ChipFind - документация

Электронный компонент: Le57D111

Скачать:  PDF   ZIP

Document Outline

Document ID# 081132
Date:
May 26, 2006
Rev:
C
Version: 1
Distribution:
Public Document
TM
Le5711
Dual Subscriber Line Interface Circuit
VE580 Series
APPLICATIONS
Ideal for low cost, high performance linecard
applications (CO, DLC)
Meets requirements for countries such as: China,
Korea, Japan, Taiwan, and Australia
Fulfills the following China specifications: GF002-
9002.1
FEATURES
Dual-channel SLIC device with small footprint
On-chip Thermal Management (TMG) feature in Normal
and Reverse Polarity
Control states: Active (Normal and Reverse Polarity),
Standby, and Disconnect
On-hook transmission
Low standby power
39 to 58 V battery operation
Two-wire impedance set by single external impedance
Device level thermal shutdown
Set on-chip constant-current feed
Programmable ring-trip detect threshold
Only +5 V and battery supply required
ORDERING INFORMATION
1.
The green package meets RoHS Directive 2002/95/EC of the
European Council to minimize the environmental impact of
electrical equipment.
2.
For delivery using a tape and reel packing system, add a "T" suffix
to the OPN (Ordering Part Number) when placing an order.
Device
Package
1
Packing
2
Le57D111DJC
32-pin PLCC (Green),
50 dB Reverse Polarity
Tube
Le57D111BTC
44-pin eTQFP (Green),
50 dB Reverse Polarity
Tray
Le57D113BTC
44-pin eTQFP (Green),
50 dB No Reverse Polarity
DESCRIPTION
The innovative Le5711 dual-channel SLIC device is designed
for high-density POTS applications requiring a small footprint
SLIC device with significant power savings. By combining the
line interface of two channels into one SLIC device, the Le5711
device enables the design of a low cost, high performance, and
fully programmable line interface for multiple country
applications worldwide. The on-chip Thermal Management
(TMG) feature allows for significantly reduced power
dissipation on the device. The Le5711 device is offered in
space-saving package types, 44-pin eTQFP and 32-pin PLCC.
The small footprint of the SLIC device allows designers to save
board space, increasing the density of lines on the board. The
Le5711 device is also designed to significantly reduce the
number of external components required for linecard design.
Legerity offers a range of compatible codec/filters that perform
the codec function in a line card. In particular the Legerity
QLSLACTM device, another member of the VE580 series,
combined with the Le5711 device provides a programmable
line circuit that can be configured for varying requirements.
RELATED LITERATURE
080753 Le58QL02/021/031 QLSLAC
TM
Data Sheet
080754 Le58QL061/063 QLSLAC
TM
Data Sheet
080748 Le5711 Evaluation Board User's Guide
BLOCK DIAGRAM
BGND
1
A
2
(TIP)
HP
2
B
2
(RING)
VTX
2
RSN
2
CH2
2-W
Interface
CH1
2-W
Interface
CH2
Input
Decoder
and Control
Common
Bias
Off-Hook
Detector
CH2
P
o
w
er F
eed
Controller
CH2
Ring T
r
ip
Detector
CH2
Ring T
r
ip
Detector
CH1
P
o
w
er F
eed
Controller
CH1
Off-Hook
Detector
CH1
Signal
T
r
ansmission
CH2
Signal
T
r
ansmission
CH1
CH1
Input
Decoder
and Control
C2
2
C1
2
DET
2
CAS
IRE
F
DET
1
C2
1
C1
1
A
1
(TIP)
HP
1
B
1
(RING)
VTX
1
RSN
1
BGND
2
VBA
T
CDC
2
DB
2
DA
C
DB
1
CDC
1
VCC
A
GND/
DGND
TMG
2
TMG
1
2
Le5711 VE580 Series Data Sheet
Table of Contents
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Block Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Signal Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Power Feed Controller and Common Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Input Decoder and Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Off-Hook Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Ring-Trip Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Transmission Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Crosstalk Between Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Longitudinal Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Insertion Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Line Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Power Supply Rejection Ratio at the Two-Wire Interface, Active Normal State . . . . . . . . . . . . . . .8
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
RFI Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Logic Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Ring-Trip Detector Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Loop Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
SLIC Device Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
User-Programmable Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
DC Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Test Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Application Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Line card Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
32-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Revision A1 to B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Revision B1 to C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Le5711 VE580 Series Data Sheet
3
PRODUCT DESCRIPTION
The Le5711 device is designed for long loop high-density POTS applications requiring a low power, small footprint SLIC. The
Le5711 device increases linecard density by integrating two SLIC devices into a single 32 pin package. This reduction in board
space allows for higher density linecard, which allows for amortizing common hardware across more channels. The Le5711
device gives linecard designers a simple control interface that supports four states: Active, Reverse Polarity, Standby, and
Disconnect (Ringing). The Le5711 device is low cost and high performance, providing key features required for POTS markets
requiring only loop start. The device includes a thermal management resistor for reducing power dissipation.
BLOCK DESCRIPTIONS
Two-Wire Interface
The two-wire interfaces provide DC current and send voice signals to a telephone apparatus connected to the linecard with a
two-wire line. The two-wire interface also receives the returning voice signals from the telephone transmitter.
Signal Transmission
The RSN input current controls the receive current sent to the two-wire interface. The AC line voltage is sensed by a differential
amplifier between the A
i
(TIP) and HP
i
leads.* The output of this amplifier is equal to the AC metallic components of the line
voltages and is output at VTX
i
. The transmission circuit also contains a longitudinal feedback circuit to shunt longitudinal signals
to a DC bias voltage. The longitudinal feedback does not affect metallic signals.
*Note:
"i" denotes channel number
Power Feed Controller and Common Bias
The power feed controllers have three sections: (1) the battery feed circuit, (2) the reverse polarity circuit, and (3) the common
bias circuit. The battery feed circuit regulates the amount of DC current and voltage supplied to the telephone over a wide range
of loop resistance. The reverse polarity circuit provides the capability to reverse the loop current for pay telephone key pad disable
and other applications. The bias circuit provides a filtered reference voltage, which is offset from the subscriber line voltage, and
a signal which sets the current limit.
Input Decoder and Control
The input decoder and control block provides a means for a microprocessor or SLAC IC to control such system states as Active,
Standby, Disconnect (Ringing), and Reverse Polarity. The input decoder and control block has TTL-compatible inputs, which set
the operating states of the SLIC device. It also provides the supervision signal sent back to the controller.
Off-Hook Detector
The most important loop monitoring function is off-hook detection. Loop current is programmed for both channels by a single
resistor. Loop detect threshold is typically 1/3 of the programmed Loop current in the Active and Reverse Polarity states.
Ring-Trip Detector
In the Disconnect state, the ring-trip detector is active. While the DB
i
pin is more negative than the DAC pin, the DET pin will be
high to indicate on hook. When an off hook condition occurs, the DB
i
pin becomes more positive than the DAC pin, and the DET
pin will go low to indicate off hook during ringing (ring-trip) has been detected. The system implements the Ringing state using
external control of a ring relay in combination with the Disconnect SLIC state, which enables the ring-trip detector.
4
Le5711 VE580 Series Data Sheet
CONNECTION DIAGRAMS
Note:
1.
Pin 1 is marked for orientation.
2.
NC = No Connect
3.
The exposed heat sink pad on the bottom of the eTQFP package is connected to the battery supply (VBAT pin). Do not connect to GND.
BGND
1
B
1
(RING)
A
1
(TIP)
DB
1
DAC
VBAT
DB
2
A
2
(TIP)
B
2
(RING)
RSN
2
VTX
2
RSVD
2
HP
2
TMG
2
BGND
2
CDC
2
4
3
2
1
32
31
30
14
15
16 17
18
19
20
7
9
8
11
10
12
13
6
5
27
25
26
23
24
22
21
28
29
32-Pin PLCC
CDC
1
RSN
1
VTX
1
RSVD
1
HP
1
TMG
1
DET
1
C2
1
C1
1
AGND/
DGND
VCC
CAS
IREF
C1
2
C2
2
DET
2
44-Pin eTQFP
12 13 14 15 16 17 18 19 20 21 22
23
24
25
26
27
28
29
30
31
32
33
44 43 42 41 40 39 38 37 36 35 34
5
6
7
8
9
10
11
4
3
2
1
A
1
(TIP)
B
1
(RING)
BGND
1
DB
1
DAC
NC
VBAT
DB
2
A
2
(TIP)
B
2
(RING)
BGND
2
NC
C1
1
C2
1
AGND/DGND
VCC
NC
CAS
IREF
C1
2
C2
2
RSN
2
NC
CDC
2
NC
VTX
2
NC
NC
RSVD
2
NC
HP
2
TMG
2
RSN
1
CDC
1
NC
VTX
1
NC
NC
RSVD
1
NC
HP
1
TMG
1
DET
1
DET
2
Exposed Pad
Le5711 VE580 Series Data Sheet
5
PIN DESCRIPTIONS
Pin Name
Type
Description
A
1
(TIP)
Output
Output of A (TIP) power amplifier of channel 1.
A
2
(TIP)
Output
Output of A (TIP) power amplifier of channel 2.
AGND/DGND
Ground
Analog and digital ground.
B
1
(RING)
Output
Output of B (RING) power amplifier of channel 1.
B
2
(RING)
Output
Output of B (RING) power amplifier of channel 2.
BGND
1
Ground
Battery (power) ground of channel 1
BGND
2
Ground
Battery (power) ground of channel 2.
C1
1
Input
State decoder inputs of channel 1.
C2
1
Input
C1
2
Input
State decoder inputs of channel 2.
C2
2
Input
CAS
Capacitor
Pin for capacitor to filter reference voltage when operating in anti-saturation region.
CDC
1
Capacitor
DC feed filter capacitor of channel 1.
CDC
2
Capacitor
DC feed filter capacitor of channel 2.
RSVD
1
Input
Reserved. Connect to V
CC
.
RSVD
2
Input
Reserved. Connect to V
CC
.
DAC
Input
Ring-trip negative of both channels. Negative input to ring-trip comparator.
DB
1
Input
Ring-trip positive of channel 1. Positive input to ring-trip comparator.
DB
2
Input
Ring-trip positive of channel 2. Positive input to ring-trip comparator.
DET
1
Output
Switch-hook/Ring-trip detector output of channel1. Logic low indicates that a detector is
tripped.
DET
2
Output
Switch-hook/Ring-trip detector output of channel 2. Logic low indicates that a detector is
tripped.
HP
1
Capacitor
Connect High-pass filter capacitor from HP
1
to B
1
(RING).
HP
2
Capacitor
Connect High-pass filter capacitor from HP
2
to B
2
(RING).
IREF
Resistor
Connection for reference resistor that programs loop detector threshold and DC feed
current of both channels.
NC
--
No Connect. This pin is not internally connected.
RSN
1
Input
Receive Summing Node of channel 1. In the Active and Polarity Reversed states, the
current (both AC and DC) between A
1
(TIP) and B
1
(RING) is equal to 500 times the current
into this pin. The networks that program receive gain and two-wire impedance of channel
1 connect to this node.
RSN
2
Input
Receive Summing Node of channel 2. In the Active and Polarity Reversed states, the
current (both AC and DC) between A
2
(TIP) and B
2
(RING) is equal to 500 times the current
into this pin. The networks that program receive gain and two-wire impedance of channel
2 connect to this node.
TMG
1
Output
Thermal management of channel 1. External resistor connects from TMG
1
to VBAT to
offload power from the SLIC device.
TMG
2
Output
Thermal management of channel 2. External resistor connects from TMG2 to VBAT to
offload power from the SLIC device.
VBAT
Battery
Battery supply and connection to substrate.
VCC
Power
+5 V power supply.
VTX
1
Output
Transmit audio signal of channel 1. This output is a scaled version of the A and B metallic
voltage. VTX also sources the two-wire input impedance programming network.
VTX
2
Output
Transmit audio signal of channel 2. This output is a scaled version of the A and B metallic
voltage. VTX
2
also sources the two-wire input impedance programming network.
Exposed Pad
Battery
The exposed thermal management pad must be in thermal contact with an exposed copper
plate with an electrical potential of battery supply (VBAT pin).