ChipFind - документация

Электронный компонент: LS6511-S

Скачать:  PDF   ZIP
FEATURES:
Direct Interface with PIR Sensor
Two-Stage Differential Amplifier
Amplifier Gain and Bandwidth externally controlled
True and Complementary Output Drives
Separate digital filters for processing positive and
negative input signals
Single Pulse/Dual Pulse/ Concurrent Pulse Detection
Adjustable Output Pulse Width
Optional 5V Shunt Regulator Output
50A Typical Supply Current
Undervoltage Detection
LS6511(DIP); LS6511-S (SOIC) - See Figure 1
APPLICATIONS:
Security system intrusion detection, automatic doors, motion
triggered events such as remote animal photography.
DESCRIPTION (See Figure 5)
The LS6511 is a CMOS integrated circuit, designed for detecting
motion from a PIR Sensor and initiating appropriate responses.
DIFFERENTIAL AMPLIFIER
Each stage of the two stage Differential Amplifier can be set to
have its own amplification and bandwidth. The two inputs to the
first stage allow for single-ended or differential connection to PIR
Sensors. This stage can be biased anywhere in its dynamic
range. The second stage is internally biased so that the Window
Comparator's lower and higher thresholds can be fixed relative to
this bias. Signal levels as low as 100V can be detected.
WINDOW COMPARATOR
The Window Comparator provides noise filtering by enabling only
those signals equal to or greater than a fixed threshold at the
output of the Differential Amplifier to appear at the 2 outputs of
the Window Comparator. One output detects positive input
signals while the other output detects negative input signals.
COMPARATOR DIGITAL FILTER
The outputs of the Window Comparator are filtered so that
motion must be present for a certain duration before it can be
recognized and appear as pulses at the Digital Filter outputs. An
external RC network sets the duration time. Nominal duration is
50ms.
MODE SELECT
A tristate input pin selects how the detected signals are
processed. Single Pulse (SP) Mode is when detection from either
a positive or negative input signal at the Digital Filter outputs will
cause an LED/RELAY output to occur. Concurrent Pulse (CP)
Mode is when detection from a positive and negative input signal
must occur within a specific time before an output will occur.
Dual Pulse (DP) mode is when any two detections within a
specific time will cause an output to occur.
SP Mode = 0; CP Mode = Open; DP Mode = 1.
PIR SENSOR INTERFACE
January 2003
6511-012703-1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
LSI
LS6511
DIFF. AMP. 2 INPUT (-)
DIFF. AMP. 2 OUTPUT
CP MODE / DP MODE RC
DIGITAL FILTER RC
V
DD
DIFF. AMP 1 INPUT (-)
DIFF. AMP 1 INPUT (+)
5V REGULATOR OUTPUT
MODE SELECT
DURATION TIMER RC
LED/RELAY OUTPUT
PIN ASSIGNMENT - TOP VIEW
FIGURE 1
DIFF. AMP. 1 OUTPUT
V
SS
LED/RELAY OUTPUT
(+
V
)
(-
V
)
PROGRAMMABLE RETRIGGERABLE ONE-SHOTS
Positive and negative input signals at the digital filter outputs will
generate retriggerable one-shot pulses. In the Concurrent Pulse
Mode, outputs from each one-shot must occur together at some
point in time to cause an output to occur. The one-shot pulse
width is programmable using an external RC network. Typical
pulse widths used vary between 1 and 12 seconds.
WINDOW TIMER
In the Dual Pulse Mode any two detections must occur within a
timing window to cause an output to occur. The timing window is
programmable using an external RC network. Typical windows
are between 1 and 5 seconds.

OUTPUT DURATION TIMER
The duration timer is retriggerable and programmable using an
external RC network. Typical duration times are between 0.5 and
15 seconds. Successive input detections will restart the timer.
OUTPUTS
The LED/RELAY Output is an open drain output that will sink
current when an input signal is detected and processed and
when the Power Supply drops below 3.7V (Typical) (Under-
voltage Detection). The Undervoltage Detection will be removed
when the Power Supply rises above 3.9V (Typical). The LED/
RELAY Output performs identically but is opposite in polarity.
The output can sink current from a relay coil returned to a
positive voltage (V
DD
to 9.5V maximum).
SHUNT REGULATOR
The LS6511 includes a 5V Shunt Regulator Output which can be
tied to the V
DD
Pin so that the circuit can be powered from a
higher voltage power supply.
Note: See Figures 2, 3 and 4 for application schematics.
LSI/CSI
LSI Computer Systems, Inc. 1235 Walt Whitman Road, Melville, NY 11747 (631) 271-0400 FAX (631) 271-0405
LS6511
UL
A3800
ABSOLUTE MAXIMUM RATINGS:
PARAMETER
SYMBOL
VALUE
UNIT
DC supply voltage
V
DD -
V
SS
+7
V
Any input voltage
V
IN
V
SS
- 0.3 to V
DD
+ 0.3
V
Operating temperature
T
A
-40 to +85
C
Storage temperature
T
STG
-65 to +150
C
ELECTRICAL CHARACTERISTICS:
(All voltages referenced to V
SS
, T
A
= -40C to +55C, 4.5V
V
DD
6.5V, unless otherwise specified.)
PARAMETER
SYMBOL
MIN
TYP
MAX
UNIT
CONDITIONS
SUPPLY CURRENT:
V
DD
=
5V
I
DD
-
50
75
A
LED/RELAY, LED/RELAY
V
DD
=
4.5V - 6.5V
I
DD
-
65
125
A
and REGULATOR
outputs not loaded
REGULATOR:
Voltage
V
R
5.00
5.75
6.25
V
-
Current
I
R
-
-
10
mA
-
DIFFERENTIAL AMPLIFIERS:
Open Loop Gain, Each Stage
G
70
-
-
dB
-
Common Mode Rejection Ratio
C
MRR
60
-
-
dB
-
Power Supply Rejection Ratio
P
SRR
60
-
-
dB
-
Input Sensitivity
V
S
100
-
-
Vp-p
T
A
= 25C, with Amplifier
(Minimum Detectable Voltage
Bandpass configuration
to first amplifier when both
as shown in Figure 3
amplifiers are cascaded for
a net gain of 8,000)
Input Dynamic Range
-
0
-
1.75
V
-
Diff. Amp 2 Internal
V
IR
-
0.3V
DD
-
V
-
Reference
COMPARATOR:
Lower Reference
V
THL
-
V
IR
- 0.8V
-
V
At V
DD
= 5.75V
Higher Reference
V
THH
-
V
IR
+ 0.8V
-
V
At V
DD
= 5.75V
DIGITAL FILTER:
For 50ms Filter Time
R
DF
-
2.2
-
M
-
C
DF
-
0.01
-
F
-
ONE SHOT
R
OS
-
2.2
-
M
-
(1 Second)
C
OS
-
0.22
-
F
-
WINDOW TIMER
R
WT
-
2.2
-
M
-
(2.5 Second)
C
WT
-
0.68
-
F
-
DURATION TIMER
R
DT
-
2.2
-
M
-
(5 Seconds)
C
DT
-
0.68
-
F
-
OUTPUT DRIVE CURRENT
I
O
-20
-
-
mA
V
DD
= 5V
(Vo = 0.5V Max.)
6511-012703-2
The information included herein is believed to be
accurate and reliable. However, LSI Computer Systems,
Inc. assumes no responsibilities for inaccuracies, nor for
any infringements of patent rights of others which may
result from its use.
FIGURE 2. TYPICAL RELAY APPLICATION
R1 = See NOTE 2
R2 = 36k
R3 = 2.7M
R4 = 36k
R5 = 2.7M
C1 = 100F
C2 = 33F
C3 = 0.01F
C4 = 33F
C5 = 0.01F
C6 = 0.01F (Typical)
C7 = 0.22F (CP Mode; Typical)
C7 = 0.68F (DPMode; Typical)
C8 = 0.22F (Typical)
C9 = 0.1F
D1 = 1N4001
RELAY = No typical P/N
PIR = HEIMANN LHi 958, 968 (Typical)
All Resistors 1/4W.
All Capacitors 10V.
NOTE 2: R1 is selected to provide sufficient
current to drive the LS6511 and PIR Sensor. Any
surplus current is available to drive additional
loads applied to the 5V Shunt Regulator output or
is absorbed by the 5V Shunt Regulator. Refer to
specifications for current limits.
NOTE 3: In SP Mode, R7 and C7 are not used
and Pin 5 is tied to Vss.
R6 = 2.2M
(Typical)
R7 = 2.2M
(Typical)
R8 = 2.2M
(Typical)
R9 = 3k
R10 = 2.2k
(Typical)
NOTE 1: The relay coil is normally energized and the LED is off.
When an alarm occurs, the relay coil becomes de-energized and
the LED is turned on.
AMP 1
OUT
AMP 1
(-)IN
AMP 2
(-)IN
AMP 1
(+)IN
AMP 2
OUT
5V REG
OUT
CP MODE or
DP MODE RC
V
SS
L E D / R E L
OUT
V
DD
V
DD
C4
R4
C5
R5
1
2
3
4
5
6
7
9
10
11
12
13
14
C2
R2
R9
C9
R1
C1
PIR
S E N S O R
R3
C3
LS6511
C6
R6
+
-
+
-
+
-
8
V
DD
C7
R7
V
DD
C8
R8
V
DD
D1
L E D / R E L
OUT
MODE
DIG FILTER
RC
DUR TIM
RC
RELAY
COIL
RAW
DC
INPUT
R10
LED
S = 3-Position SPDT (On-Off-On)
S
See Note 3
Using the typical application circuit as shown in Figure 2,
the Outputs on Pins 8 and 9 occur on power-up because of
the large settling time in the amplifier stages. In applications
where this is not desireable, the digital filter oscillator must
be disabled on power-up long enough to enable the PIR
amplifiers to stabilize. Replacing the R6-C6 circuit shown in
Figure 2 with the circuit shown in Figure 3 will disable the
digital filter oscillator until the voltage across the 220F
capacitor reaches a value high enough for the oscillator to
begin oscillating. Component values that can be changed to
speed up stabilization include C2, C3, C4 and C5. C3 and
C5 become 0.001F and C2 and C4 become 10F.
FIGURE 3. INHIBITING OUTPUTS UPON POWER TURN-ON
L S 6 5 1 1 - 4
2 . 2 M
. 0 1 F
2 2 0 F
1 0 0 k
V
DD
R6
C6
+
6511-012703-3
NOISE CONSIDERATIONS
Layout of any circuit using a high-gain PIR amplifier is critical.
The PIR amplifier components should be located close to the
amplifier pins on the chip in order to minimize noise pickup.The
oscillator and relay drive components should be located away
from the amplifier components.
Other steps that can help reduce noise is adding a ground
shield backplane to the PCB and enhancing the filtering of
VDD; i.e., adding a 0.1uF high frequency capacitor across C1
and increasing C1 to 220 F.
6511-012703-4
A M P 1
OUT
A M P 1
(-)IN
A M P 2
(-)IN
A M P 1
(+)IN
A M P 2
OUT
5 V R E G
OUT
C3
R3
C4
R4
1
2
3
12
13
14
R8
C9
R1
C1
PIR
S E N S O R 1
R2
C2
L S 6 5 1 1
R7
C8
R10
R9
C7
R6
C6
R5
C5
PIR
S E N S O R 2
+
-
+
-
+
-
+
-
V
DD
5V
R1 = 1k
R6 = 36k
C1 = 100F
C6 = 33F
R2 = 2.7M
R7 = 36k
C2 = 0.01F
C7 = 0.01F
R3 = 36k
R8 = 36k
C3 = 33F
C8 = 0.1F
R4 = 2.7M
R9 = 5.6M
C4 = 0.01F
C9 = 0.1F
R5 = 36k
R10 = 2.4M
C5 = 33F
PIRs = HEIMANN LHi 954, 958, 978, 874 or 878 (Typical)
All Resistors 1/4 W. All Capacitors 10V.
NOTES: 1) A pair of PIR Sensors may be used in applications where a wider optical field of view is needed.
2) External 5V Regulator drives the LS6511 and PIR sensor.
FIGURE 4. DIFFERENTIAL INTERFACE TO PIR SENSOR PAIR
AMP
AMP
COMP
COMP
DIFF AMP 2
OUTPUT
DIFF AMP 2
INPUT (-)
DIFF AMP 1
OUTPUT
DIFF AMP 1
INPUT (-)
DIFF AMP 1
INPUT (+)
SHUNT
REGULATOR
PROGRAMMABLE
RETRIGGERABLE
ONE-SHOT
OUTPUT
DURATION
TIMER
V
DD
WINDOW
TIMER
5 V REGULATOR
OUTPUT
CONCURRENT PULSE/
DUAL PULSE RC
LED/RELAY
OUTPUT
DRIVER
M
U
X
FIGURE 5. LS6511 BLOCK DIAGRAM
WINDOW
COMPARATOR
DIGITAL
FILTER
V
DD
V
SS
DIGITAL
FILTER
PROGRAMMABLE
RETRIGGERABLE
ONE-SHOT
LED/RELAY
OUTPUT
DRIVER
DIGITAL FILTER RC
MODE
SELECT
DURATION
TIMER RC
(+
V
)
(-
V
)
UNDERVOLTAGE
DETECTOR
3
2
1
14
13
11
10
12
6
7
9
8
4
-
+
-
+
+
-
+
-
5