied levels at pins FS0
and FS1 lay down the configuration of the transceiver. In Programmable User Mode PUM the register set-
tings can be changed via 3-wire interface SCI. The following table depicts an overview of the register configu-
ration of the TH7120.
5.1 Register
Overview
WORD
DATA
MSB
LSB
23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
Bit No.
0
0
0
0
0
0
0
1
1
1
1
1
0
0
Depends on FS0/FS1 voltage level after power up
default
A
Set to 0
DA
TA
POL
M
O
DSEL
CPCUR
LOCKM
ODE
PA
CTRL
TXPOWER
[ 1 :
0
]
Set to 1
L
N
AG
AI
N
OPM
O
DE
[ 1 :
0 ]
RR
[ 9 :
0 ]
23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
Bit No.
0
1
0
1
1
1
0
0
1
1
1
0
1
1
Depends on FS0/FS1 voltage level after power up
default
B
Set to 0
Set to 1
DELPLL
LNA
H
YST
AF
C
Set to 0
ROM
A
X
[ 2 :
0 ]
ROM
I
N
[ 2 :
0 ]
RT
[ 9 :
0 ]
23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
Bit No.
1
0
0
0
Depends on FS0/FS1 voltage level after power up
default
C
LNA
C
TRL
PFDPOL
VCOCUR
[ 1 :
0
]
BA
ND
NR
[ 16 :
0 ]
23 22 21 20 19 18 17 16 15 14 13 12 11 10
9
8
7
6
5
4
3
2
1
0
Bit No.
1
1
0
0
1
0
0
Depends on FS0/FS1 voltage level after power up
default
D
M
O
DCTRL
LDTM
[ 1 :
0
]
ERTM
[ 1 :
0
]
NT
[ 16 :
0 ]
The default settings which vary with the desired working frequency depend on the voltage levels at the fre-
quency selection pins FS0 and FS1. The next table shows the default register settings of different frequency
selections. It should be noted that the channel frequency listed below will be achieved with a crystal frequency
of 7.1505 MHz.
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 19 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
5.1.1 Register Default Settings vs FS0, FS1
FS1
FS0
Channel
frequency
BAND
VCOCUR
[ 1 : 0 ]
RR
[ 9 : 0 ]
NR
[ 16 :0 ]
RT
[ 9 :0 ]
NT
[ 16 : 0 ]
0
0
868.30 MHz
1
3
16
1919
16
1943
0
1
433.92 MHz
0
1
16
947
16
971
1
0
915.00 MHz
1
3
30
3794
30
3839
1
1
315.00 MHz
0
0
18
766
18
793
A detailed description of the registers function and their configuration can be found in the following sections.
Your Notes
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 20 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
5.1.2 A word
Name
Bits
Description
Reference divider ratio in RX operation mode
RR
[9:0]
4d .. 1023d
Operation mode
OPMODE
[11:10]
00
01
10
11
Standby mode
Receive mode
Transmit mode
Idle mode
#default
LNA gain
0
1
low LNA gain
high LNA gain
#default
LNAGAIN
[12]
This selection is valid if bit LNACTR (bit 21 in C-word) is set to internal LNA gain control.
not used
[13]
set to `1' for correct function
Output power attenuation
00
01
10
11
P
0
-
-
-
-
20 dB
P
0
-
-
-
-
12 dB
P
0
-
-
-
-
6 dB
P
0
#default
TXPOWER
[15:14]
The power selection resistor R
PS
connected between pin PS_PA and ground selects the
output power P
0
.
Set the PA-on condition
PACTRL
[16]
0
1
PA is switched on if the PLL locks
PA is always on in TX mode
#default
Set the PLL locked state observation mode
0
before lock only
#default
Locked state condition will be ascertained only one time afterwards the LD signal remains
in high state.
1
before and after lock
LOCKMODE
[17]
locked state will be observed permanently
Charge Pump output current
CPCUR
[18]
0
1



260 A



1300 A
#default
Modulation mode
0
1
ASK
FSK
#default
MODSEL
[19]
This selection is valid if bit MODCTRL (bit 21 in D-word) is set to internal modulation
control.
Input data polarity
0
Normal
#default
`0' for space at ASK or f
min
at FSK, `1' for mark at ASK or f
max
at FSK
1
Inverse
DTAPOL
[20]
`1' for space at ASK or f
min
at FSK, `0' for mark at ASK or f
max
at FSK
not used
[21]
set to `0' for correct function
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 21 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
5.1.3 B - word
Name
Bits
Description
Reference divider ratio in RX operation mode
RT
[16:0]
4d .. 1023d
Set the desired steady state current of the reference oscillator
ROMIN
[12:10]
000
001
010
011
100
101
110
111
0



A
50



A
100



A
150



A #default
200



A
250



A
300



A
350



A
The control circuitry regulates the current of the oscillator core
between the values ROMAX and ROMIN. As the regulation in-
put signal the amplitude on pin RO is used. If the ROMIN value
is sufficient to achieve an amplitude of about 400mV on pin RO
the current of the reference oscillator core will be set to ROMIN.
Otherwise the current will be permanently regulated between
ROMAX and ROMIN. If ROMIN and ROMAX are equal no
regulation of the oscillator current occurs. Please also note the
block description of the reference oscillator in para. 3.1.1..
Set the start-up current of the reference oscillator
ROMAX
[15:13]
000
001
010
011
100
101
110
111
0



A
50



A
100



A
150



A
200



A
250



A
300



A
350



A #default
Set the start-up current of the reference oscillator core. Please
also note the description of the ROMIN register and the block
description of the reference oscillator which can be seen above.
not used
[16]
set to `0' for correct function
Internal AFC feature
0
1
disabled
enabled
#default
AFC
[17]
If this feature is enabled, the acceptance range in receive mode will be increased to appr.
20kHz.
Hysteresis on pin GAIN_LNA
LNAHYST
[18]
0
1
disabled
enabled -
typical 340 mV (V
0
1
= 1.56V, V
1
0
= 1.22V)
#default
Delayed start of the PLL
0
undelayed start
PLL starts at the reference oscillator start-up
1
delayed start
#default
DELPLL
[19]
PLL starts
500
s after entering an active mode to ensure reliable oscillation of the refer-
ence oscillator.
not used
[20]
set to `1' for correct function
not used
[21]
set to `0' for correct function
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 22 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
5.1.4 C - word
Name
Bits
Description
Feedback divider ratio in RX operation mode
NR
[16:0]
64d .. 131071d
Set the desired frequency range
0
1
recommended at f
RF
< 500 MHz
recommended at f
RF
> 500MHz
BAND
[17]
Some tail current sources are linked to this bit in order to save current for low frequency
operations.
VCO active current
VCOCUR
[19:18]
00
01
10
11
low current (400 A)
standard current (600 A)
high1 current (800 A)
high2 current (1000 A)
Phase Detector polarity
PFDPOL
[20]
0
1
negative
#default
positive
neg
pos
FREQUENCY
OUTPUT
VCO
VCO INPUT VOLTAGE
LNA gain control mode
0
external LNA gain control
#default
LNA gain will be set via pin GAIN_LNA.
1
internal LNA gain control
LNACTRL
[21]
LNA gain will be set via bit LNAGAIN (bit 12 in A-word).
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 23 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
5.1.5 D - word
Name
Bits
Description
Feedback divider ratio in TX operation mode
NT
[16:0]
64d .. 131071d
Set the unlock condition of the PLL
ERTM
[18:17]
00
01
10
11
2 clocks #default
4 clocks
8 clocks
16 clocks
Set the maximum allowed number of reference clocks
(1/f
RO
) during the phase detector output signals (UP &
DOWN) can be in-consecutive.
Set the lock condition of the PLL
LDTM
[20:19]
00
01
10
11
4 clocks
16 clocks
#default
64 clocks
256 clocks
Set the minimum number of consecutive edges of phase
detector output cycles, without appearance of any unlock
condition.
Set mode of modulation control:
0
external modulation control
#default
modulation will be set via pin ASK/FSK
1
internal modulation control
MODCTRL
[21]
modulation will be set via bit MOD (bit 19 in A-word)
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 24 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
6
Technical Data
6.1 Absolute Maximum Ratings
Parameter
Symbol
Condition / Note
Min
Max
Unit

Supply voltage

V
CC

0

7.0

V

Input voltage

V
IN

- 0.3

V
cc
+0.3

V

Input RF level

P
iRF

@ LNA input

10

dBm

Power dissipation

P
diss

0.25

W

Storage temperature

T
STG

-40

+125

C

Junction temperature

T
J

+125

C

Electrostatic discharge

V
ESD1

human body model, 1)

-1.0

+1.0

kV

Electrostatic discharge

V
ESD2

human body model, 2)

TBD

TBD

kV
1) pins IN_DTA, ASK/FSK, RE/SCLK; TE/SDTA, FS0/SDEN, FS1/LD
2) all pins, except IN_DTA, ASK/FSK, RE/SCLK; TE/SDTA, FS0/SDEN, FS1/LD
6.2 Normal Operating Conditions
Parameter
Symbol
Condition
Min
Max
Unit

Supply voltage

V
CC

2.2

5.5

V

Operating temperature

T
A

-40

+85

C

Input low voltage (CMOS)

V
IL

IN_DTA, RE/SCLK,
TE/SDTA, ASK/FSK,
FS0/SDEN, FS1/LD
pins

0.3*V
CC

V

Input high voltage (CMOS)

V
IH

IN_DTA, RE/SCLK,
TE/SDTA, ASK/FSK,
FS0/SDEN, FS1/LD
pins

0.7*V
CC

V

Transmit frequency range

f
TX

300

930

MHz

Receive frequency range

f
RX

300

930

MHz
VCO frequency
f
VCO

Set by tank configuration
300
930
MHz
IF range
f
IF
f
RX
- f
VCO
0.4
22
MHz
RO frequency
f
RO

Set by crystal
3
12
MHz
PFD working frequency
f
PFD
Set by crystal and
R-counter
0.01
1
MHz
Frequency deviation
f
at FM or FSK
8
80
kHz
FSK data rate
R
FSK
NRZ
40
kbit/s
ASK data rate
R
ASK
NRZ
40
kbit/s
FM bandwidth
f
m
10
kHz
f
RF
= 433.92MHz
14
23
VCO gain
f
RF
= 868.3MHz
K
VCO
28
55
MHz/V
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 25 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
6.3 DC
Characteristics
all parameters under normal operating conditions, unless otherwise stated;
typical values at T
A
= 23 C and V
CC
= 3 V
Parameter
Symbol
Condition
Min
Typ
Max
Unit
Standby current
I
SBY
mode = standby
50
100
nA
Band bit
0 (< 500 MHz)
3.8
4.4
mA
Idle current
1 (> 500 MHz)
I
IDLE
mode = idle
6.7
7.7
mA
0 (< 500 MHz)
6.9
8.0
mA
1 (> 500 MHz)
I
RXL_ASK
mode = receive, ASK
LNA @ low gain
9.9
11.4
mA
0 (< 500 MHz)
8.2
9.4
mA
Receive supply
current - ASK
1 (> 500 MHz)
I
RXH_ASK
mode = receive, ASK
LNA @ high gain
11.2
12.9
mA
0 (< 500 MHz)
7.7
8.9
mA
1 (> 500 MHz)
I
RXL_FSK
mode = receive, FSK
LNA @ low gain
10.7
12.3
mA
0 (< 500 MHz)
9.0
10.4
mA
Receive supply
current - FSK
1 (> 500 MHz)
I
RXH_FSK
mode = receive, FSK
LNA @ high gain
12
13.8
mA
0 (< 500 MHz)
11.5
13.2
mA
Transmit
supply current
@ P
max
20 dB
1 (> 500 MHz)
I
TX_00
Mode = transmit,
RPS = see para. 7.3
TXPOWER = 00
15.5
17.8
mA
0 (< 500 MHz)
12.2
14
mA
Transmit
supply current
@ P
max
12 dB
1 (> 500 MHz)
I
TX_01
Mode = transmit,
RPS = see para. 7.3
TXPOWER = 01
16.4
18.9
mA
0 (< 500 MHz)
14
16.1
mA
Transmit
supply current
@ P
max
6 dB
1 (> 500 MHz)
I
TX_10
Mode = transmit,
RPS = see para. 7.3
TXPOWER = 10
17.5
20.1
mA
0 (< 500 MHz)
20
23
mA
Transmit
supply current
@ P
max
1 (> 500 MHz)
I
TX_11
Mode = transmit,
RPS = see para. 7.3
TXPOWER = 11
24
27.6
mA
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 26 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
6.4 AC System Characteristics of the Receiver Part
all parameters under normal operating conditions, unless otherwise stated; all parameters based on test
circuits for FSK (Fig. 12 to 15) and ASK (Fig. 16 to 17), respectively;
Parameter
Symbol
Condition
Min
Typ
Max
Unit
f
RF
= 433.92MHz
-96
dBm
f
RF
= 868.3MHz
P
minL_ASK
B
IF
= 150kHz, f
m
= 2kHz
BER
3
10
-3
LNA @ low gain
-96
dBm
f
RF
= 433.92MHz
-107
dBm
Input sensitivity
ASK
f
RF
= 868.3MHz
P
minH_ASK
B
IF
= 150kHz, f
m
= 2kHz
BER
3
10
-3
LNA @ high gain
-107
dBm
f
RF
= 433.92MHz
-87
dBm
f
RF
= 868.3MHz
P
minL_ASK
B
IF
= 150kHz, f
m
= 2kHz
f =
50 kHz
BER
3
10
-3
LNA @ low gain
-87
dBm
f
RF
= 433.92MHz
-105
dBm
Input sensitivity
FSK
f
RF
= 868.3MHz
P
minH_ASK
B
IF
= 150kHz, f
m
= 2kHz
f =
50 kHz
BER
3
10
-3
LNA @ high gain
-105
dBm
f
RF
= 433.92MHz
-10
dBm
f
RF
= 868.3MHz
P
maxL_ASK
B
IF
= 150kHz, f
m
= 2kHz
BER
3
10
-3
LNA @ low gain
-10
dBm
f
RF
= 433.92MHz
-20
dBm
Maximum input
signal
ASK
f
RF
= 868.3MHz
P
maxH_ASK
B
IF
= 150kHz, f
m
= 2kHz
BER
3
10
-3
LNA @ high gain
-20
dBm
f
RF
= 433.92MHz
-10
dBm
f
RF
= 868.3MHz
P
maxL_FSK
B
IF
= 150kHz, f
m
= 2kHz
BER
3
10
-3
LNA @ low gain
-10
dBm
f
RF
= 433.92MHz
-20
dBm
Maximum input
signal
FSK
f
RF
= 868.3MHz
P
maxH_FSK
B
IF
= 150kHz, f
m
= 2kHz
BER
3
10
-3
LNA @ high gain
-20
dBm
Start-up time - ASK
t
on_ASK
from standby to receive
mode
2
2.5
ms
Start-up time - FSK
t
on_FSK
from standby to receive
mode
2.5
3
ms
Spurious emission
P
spur_RX
referred to receiver
input
-54
dBm
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 27 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
6.5 AC System Characteristics of the Transmitter Part
all parameters under normal operating conditions, unless otherwise stated;
typical values at T
a
= 23 C and V
cc
= 3 V;
all parameters based on test circuits for FSK (Fig. 12 to 15), FM and ASK (Fig. 16 to 17), respectively;
Parameter
Symbol
Condition
Min
Typ
Max
Unit
f
RF
= 433.92MHz
-10
dBm
Output power
@ P
max
20 dB
f
RF
= 868.3MHz
P
TX_00
mode = transmit,
RPS = see para. 7.3
TXPOWER = 00
-14
dBm
f
RF
= 433.92MHz
-2
dBm
Output power
@ P
max
12 dB
f
RF
= 868.3MHz
P
TX_01
mode = transmit,
RPS = see para. 7.3
TXPOWER = 01
-6
dBm
f
RF
= 433.92MHz
3
dBm
Output power
@ P
max
6 dB
f
RF
= 868.3MHz
P
TX_10
mode = transmit,
RPS = see para. 7.3
TXPOWER = 10
-1
dBm
f
RF
= 433.92MHz
10
dBm
Output power
@ P
max
f
RF
= 868.3MHz
P
TX_11
mode = transmit,
RPS = see para. 7.3
TXPOWER = 11
8
dBm
FSK deviation
f
FSK
depends on C
x1
, C
x2
and
crystal parameter
8
25
80
kHz
FM deviation
f
FM
adjustable with varactor
and V
FM
6
kHz
Modulation frequency FM
f
mod
10
kHz
PLL reference spurious emission P
spur_PLL
-40
dBm
Harmonic emission
P
harm
-36
dBm
Star-up time
t
on_TX
From standby to
transmit mode
2
2.5
ms
6.6 Serial Control Interface
Parameter
Symbol
Condition
Min
Max
Unit
Data to clock set up time
f
CS
150
ns
Data to clock hold time
t
CH
50
ns
Clock pulse width high
t
CWH
100
ns
Clock pulse width low
t
CWL
100
ns
Clock to load enable set
up time
t
ES
100
6.7 Crystal
Parameters
Parameter
Symbol
Condition
Min
Max
Unit
Crystal frequency
f
crystal
fundamental mode, AT
3
12
MHz
Load capacitance
C
load
10
15
pF
Static capacitance
C
0
7
pF
Series resistance
R
1
70
Spurious response
a
spur
only required for FSK modulation
-10
dB
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 28 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
7
Application Circuit Examples
7.1 Programmable User Mode - FSK Application Circuit (internal AFC option)
Fig. 12: Test circuit in Programmable User Mode for FSK operation (internal AFC option)
VCC
Lock
detect
FSK
output
FSK
input
CX1
CX2
CERFIL
XTAL
CTX0
C1
C2
L1
LTX0
CRX0
RSSI
OUT_MIX
CERRES
C3
CB5
C5
CB0
CB1
CB2
CB7
RE/SCLK
IN_DTA
ASK/FSK
FSK_SW
RO
VEE_RO
VCC_DIG
VEE_
PL
L
VC
C
_
PL
L
F
S
1/
LD
VEE_
D
I
G
LF
T
N
K
_LO
OUT_PA
IN_LNA
OUT_LNA
VEE_IF
GAIN_LNA
IN_MIX
VEE_LNA
IN
_
I
F
A
IN
_
D
E
M
IN
T
2
IN
T
1
R
SSI
OU
T_
D
E
M
OU
T_
D
T
A
V
CC_
IF
VCC
VCC
VCC
F
S
0
/
SD
EN
CB4
RF input
RF output
CP0
RP
L0
RPS
CF1
CF2
RF CB6
C4
SCLK
SDTA
SDEN
3wire bus
-Controller
Antenna
matching
network
TH7120
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 29 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
7.2 Stand-alone User Mode - FSK Application Circuit
Fig. 13: Test circuit in Stand-alone User Mode for FSK operation
FSK
output
FSK
input
CX1
CX2
XTAL
CTX0
C1
C2
L1
LTX0
CRX0
CERFIL
RSSI
OUT_MIX
CB5
C5
CB4
CB0
CB1
CB2
L0
RPS
CF1
CF2
RF CB6
C3
RF input
RF output
CERRES
CP0
RP
RE/SCLK
IN_DTA
ASK/FSK
FSK_SW
RO
F
S
1/
LD
LF
T
N
K
_LO
OUT_PA
IN_LNA
OUT_LNA
GAIN_LNA
IN_MIX
IN
_
I
F
A
IN
_
D
E
M
IN
T
2
IN
T
1
R
SSI
OU
T_
D
E
M
OU
T_
D
T
A
VCC
VCC
VCC
TX
enable
RX
enable
CB7
VCC
C4
VC
C
_
PL
L
VCC_DIG
V
CC_
IF
VEE_
PL
L
VEE_LNA
VEE_IF
VEE_RO
VEE_
D
I
G
F
S
0
/
SD
EN
see para. 4.1.1
TH7120
Antenna
matching
network
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 30 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
7.3 FSK test circuit component list (Fig. 12 and Fig. 13)
Part
Size
Value @
315 MHz
Value @
433.92 MHz
Value @
868.3 MHz
Value @
915 MHz
Tol.
Description
C1
0603
5.6 pF
5.6 pF
NIP
NIP
5%
LNA output tank capacitor
C2
0603
4.7 pF
1 pF
1.5 pF
1.5 pF
5%
MIX input matching capacitor
C3
0805
10 nF
10 nF
10 nF
10 nF
10% data slicer capacitor
C4
0805
330 pF
330 pF
330 pF
330 pF
10% demodulator output low-pass
capacitor, depending on data rate
C5
0805
1.5 nF
1.5 nF
1.5 nF
1.5 nF
10% RSSI output low pass capacitor
CB0
0805
100 nF
100 nF
100 nF
100 nF
10% blocking capacitor
CB1
0603
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB2
0805
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB4
0805
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB5
0603
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB6
0603
330 pF
330 pF
47 pF
47 pF
10% blocking capacitor
CB7
0603
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CF1
0805
330 pF
330 pF
330 pF
330 pF
5%
loop filter capacitor
CF2
0805
150 pF
150 pF
150 pF
150 pF
5%
loop filter capacitor
CX1
0805
18 pF
18 pF
22 pF
22 pF
5%
RO capacitor for FSK (
f =
20 kHz)
CX2
0805
150 pF
150 pF
27 pF
39 pF
5%
RO capacitor for FSK (
f =
20 kHz)
CP0
0805
10 - 12 pF
10 - 12 pF
10 - 12 pF
10 - 12 pF
5%
CERRES tuning capacitor
CRX0
0603
100 pF
100 pF
100 pF
100 pF
5%
RX coupling capacitor
CTX0
0603
3.3 pF
3.3 pF
2.2 pF
2.2 pF
5%
TX coupling capacitor
RP
0603
10 K
10 K
10 K
10 K
5%
CERRES loading resistor
RF
0805
62 k
62 k
56 k
56 k
5%
loop filter resistor
RPS
0805
27 k
33 k
47 k
62 k
5%
power-select resistor
L0
0805
47 nH
27 nH
3.3 nH
2.2 nH
5%
VCO tank inductor
L1
0603
27 nH
15 nH
10 nH
10 nH
5%
LNA output tank inductor
LTX0
0805
68 nH
220 nH
82 nH
82 nH
5%
TX impedance matching inductor
XTAL
HC49
SMD
7.1505 MHz
30ppm calibrate,
30ppm temperature
fundamental-mode crystal,
C
load
= 10 pF to 15pF, C
0, max
= 7 pF,
R
m, max
= 70
CERFIL
Leaded
type
SFE10.7MFP
@ B
IF2
= 40 kHz
ceramic filter from Murata (optional
for narrow band applications)
SMD
type
SFECV10.7MJS-A
@ B
IF2
= 150 kHz,
40kHz
ceramic filter from Murata
CERRES
SMD
type
CDACV10.7MG18-A
ceramic resonator from Murata
Notes:
NIP not in place, may be used optionally
Antenna matching network according to Evaluation Board Description EVB7120
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 31 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
7.4 Programmable User Mode - FSK Application Circuit (external AFC option)
Fig. 14: Test circuit in Programmable User Mode for FSK operation with external AFC
Circuit Features
!
Automatic Frequency Control (AFC)
!
Increases input frequency acceptance range up to RF
nom
50 kHz
!
Compensation of calibration tolerances of ceramic resonator
!
Compensation of temperature tolerances of ceramic resonator
VCC
Lock
detect
FSK
output
FSK
input
CX1
CX2
CERFIL
XTAL
CTX0
C1
C2
L1
LTX0
CRX0
RSSI
OUT_MIX
CERRES
C3
CB5
C5
CB0
CB1
CB2
CB7
RE/SCLK
IN_DTA
ASK/FSK
FSK_SW
RO
VEE_RO
VCC_DIG
VEE_
PL
L
VC
C
_
PL
L
F
S
1/
LD
VEE_
D
I
G
LF
T
N
K
_LO
OUT_PA
IN_LNA
OUT_LNA
VEE_IF
GAIN_LNA
IN_MIX
VEE_LNA
IN
_
I
F
A
IN
_
D
E
M
IN
T
2
IN
T
1
R
SSI
OU
T_
D
E
M
OU
T_
D
T
A
V
CC_
IF
VCC
VCC
VCC
F
S
0
/
SD
EN
CB4
RF input
RF output
L0
RPS
CF1
CF2
RF CB6
C4
SCLK
SDTA
SDEN
3wire bus
-Controller
Antenna
matching
network
TH7120
RP
VD
CP1
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 32 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
7.5 Stand-alone User Mode - FSK Application Circuit (external AFC option)
Fig. 15: Test circuit in Stand-alone User Mode for FSK operation with external AFC
Circuit Features
!
Automatic Frequency Control (AFC)
!
Increases input frequency acceptance range up to RF
nom
50 kHz
!
Compensation of calibration tolerances of ceramic resonator
!
Compensation of temperature tolerances of ceramic resonator
FSK
output
FSK
input
TX
enable
RX
enable
CX1
CX2
CERFIL
XTAL
CTX0
C1
C2
L1
LTX0
CRX0
RSSI
F
S
0
/
SD
EN
OUT_MIX
CERRES
C3
CB5
C5
CB0
CB1
CB2
CB7
RE/SCLK
IN_DTA
ASK/FSK
FSK_SW
RO
F
S
1/
LD
LF
T
N
K
_LO
OUT_PA
IN_LNA
OUT_LNA
GAIN_LNA
IN_MIX
IN
_
I
F
A
IN
_
D
E
M
IN
T
2
IN
T
1
R
SSI
OU
T_
D
E
M
OU
T_
D
T
A
VCC
VCC
VCC
VCC
CB4
RF input
RF output
CX2
RF input
RF output
VCC
L0
RPS
CF1
CF2
RF CB6
C4
RP
VD
CP1
R1
VC
C
_
PL
L
VCC_DIG
VC
C
_
I
F
VEE_
PL
L
VEE_
D
I
G
VEE_LNA
VEE_IF
VEE_RO
see para. 4.1.1
TH7120
Antenna
matching
network
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 33 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
7.6 FSK (with external AFC) test circuit component list (Fig. 14 and Fig. 15)
Part
Size
Value @
315 MHz
Value @
433.92 MHz
Value @
868.3 MHz
Value @
915 MHz
Tol.
Description
C1
0603
5.6 pF
5.6 pF
NIP
NIP
5%
LNA output tank capacitor
C2
0603
4.7 pF
1 pF
1.5 pF
1.5 pF
5%
MIX input matching capacitor
C3
0805
10 nF
10 nF
10 nF
10 nF
10% data slicer capacitor
C4
0805
330 pF
330 pF
330 pF
330 pF
10% demodulator output low-pass
capacitor, depending on data rate
C5
0805
1.5 nF
1.5 nF
1.5 nF
1.5 nF
10% RSSI output low pass capacitor
CB0
0805
100 nF
100 nF
100 nF
100 nF
10% blocking capacitor
CB1
0603
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB2
0805
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB4
0805
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB5
0603
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB6
0603
330 pF
330 pF
47 pF
47 pF
10% blocking capacitor
CB7
0603
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CF1
0805
330 pF
330 pF
330 pF
330 pF
5%
loop filter capacitor
CF2
0805
150 pF
150 pF
150 pF
150 pF
5%
loop filter capacitor
CX1
0805
18 pF
18 pF
22 pF
22 pF
5%
RO capacitor for FSK (
f =
20 kHz)
CX2
0805
150 pF
150 pF
27 pF
39 pF
5%
RO capacitor for FSK (
f =
20 kHz)
CP1
0805
33 pF
33 pF
33 pF
33 pF
5%
CERRES loading capacitor
CRX0
0603
100 pF
100 pF
100 pF
100 pF
5%
RX coupling capacitor
CTX0
0603
3.3 pF
3.3 pF
2.2 pF
2.2 pF
5%
TX coupling capacitor
RP
0603
10 K
10 K
10 K
10 K
5%
CERRES loading resistor
R1
0805
100 K
100 K
100 K
100 K
5%
varactor diode biasing resistor
RF
0805
62 k
62 k
56 k
56 k
5%
loop filter resistor
RPS
0805
27 k
33 k
47 k
62 k
5%
power-select resistor
L0
0805
47 nH
27 nH
3.3 nH
2.2 nH
5%
VCO tank inductor
L1
0603
27 nH
15 nH
10 nH
10 nH
5%
LNA output tank inductor
LTX0
0805
68 nH
220 nH
82 nH
82 nH
5%
TX impedance matching inductor
VD
SOD-323
BB535
BB535
BB535
BB535
varactor diode from Infineon
XTAL
HC49
SMD
7.1505 MHz
30ppm calibrate,
30ppm temperature
fundamental-mode crystal,
C
load
= 10 pF to 15pF, C
0, max
= 7 pF,
R
m, max
= 70
CERFIL
Leaded
type
SFE10.7MFP
@ B
IF2
= 40 kHz
ceramic filter from Murata (optional
for narrow band applications)
SMD
type
SFECV10.7MJS-A
@ B
IF2
= 150 kHz,
40kHz
ceramic filter from Murata
CERRES
SMD
type
CDACV10.7MG18-A
ceramic resonator from Murata
Notes:
NIP not in place, may be used optionally
Antenna matching network according to Evaluation Board Description EVB7120
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 34 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
7.7 Programmable User Mode - ASK Application Circuit
Fig. 16: Test circuit in Programmable User Mode for ASK operation
ASK
output
ASK
input
CX1
CERFIL
XTAL
CTX0
C1
C2
L1
LTX0
CRX0
RSSI
OUT_MIX
C3
CB5
C5
CB0
CB1
CB2
CB7
RE/SCLK
IN_DTA
ASK/FSK
FSK_SW
RO
F
S
1/
LD
LF
T
N
K
_LO
OUT_PA
IN_LNA
OUT_LNA
GAIN_LNA
IN_MIX
IN
_
I
F
A
IN
_
D
E
M
IN
T
2
IN
T
1
R
SSI
OU
T_
D
E
M
OU
T_
D
T
A
VCC
VCC
VCC
VCC
Lock
detect
F
S
0
/
SD
EN
RF input
RF output
L0
RPS
CF1
CF2
RF CB6
VC
C
_
PL
L
VCC_DIG
V
CC_
IF
VEE_
PL
L
VEE_
D
I
G
VEE_LNA
VEE_IF
VEE_RO
TH7120
Antenna
matching
network
SCLK
SDTA
SDEN
3wire bus
-Controller
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 35 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
7.8 Stand-alone User Mode - ASK Application Circuit
Fig. 17: Test circuit in Stand-alone User Mode for ASK operation
ASK
output
ASK
input
TX
enable
RX
enable
CX1
CERFIL
XTAL
CTX0
C1
C2
L1
LTX0
CRX0
RSSI
OUT_MIX
C3
CB5
C5
CB0
CB1
CB2
CB7
RE/SCLK
IN_DTA
ASK/FSK
FSK_SW
RO
F
S
1/
LD
LF
T
N
K
_LO
OUT_PA
IN_LNA
OUT_LNA
GAIN_LNA
IN_MIX
IN
_
I
F
A
IN
_
D
E
M
IN
T
2
IN
T
1
R
SSI
OU
T_
D
E
M
OU
T_
D
T
A
VCC
VCC
VCC
VCC
F
S
0
/
SD
EN
RF input
RF output
RPS
L0
CF1
CF2
RF CB6
VC
C
_
PL
L
VCC_DIG
V
CC_
IF
VEE_
PL
L
VEE_
D
I
G
VEE_LNA
VEE_IF
VEE_RO
see para. 4.1.1
TH7120
Antenna
matching
network
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 36 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
7.9 ASK test circuit component list (Fig. 16 and Fig. 17)
Part
Size
Value @
315 MHz
Value @
433.92 MHz
Value @
868.3 MHz
Value @
915 MHz
Tol.
Description
C1
0603
5.6 pF
5.6 pF
NIP
NIP
5%
LNA output tank capacitor
C2
0603
4.7 pF
1 pF
1.5 pF
1.5 pF
5%
MIX input matching capacitor
C3
0805
10 nF
10 nF
10 nF
10 nF
10% data slicer capacitor
C5
0805
1.5 nF
1.5 nF
1.5 nF
1.5 nF
10% RSSI output low pass capacitor
CB0
0805
100 nF
100 nF
100 nF
100 nF
10% blocking capacitor
CB1
0603
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB2
0805
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB5
0603
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CB6
0603
330 pF
330 pF
47 pF
47 pF
10% blocking capacitor
CB7
0603
330 pF
330 pF
330 pF
330 pF
10% blocking capacitor
CF1
0805
330 pF
330 pF
330 pF
330 pF
5%
loop filter capacitor
CF2
0805
150 pF
150 pF
150 pF
150 pF
5%
loop filter capacitor
CX1
0805
18 pF
18 pF
22 pF
22 pF
5%
RO capacitor
CRX0
0603
100 pF
100 pF
100 pF
100 pF
5%
RX coupling capacitor
CTX0
0603
3.3 pF
3.3 pF
2.2 pF
2.2 pF
5%
TX coupling capacitor
RF
0805
62 k
62 k
56 k
56 k
5%
loop filter resistor
RPS
0805
27 k
33 k
47 k
62 k
5%
power-select resistor
L0
0805
47 nH
27 nH
3.3 nH
2.2 nH
5%
VCO tank inductor
L1
0603
27 nH
15 nH
10 nH
10 nH
5%
LNA output tank inductor
LTX0
0805
68 nH
220 nH
82 nH
82 nH
5%
TX impedance matching inductor
XTAL
HC49
SMD
7.1505 MHz
30ppm calibrate,
30ppm temperature
fundamental-mode crystal,
C
load
= 10 pF to 15pF, C
0, max
= 7 pF,
R
m, max
= 70
CERFIL
Leaded
type
SFE10.7MFP
@ B
IF2
= 40 kHz
ceramic filter from Murata (optional
for narrow band applications)
SMD
type
SFECV10.7MJS-A
@ B
IF2
= 150 kHz,
40kHz
ceramic filter from Murata
Notes:
NIP not in place, may be used optionally
Antenna matching network according to Evaluation Board Description EVB7120
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 37 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
8
Extended Frequency Range
The operating frequency range of 300 MHz to 930 MHz can be covered without the use of an additional VCO
varactor diode. A frequency range extension down to 27 MHz can be realized by adding an external varactor
diode to the VCO tank.
Fig. 18: VCO tank circuit for extended frequency range
8.1 Board Component List (Fig. 18)
Part
Size
Value @
27 MHz
Value @
40 MHz
Value @
170 MHz
Tol.
Description
C0
0805
5%
VCO tank capacitor
VD1
SOD-323
varactor diode
CF1
0605
5%
loop filter capacitor
CF2
0605
5%
loop filter capacitor
CTX0
0603
5%
TX coupling capacitor
CRX0
0603
5%
RX coupling capacitor
C1
0805
5%
loop filter resistor
C2
0805
5%
loop filter resistor
L0
0805
5%
VCO tank inductor
LTX0
0805
5%
TX impedance matching inductor
L1
0603
5%
LNA output tank inductor
CB1
0603
10%
blocking capacitor
CB2
0805
10%
blocking capacitor
CB6
0603
10%
blocking capacitor
Note: All other components are unchanged
RF1
CTX0
C1
C2
L1
LTX0
CRX0
L0
F
S
0
/
SD
EN
C0
CB1
CB2
RE/SCLK
IN_DTA
ASK/FSK
F
S
1/
LD
LF
T
N
K
_LO
OUT_PA
IN_LNA
OUT_LNA
GAIN_LNA
IN_MIX
VD1
VC
C
VCC
RF input
RF output
RPS
CF1
CF2
RF
CB6
VC
C
_
PL
L
VCC_DIG
VEE_
PL
L
VEE_
D
I
G
VEE_LNA
TH7120
Antenna
matching
network
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 38 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
9
TX/RX Combining Network
9.1 Board Component List (Fig. 19)
Part
Size
Value @
315
MHz
Value @
433.92
MHz
Value @
868.3
MHz
Value @
915
MHz
CTX0 0603
10 pF
10 pF
10 pF
10 pF
CTX1 0805
10 pF
NIP
NIP
NIP
CTX2 0805
18 pF
2.2 pF
3.9 pF
TBD
CTX3 0805
TBD
1.0 pF
TBD
TBD
CRX0 0603
100 pF
100 pF
100 pF
100 pF
CRX1 0805
NIP
NIP
NIP
NIP
CRX2 0805
TBD
3.3 pF
TBD
TBD
LTX0
0805
150 nH
150 nH
82 nH
TBD
LTX1
0805
TBD
33 nH
TBD
TBD
LRX1 0805
27 nH
18 nH
8.2 nH
TBD
LRX2 0805
TBD
10 nH
TBD
TBD
Note: NIP not in place, may be used optionally
Circuit Features
!
No TX/RX switch required
!
Direct connection to
/4 antenna possible
Fig. 19: Combining network schematic
9.2 LNA input impedances in receive mode
Mode
High gain
Low gain
Frequency
Re[S
11
]
Im[S
11
]
R
P
C
P
Re[S
11
]
Im[S
11
]
R
P
C
P
315 MHz
0.74
-0.32
450
0.86
-0.28
940
433 MHz
0.67
-0.41
390
0.81
-0.37
830
1.6 pF
868 MHz
0.35
-0.59
210
0.55
-0.63
470
915 MHz
0.32
-0.60
200
2.0 pF
0.52
-0.65
440
1.7 pF
C
P
IN_LNA
26
R
P
9.3 LNA input impedances in transmit mode
Mode
LNA off, Pin LNA is shorted
Frequency
Re[S
11
]
Im[S
11
]
R
S
L
S
315 MHz
-0.20
0.049
33
1.7 nH
433 MHz
-0.20
0.068
33
1.7 nH
868 / 915 MHz
-0.18
0.014
34
1.8 nH
IN_LNA
26
R
S
L
S
9.4 PA load impedances
Frequency
Re[S
11
]
Im[S
11
]
R
S
L
S
315 MHz
TBD
TBD
TBD
TBD
433 MHz
0.49
0.40
71
35 nH
868 MHz
-0.37
0.18
22
2 nH
915 MHz
TBD
TBD
TBD
TBD
R
S
L
S
OUT_PA
25
Note: This values represents the optimum load impedance seen by the output stage
LTX0
CTX0
CTX3
CRX1
CRX2
LRX1
LRX2
LTX1
CRX0
CTX1
CTX2
RF input
RF output
VC
C
OUT_PA
IN_LNA
25
26
TH7120
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 39 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
10
Package Dimensions
Fig. 20: LQFP32 (Low profile Quad Flat Package)
All Dimension in mm, coplanarty < 0.1mm
E1, D1
E, D
A
A1
A2
e
b
c
L

min
1.40
0.05
1.35
0.30
0.09
0.45
0
max
7.00
9.00
1.60
0.15
1.45
0.8
0.45
0.20
0.75
7
All Dimension in inch, coplanarty < 0.004"
min
0.055
0.002
0.053
0.012
0.0035
0.018
0
max
0.276
0.354
0.063
0.006
0.057
0.031
0.018
0.0079
0.030
7
1
32
25
17
24
8
9
16
D
D1
E1
e
b
E
A2
A
A1
L
c
0.25
(0.0098)
12
1
+
12
1
+
.10 (.004)
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 40 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
11
Reliability Information
Melexis devices are classified and qualified regarding suitability for infrared, vapor phase and wave soldering
with usual (63/37 SnPb-) solder (melting point at 183degC).
The following test methods are applied:
IPC/JEDEC J-STD-020A (issue April 1999)
Moisture/Reflow Sensitivity Classification For Nonhermetic Solid State Surface Mount Devices
CECC00802 (issue 1994)
Standard Method For The Specification of Surface Mounting Components (SMDs) of Assessed Quality
MIL 883 Method 2003 / JEDEC-STD-22 Test Method B102
Solderability
For all soldering technologies deviating from above mentioned standard conditions (regarding peak tem-
perature, temperature gradient, temperature profile etc) additional classification and qualification tests have to
be agreed upon with Melexis.
The application of Wave Soldering for SMD's is allowed only after consulting Melexis regarding assurance of
adhesive strength between device and board.
For more information on manufacturability/solderability see quality page at our website:
http://www.melexis.com/
12
ESD Precautions
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD).
Always observe Electro Static Discharge control procedures whenever handling semiconductor products.
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 41 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
Your Notes
TH7120
27 to 930MHz
FSK/FM/ASK Transceiver
3901007120
Page 42 of 42
Data Sheet
Rev. 012
March/03
PR
ELI
MIN
AR
Y
13
Disclaimer
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the infor-
mation set forth herein or regarding the freedom of the described devices from patent infringement. Melexis
reserves the right to change specifications and prices at any time and without notice. Therefore, prior to de-
signing this product into a system, it is necessary to check with Melexis for current information. This product
is intended for use in normal commercial applications. Applications requiring extended temperature range,
unusual environmental requirements, or high reliability applications, such as military, medical life-support or
life-sustaining equipment are specifically not recommended without additional processing by Melexis for each
application.
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be
liable to recipient or any third party for any damages, including but not limited to personal injury, property
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential dam-
ages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data
herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of
technical or other services.
2002 Melexis NV. All rights reserved.
For the latest version of this document. Go to our website at
www.melexis.com
Or for additional information contact Melexis Direct:
Europe and Japan:
All other locations:
Phone: +32 1367 0495
Phone: +1 603 223 2362
E-mail: sales_europe@melexis.com
E-mail: sales_usa@melexis.com
QS9000, VDA6.1 and ISO14001 Certified