ChipFind - документация

Электронный компонент: 8600V

Скачать:  PDF   ZIP

Document Outline

ispLSI
8600V
3.3V In-System Programmable
SuperBIGTM High Density PLD
8600v_03
1
Copyright 2000 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject
to change without notice.
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com
Features
SuperBIG HIGH DENSITY IN-SYSTEM
PROGRAMMABLE LOGIC
-- 3.3V Power Supply
-- 32,000 PLD Gates/600 Macrocells
-- 192-264 I/O Pins Supporting 3.3V/2.5V I/O
-- 864 Registers
-- High-Speed Global and Big Fast Megablock (BFM)
Interconnect
-- Wide 20-Macrocell Generic Logic Block (GLB) for
High Performance
-- Wide Input Gating (44 Inputs per GLB) for Fast
Counters, State Machines, Address Decoders, Etc.
-- PCB-Efficient Ball Grid Array (BGA) Package
Options
HIGH-PERFORMANCE E
2
CMOS
TECHNOLOGY
--
f
max = 125 MHz Maximum Operating Frequency
--
t
pd = 8.5 ns Propagation Delay
-- Electrically Erasable and Reprogrammable
-- Non-Volatile
-- Programmable Speed/Power Logic Path
Optimization
IN-SYSTEM PROGRAMMABLE
-- Increased Manufacturing Yields, Reduced Time-to-
Market and Improved Product Quality
-- Reprogram Soldered Devices for Faster Debugging
100% IEEE 1149.1 BOUNDARY SCAN TESTABLE AND
3.3V IN-SYSTEM PROGRAMMABLE
ARCHITECTURE FEATURES
-- Enhanced Pin-Locking Architecture, Symmetrical
Generic Logic Blocks Connected by Hierarchical
Big Fast Megablock and Global Routing Planes
-- Product Term Sharing Array Supports up to 28
Product Terms per Macrocell Output
-- Macrocells Support Concurrent Combinatorial and
Registered Functions
-- Embedded Tristate Bus Can Be Used as an Internal
Tristate Bus or as an Extension of an External
Tristate Bus
-- Macrocell and I/O Registers Feature Multiple Control
Options, Including Set, Reset and Clock Enable
-- I/O Pins Support Programmable Bus Hold, Pull-Up,
Open-Drain and Slew Rate Options
-- Separate VCCIO Power Supply to Support 3.3V or
2.5V Input/Output Logic Levels
-- I/O Cell Register Programmable as Input Register for
Fast Setup Time or Output Register for Fast Clock to
Output Time
ispDesignEXPERTTM LOGIC COMPILER AND COM-
PLETE ISP DEVICE DESIGN SYSTEMS FROM HDL
SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING
-- Superior Quality of Results
-- Tightly Integrated with Leading CAE Vendor Tools
-- Productivity Enhancing Timing Analyzer, Explore
Tools, Timing Simulator and ispANALYZERTM
-- PC and UNIX Platforms
Functional Block Diagram
ispLSI 8000V Family Description
The ispLSI 8000V Family of Register-Intensive, 3.3V
SuperBIG In-System Programmable Logic Devices is
based on Big Fast Megablocks of 120 registered macro-
cells and a Global Routing Plane (GRP) structure
interconnecting the Big Fast Megablocks. Each Big Fast
Megablock contains 120 registered macrocells arranged
in six groups of 20, a group of 20 being referred to as a
Generic Logic Block, or GLB. Within the Big Fast
Megablock, a Big Fast Megablock Routing Pool (BRP)
interconnects the six GLBs to each other and to 24 Big
Fast Megablock I/O cells with optional I/O registers. The
Global Routing Plane which interconnects the Big Fast
Megablocks has additional global I/Os with optional I/O
registers. The 192-I/O version contains 72 Big Fast
Megablock I/O and 120 global I/O, while the 264-I/O
Global Routing Plane
12
I/O
12
I/O
Big Fast Megablock 0
12
I/O
12
I/O
Big Fast Megablock 1
12
I/O
12
I/O
Big Fast Megablock 3
12
I/O
12
I/O
Big Fast Megablock 4
12
I/O
12
I/O
Big Fast Megablock 2
12
I/O
12
I/O
12
I/O
12
I/O
12
I/O
12
I/O
12
I/O
12
I/O
12
I/O
12
I/O
12
I/O
12
I/O
Boundary
Scan
8600v block
July 2000
Specifications
ispLSI 8600V
2
Figure 1. ispLSI 8600V Functional Block Diagram (Perspective)
Global Routing Plane (GRP) with Tristate Bus Lines
Big Fast Megablock Routing Pool (BRP)
Big Fast Megablock Routing Pool (BRP)
Big Fast Megablock Routing Pool (BRP)
Big Fast Megablock Routing Pool (BRP)
Functional Block Diagram
Specifications
ispLSI 8600V
3
version contains 120 Big Fast Megablock I/O and 144
global I/O.
Outputs from the GLBs in a Big Fast Megablock can drive
both the Big Fast Megablock Routing Pool within the Big
Fast Megablock and the Global Routing Plane between
the Big Fast Megablocks. Switching resources are pro-
vided to allow signals in the Global Routing Plane to drive
any or all the Big Fast Megablocks in the device. This
mechanism allows fast, efficient connections, both within
the Big Fast Megablocks and between them.
Each GLB contains 20 macrocells and a fully populated,
programmable AND-array with 82 logic product terms.
The GLB has 44 inputs from the Big Fast Megablock
Routing Pool which are available in both true and comple-
ment form for every product term. Up to 20 of these inputs
can be switched to provide local feedback into the GLB
for logic functions that require it. The 80 general-purpose
product terms can be grouped into 20 sets of four and
sent into a Product Term Sharing Array (PTSA) which
allows sharing up to a maximum of 28 product terms for
a single function. Alternatively, the PTSA can be by-
passed for functions of four product terms or less.
The 20 registered macrocells in the GLB are driven by the
20 outputs from the PTSA or the PTSA bypass. Each
macrocell contains a programmable XOR gate, a pro-
grammable register/latch/toggle flip-flop and the
necessary clocks and control logic to allow combinatorial
or registered operation. Each macrocell has two outputs,
one output can be fed back inside the GLB to the AND-
array, while the other output drives both the Big Fast
Megablock Routing Pool and the Global Routing Plane.
This dual output capability from the macrocell allows
efficient use of the hardware resources. One output can
be a registered function for example, while the other
output can be an unrelated combinatorial function.
Macrocell registers can be clocked from one of several
global, local or product term clocks available on the
device. A global, local and product term clock enable is
also provided, eliminating the need to gate the clock to
the macrocell registers. Reset and preset for the macrocell
register is provided from both global and product term
signals. The polarity of all of these control signals is
selectable on an individual macrocell basis. The macro-
cell register can be programmed to operate as a D-type
register, a D-type flow-through latch or a T-type flip flop.
The 20 outputs from the GLB can drive both the Big Fast
Megablock Routing Pool within the Big Fast Megablock
and the Global Routing Plane between the Big Fast
Megablocks. The Big Fast Megablock Routing Pool con-
tains general purpose tracks which interconnect the six
GLBs within the Big Fast Megablock and dedicated
tracks for the signals from the Big Fast Megablock I/O
cells. The Global Routing Plane contains general pur-
pose tracks that interconnect the Big Fast Megablocks
and also carry the signals from the I/Os connected to the
Global Routing Plane.
Control signals for the I/O cell registers are generated
using an extra product term within each GLB, or using
dedicated input pins. Each GLB has two extra product
terms beyond the 80 available for the macrocell logic.
The first additional product term is used as an optional
shared product term clock for all the macrocells within the
GLB. The second additional product term is then routed
to an I/O Control Bus using a separate routing structure
from the Big Fast Megablock Routing Pool and Global
Routing Plane. Use of a separate control bus routing
structure allows the I/O registers to have many control
signals with no impact on the interconnection of the GLBs
and Big Fast Megablocks. The I/O Control Bus is split into
four quadrants, each servicing the I/O cell control re-
quirements for one edge of the device. Signals in the
control bus can be independently selected by any or all
I/O cells to act as clock, clock enable, output enable,
reset or preset.
Each Big Fast Megablock has 24 I/O cells. The Global
Routing Pool has 144 I/O cells. Each I/O cell can be
configured as a combinatorial input, combinatorial out-
put, registered input, registered output or bidirectional
I/O. I/O cell registers can be clocked from one of several
global, local or product term clocks which are selected
from the I/O control bus. A global and product term clock
enable is also provided, eliminating the need for the user
to gate the clock to the I/O cell registers. Reset and preset
for the I/O cell register is provided from both global and
product term signals. The polarity of all of these control
signals is selectable on an individual I/O cell basis. The
I/O cell register can be programmed to operate as a D-
type register or a D-type latch.
The input thresholds are fixed at levels which comply with
both 3.3V and 2.5V interfaces. The output driver can
source 4mA and sink 8mA (3.3V output supply). The
output drivers have a separate VCCIO power supply
which is independent of the main VCC supply for the
device. This feature allows the output drivers to run from
either 3.3V or 2.5V while the device logic is always
ispLSI 8000V Family Description (Continued)
Specifications
ispLSI 8600V
4
powered from 3.3V. The output drivers also provide
individually programmable edge rates and open drain
capability. A programmable pullup resistor is provided to
tie off unused inputs and a programmable bus-hold latch
is available to hold tristate outputs in their last valid state
until the bus is driven again by another device.
The ispLSI 8000V Family features 3.3V, non-volatile in-
system programmability for both the logic and the
interconnect structures, providing the means to develop
truly reconfigurable systems. Programming is achieved
through the industry standard IEEE 1149.1-compliant
Boundary Scan interface using the JTAG protocol. Bound-
ary Scan test is also supported through the same interface.
An enhanced, multiple cell security scheme is provided
that prevents reading of the JEDEC programming file
when secured. After the device has been secured using
this mechanism, the only way to clear the security is to
execute a bulk-erase instruction.
ispLSI 8600V Description
The ispLSI 8600V device has five Big Fast Megablocks
for a total of 5 x 120 = 600 macrocells.
Each Big Fast Megablock has a total of 24 I/O cells and
the Global Routing Plane has a total of 144 I/O cells. This
gives (5 x 24) + 144 = 264 I/Os for the full I/O version,
while the partial I/O version contains 72 BFM I/O + 120
Global I/O = 192 I/Os.
The total registers in the device is the sum of macrocells
plus I/O cells, 600 + 264 = 864 registers.
Embedded Tristate Bus
There is a 108-line embedded internal tristate bus as part
of the Global Routing Plane (GRP), enabling multiple
GLBs to drive the same tracks. This bus can be parti-
tioned into various bus widths such as twelve 9-line
buses, six 18-line buses or three 36-line buses. The
GLBs can dynamically share a subset of the Global
Routing Plane tracks. This feature eliminates the need to
convert tristate buses to wide multiplexers on the pro-
grammable device. Up to 18 macrocells per GLB can
participate in driving the embedded tristate bus. The
remaining two macrocells per GLB are used to generate
the internal tristate driver control signals on each data
byte (with parity). The embedded tristate bus can also be
configured as an extension of an external tristate bus
using the bidirectional capability of the I/O cells con-
nected to the Global Routing Plane. The Global Routing
Plane I/Os 0-8 and 15-23 from each group (I/OGx as
defined in the I/O Pin Location Table) can connect to the
internal tristate bus as well as the unidirectional/non-
tristate global routing channels. I/Os 9-14 connect only to
the global routing channel.
The embedded tristate bus has internal bus hold and
arbitration features in order to make the function more
"user friendly". The bus hold feature keeps the internal
bus at the previously driven logic state when the bus is
not driven to eliminate bus float. The bus arbitration is
performed on a "first come, first served" priority. In other
words, once a logic block drives the bus, other logic
blocks cannot drive the bus until the first releases the bus.
This arbitration feature prevents internal bus contention
when there is an overlap between two bus enable sig-
nals. Typically, it takes about 3ns to resolve one bus
signal coming off the bus to another bus signal driving the
bus. The arbitration feature, combined with the predict-
ability of the CPLD, makes the embedded tristate bus the
most practical for real world bus implementation.
ispLSI 8000V Family Description (Continued)
Specifications
ispLSI 8600V
5
0
PT 0
PT 1
PT 2
To Output Control MUX
PT 3
Macrocell 0
Macrocell 19
To Interconnect
To Interconnect
PT 8
PT 9
PT 10
PT 11
Macrocell 2
To Interconnect
20
PT 4
PT 5
PT 6
PT 7
Macrocell 1
To Interconnect
Feedback Inputs
0
1
2
19
43
PT 76
PT 77
PT 78
PT 79
PT 81
PT 80
PT 12
PT 13
PT 14
PT 15
Macrocell 3
To interconnect
3
PTSA Bypass
Single PT
PT Clock
PT Preset
PT Reset
From PTSA
Shared PT Clock
From Tristate
Bus Track
Bus Input
PTSA Bypass
Single PT
PT Clock
PT Preset
PT Reset
From PTSA
Shared PT Clock
From Tristate
Bus Track
Bus Input
PTSA Bypass
Single PT
PT Clock
PT Preset
PT Reset
From PTSA
Shared PT Clock
From Tristate
Bus Track
Bus Input
PTSA Bypass
Single PT
PT Clock
PT Preset
PT Reset
From PTSA
Shared PT Clock
From Tristate
Bus Track
Bus Input
PTSA Bypass
Single PT
PT Clock
PT Preset
PT Reset
From PTSA
Shared PT Clock
From Tristate Bus Track
Bus Input
General Purpose Big Fast Megablock Input Tracks
I/O Big Fast Megablock Input Tracks
AND Array Input
Routing
Fully Populated
AND Array
Product Term
Sharing Array
Function Selector (E
2
Cell Controlled)
Note: Macrocells 9 and 10 do not support Tristate Bus Feedback.
Figure 2. ispLSI 8000V GLB Overview
Specifications
ispLSI 8600V
6
Figure 3. ispLSI 8000V Macrocell Overview
PTSA
D
Q
R P
Feedback to AND Array
PTSA Bypass
Single PT
Global Clock 0
Global Clock 1
Global Clock 2
PT Clock
GRST
PT Reset
PT Preset
From PT80
Clk En
Global Clock Enable
R/L
: Function Selector (E2 Cell Controlled)
*Not available for Macrocells 9 and 10.
Bus Input From Tristate
Bus Track*
GRST
Reset pin
Preset/Reset Input has Global Polarity Control
To All Macrocells and I/O Cells
To Big Fast Megablock
or Global Interconnect
To Specific
Global Tristate Bus*
From Macrocell
9 or 10
Specifications
ispLSI 8600V
7
D
Q
R
Slew
Rate
Open
Drain
Big Fast Megablock I/O Pad
or Global I/O Pad
P
CLKEN
GLOBAL I/O CLOCK ENABLE
GLOBAL CLOCK0
GLOBAL CLOCK2
QUADRANT I/O CLOCK
GRST
GLOBAL OE0
TOE
R/L
Multiplexed Output From
Big Fast Megablock or
Global Track
GLOBAL OE1
GLOBAL OE2
GLOBAL OE3
VCCIO
: Function Selector (E2 Cell Controlled)
VCCIO
VCCIO
To Specific
Big Fast Megablock
or Global Tracks
To Specific
Global Tristate Bus
From Output
Control Bus
Global I/O Cell
Only
From Output
Control Bus
From Output
Control Bus
From Output
Control Bus
From Output
Control Bus
Figure 4. ispLSI 8000V I/O Cell
Specifications
ispLSI 8600V
8
Output Control Organization
In addition to the data input and output to the I/O cells,
each I/O cell can have up to six different I/O cell control
signals. In addition to the internal OE control, the five
control signals for each I/O cell consist of pin OE control,
clock enable, clock input, asynchronous preset and asyn-
chronous reset. All of the I/O control signals can be driven
either from the dedicated external input pins or from the
internal control bus.
The output enable of each I/O cell can be driven by 21
different sources 16 from the output control bus, four
from the Global OE pins and one from the Test OE pin.
Figure 5. Output Control Bus and Quadrant Organization
Quadrant 0, 16-Bit Wide Output Control Bus
(I/O B0-B4 <0-11>, QIOCLK0)
Quadrant 2, 16-Bit Wide Output Control Bus
(I/O B0-B4 <12-23>, QIOCLK2)
Q
u
a
d
ra
n
t 1
, 1
6
-B
it W
id
e
O
u
tp
u
t C
o
n
tr
o
l B
u
s
(I/O
G
0
-G
5
<
1
2
-2
3
>
, Q
IO
C
L
K
1
)
Q
u
a
d
r
a
n
t 3
, 1
6
-B
it W
id
e
O
u
tp
u
t C
o
n
tro
l B
u
s
(I/O
G
0
-G
5
<
0
-
1
1
>
, Q
IO
C
L
K
3
)
GLB
Generated
Output
Control
(see Figure 2)
From PT81
OE Bus/8600V.eps
The Global OE signals and Test OE signal are driven
from the dedicated external control input pins.
The 16-bit wide output control buses are organized in four
different quadrants as shown in Figure 5. Since each
GLB is capable of generating the output control signals,
each of the output control bus signals can be driven from
a unique GLB. The 30 GLBs can generate a total of 30
unique I/O control signals. Referring to Figure 2, the GLB
generates its output control signal from control product
term (PT81).
Figure 5 also illustrates how the quadrant clocks are
routed to the appropriate quadrant I/O cells.
Specifications
ispLSI 8600V
9
Figure 6. Boundary Scan Register Circuit for I/O Pins
Figure 7. Boundary Scan Register Circuit for Input-Only Pins
Normal
Function
OE
EXTEST
Update DR
SCANOUT
(to next cell)
Clock DR
SCANIN
(from previous
cell)
Shift DR
*Internal power-up reset signal. Not connected to external reset pin.
Normal
Function
TOE
D
Q
D
Q
D
Q
D
Q
D
Q
I/O Pin
Reset*
BSCAN
Registers
BSCAN
Latches
HIGHZ
0
0
1
1
PROG_MODE
PROG_MODE
EXTEST
SCANOUT
(to next cell)
Clock DR
SCANIN
(from previous
cell
Shift DR
D
Q
Input Pin
Specifications
ispLSI 8600V
10
Figure 8. Boundary Scan Waveforms and Timing Specifications
TMS
TDI
TCK
TDO
Data to be
captured
Data to be
driven out
Valid Data
Valid Data
Valid Data
Valid Data
Data Captured
btsu
T
bth
T
btcl
T
btch
T
btcp
T
btvo
T
btco
T
btoz
T
btcpsu
T
btcph
T
btuov
T
btuco
T
btuoz
T
SYMBOL
Table 2-0010/8600V
PARAMETER
t
btch
t
btcl
t
btsu
t
bth
TCK Pulse Width High
TCK Pulse Width Low
TDI, TMS Setup Time to TCK
TDI, TMS Hold Time from TCK
--
ns
t
btcp
TCK Clock Pulse Width
--
ns
--
--
ns
ns
ns
--
MAX
UNITS
50
100
50
25
25
t
btco
t
btvo
t
btcpsu
t
btcph
TAP Controller, TCK to TDO Valid
TAP Controller, TCK to TDO High-Impedance to Valid Output
BSCAN Test Capture Register Setup Time
BSCAN Test Capture Register Hold Time
25
ns
t
rf
TCK, TDI, TMS Rise and Fall Time
--
mV/ns
25
--
ns
ns
ns
--
--
t
btoz
TAP Controller, TCK to TDO High-Impedance
25
ns
--
50
--
25
25
t
btuco
t
btuoz
t
btuov
BSCAN Test Update Register Clock to Valid Output
BSCAN Test Update Register Clock to High-Impedance
BSCAN Test Update Register High-Impedance to Valid Output
65
65
ns
ns
ns
65
--
--
--
MIN
Specifications
ispLSI 8600V
11
Absolute Maximum Ratings
1,2
Supply Voltage V
cc
.................................. -0.5 to +5.4V
Input Voltage Applied ............................... -0.5 to +5.6V
Tri-Stated Output Voltage Applied ........... -0.5 to +5.6V
Storage Temperature ................................ -65 to 150
C
Case Temp. with Power Applied .............. -55 to 125
C
Max. Junction Temp. (T
J
) with Power Applied ... 150
C
1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification
is not implied (while programming, follow the programming specifications).
2. Compliance with the Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM is a requirement.
DC Recommended Operating Condition
Capacitance (T
A
=25
C,f=1.0 MHz)
Erase/Reprogram Specification
SYMBOL
Table 2-0005/8600V
V
CCIO
PARAMETER
I/O Supply Voltage
MIN.
MAX.
UNITS
2.3
3.6
V
A
V
CC
Supply Voltage
Commercial T = 0
C to 70
C
3.0
3.6
V
SYMBOL
Table 2-0006/8600V
C
PARAMETER
Clock Capacitance
10
UNITS
TYPICAL
TEST CONDITIONS
2
pf
V = 3.3V, V = 2.0V
CC
CK
C
Global Input Capacitance
10
3
pf
V = 3.3V, V = 2.0V
CC
G
C
I/O Capacitance
10
1
pf
V = 3.3V, V = 2.0V
CC
I/O
Table 2-0008/8600V
PARAMETER
MINIMUM
MAXIMUM
UNITS
Erase/Reprogram Cycles
10000
Cycles
Specifications
ispLSI 8600V
12
Switching Test Conditions
Figure 9. Test Load
Output Load Conditions (See Figure 9)
Over Recommended Operating Conditions
DC Electrical Characteristics for 3.3V Range
Input Pulse Levels
Table 2-0003/8600V
Input Rise and Fall Time
Input Timing Reference Levels
Ouput Timing Reference Levels
Output Load
GND to VCCIO
min
1.5V
1.5V
See Figure 9
3-state levels are measured 0.5V from
steady-state active level.
1.5 ns 10% to 90%
TEST CONDITION
R1
R2
3.3V
2.5V
CL
A
316
348
35pF
B
348
35pF
316
35pF
Active High
Active Low
C
D
Slow Slew
316
5pF
348
R1
R2
511
475
475
511
511
35pF
475
5pF
Active Low to Z
at V +0.5V
OL
Active High to Z
at V -0.5V
OH
Table 2-0004A/8600V
R1
VCCIO
R2
CL
*
Device
Output
Test
Point
*
CL includes Test Fixture and Probe Capacitance.
0213A/8600V
V
OL
SYMBOL
Table 2-0007/8600V
V
OH
V
IH
PARAMETER
Output Low Voltage
Output High Voltage
Input High Voltage
I = 8 mA
I = -4 mA
OL
OH
CONDITION
MIN.
MAX.
UNITS
2.4
2.0
0.4
5.25
V
V
V
V
IL
Input Low Voltage
-0.3
0.8
V
V
CCIO
I/O Supply Voltage
3.0
3.6
V
T
A
= 0
C to + 70
C
Over Recommended Operating Conditions
DC Electrical Characteristics for 2.5V Range
Table 2-0007B/8600V
SYMBOL
V
IH
PARAMETER
Input High Voltage
CONDITION
MIN.
MAX.
UNITS
1.7
5.25
V
V
IL
Input Low Voltage
T
A
= 0
C to + 70
C
-0.3
0.7
V
V
CCIO
I/O Supply Voltage
2.3
2.7
V
V
OH
Output High Voltage
V
CCIO=min
, V
IN
=V
IH
or V
IL
, I
OH
= -2mA
V
CCIO=min
, V
IN
=V
IH
or V
IL
, I
OL
= 2mA
1.7
V
V
CCIO=min
, V
IN
=V
IH
or V
IL
, I
OH
= -100
A
2.1
V
0.7
V
V
CCIO=min
, V
IN
=V
IH
or V
IL
, I
OL
= 100
A
0.2
V
V
OL
Output Low Voltage
Specifications
ispLSI 8600V
13
Over Recommended Operating Conditions
DC Electrical Characteristics
SYMBOL
1. Measured at a frequency of 1MHz using 30 20-bit counters.
2. Typical values are at V
CC
= 3.3V and T
A
= 25
C.
3. Maximum I
CC
varies widely with specific device configuration and operating frequency.
4. Pullup is capable of pulling minimum voltage of V
OH
under no-load conditions.
5. Unused inputs held at GND.
Table 2-0007C/8600V
I
PU
I
BHL
PARAMETER
I
BHH
I
BHLO
1,3,5
4
I
CC
I/O Active Pullup Current
Bus Hold Low Sustaining Current
Bus Hold High Sustaining Current
Bus Hold Low Overdrive Current
Operating Power Supply Current
V = 0.5V, V = 3.0V
f = 1 MHz
I
IH
I
IL
Input or I/O High Leakage Current
Input or I/O Low Leakage Current
0V
V
V (Max.)
IN IL
TOGGLE
IL IH
CONDITION
MIN.
TYP.
MAX.
UNITS
2
40
-40
330
-10
10
-250
50
550
A
A
A
A
A
A
I
BHLH
I
BHT
Bus Hold High Overdrive Current
Bus Hold Trip Points
V
IL
-550
V
IH
A
V
A
mA
High Speed Mode
160
Low Power Mode
(V
CCIO
-0.2)V
V
IN
V
CCIO
V
CCIO
V
IN
5.25V
0V
V
IN
V
IL
0V
V
IN
V
CCIO
0V
V
IN
V
CCIO
V
IN
=
V
IL(max)
V
IN
=
V
IH(min)
Specifications
ispLSI 8600V
14
t
pd1
UNITS
-90
-60
MIN.
TEST
COND.
Table 2-0030/8600V
MAX.
DESCRIPTION
#
PARA-
METER
A
1 Prop Delay, BFM Input to Same BFM Output, 4 PT Bypass
--
10.0
ns
t
pd2
A
2 Prop Delay, Global Input to Global Output
--
ns
t
suq
--
4 I/O Cell Reg, Data Setup Time, Quadrant I/O Clock
8.0
--
ns
t
hq
--
5 I/O Cell Reg, Data Hold Time, Quadrant I/O Clock
--
ns
t
coq
A
6 I/O Cell Reg, Quadrant Clock to Output Delay
6.0
ns
t
sug
--
7 I/O Cell Reg, Data Setup Time, Global Clock
--
ns
t
hg
--
8 I/O Cell Reg, Data Hold Time, Global Clock
--
ns
t
cog
A
9 I/O Cell Reg, Global Clock to Output Delay
7.5
ns
t
su1
--
10 GLB Reg Setup, BFM Input to Same BFM GLB, 4 PT Bypass
--
ns
t
h1
--
11 GLB Reg Hold Time, BFM Input to Same BFM GLB
0.0
ns
t
co1
A
12 GLB Reg, Global Clock to Same BFM Output Delay
10.0
ns
t
suceq
--
13 I/O Cell Reg, CLKEN Setup Time, Quadrant I/O Clock
6.5
ns
t
hceq
--
14 I/O Cell Reg, CLKEN Hold Time, Quadrant I/O Clock
0.0
ns
t
suceg
--
15 GLB Reg, CLKEN Setup Time, Global Clock
4.5
ns
t
hceg
--
16 GLB Reg, CLKEN Hold Time, Global Clock
0.0
ns
t
goe
B/C
17 Global Output Enable/Disable Delay
--
ns
t
rglb
--
18 Global Reset/Preset Time, GLB Reg
--
15.0
ns
t
rio
--
19 Global Reset/Preset Time, I/O Cell Reg
--
10.0
ns
t
rw
--
20 Global Reset/Preset Pulse Duration
6.5
--
ns
0.0
--
6.0
--
7.0
--
16.0
13.5
--
--
--
--
--
10.0
0.0
t
wh
--
21 Global or Quadrant Clock Pulse, High Duration
6.0
--
ns
t
wl
--
22 Global or Quadrant Clock Pulse, Low Duration
6.0
--
ns
f
max
--
3 Clk Frequency, Local Feedback, Same GLB
90.0
--
--
15.0
--
12.0
--
--
9.0
--
--
11.0
--
0.0
15.0
9.5
0.0
6.5
0.0
--
--
22.0
--
15.0
9.5
--
0.0
--
9.0
--
10.0
--
24.0
--
--
--
--
--
15.0
0.0
9.0
--
9.0
--
60.0
--
MHz
-125
MIN. MAX.
MIN. MAX.
--
8.5
--
5.0
--
--
4.0
--
--
6.0
--
0.0
8.0
5.5
0.0
3.5
0.0
--
--
14.0
--
8.5
5.0
--
0.0
--
3.5
--
4.5
--
--
--
--
--
--
7.0
0.0
4.0
--
4.0
--
125.0
1. Unless noted otherwise, all parameters use PTSA and CLK0.
2. Refer to Timing Model in this data sheet for further details.
3. Standard 20-bit counter with local feedback.
4. Refer to Switching Test Conditions section.
4
2
3
External Switching Characteristics
1
Over Recommended Operating Conditions
Specifications
ispLSI 8600V
15
Internal Timing Parameters
Over Recommended Operating Conditions
I/O Cell Delay
t
idcom
23 Input Pad and Input Buffer, Combinatorial Input
0.3
0.4
0.6
ns
t
idreg
24 Input Pad and Input Buffer, Registered Input
6.4
7.6
11.2
ns
t
obp
25 Output Register/Latch Bypass to Output Buffer
0.0
0.0
0.0
ns
t
ibp
26 Input Register/Latch Bypass to BFM Routing or GRP
0.4
0.5
0.8
ns
t
iolat
27 I/O Cell Latch, Transparent Mode
2.0
2.4
3.6
ns
t
ioco
28 I/O Cell Register/Latch, Clk/Gate to Output
0.5
1.2
1.6
ns
t
iosu
29 I/O Cell Register/Latch, Setup Time
0.5
2.4
3.9
ns
t
ioh
30 I/O Cell Register/Latch, Hold Time
2.5
3.2
4.7
ns
t
iorst
31 I/O Cell Register/Latch, Reset or Set Time
1.5
1.7
2.5
ns
t
iosuce
32 I/O Cell Register/Latch, Setup Time for Clk Enable
0.9
1.0
1.2
ns
t
iohce
33 I/O cell Register/Latch, Hold Time for Clk Enable
4.6
4.6
6.9
ns
t
odreg
34 I/O Cell Output Buffer Delay, Registered Output
1.6
1.9
2.9
ns
t
odcom
35 I/O Cell Output Buffer Delay, Combinatorial Output
1.6
1.9
2.9
ns
t
odz
36 Output Driver Disable Time
1.4
1.7
2.6
ns
t
slf
37 Slew Rate Adder, Fast Slew Rate
0.0
0.0
0.0
ns
t
sls
38 Slew Rate Adder, Slow Slew Rate
6.2
7.3
10.9
ns
GLB / Macrocell Delay
t
andhs
39 AND Array, High Speed Mode
2.6
2.9
4.2
ns
t
andlp
40 AND Array, Low Power Mode
6.5
7.7
11.5
ns
t
1pt
41 Single Product Term Bypass
1.9
2.2
3.4
ns
t
4ptcom 42 Four Product Term Bypass, Combinatorial Macrocell
0.5
0.6
0.9
ns
t
4ptreg
43 Four Product Term Bypass, Registered Macrocell
1.4
1.7
2.2
ns
t
ptsa
44 Product Term Sharing Array
2.4
2.7
4.1
ns
t
mbp
45 Macrocell Register/Latch Bypass
0.0
0.0
0.0
ns
t
mlat
46 Macrocell Latch, Transparent Mode
4.6
5.5
8.2
ns
t
mco
47 Macrocell Register/Latch, Clk/Gate to Output
0.2
0.8
0.9
ns
t
msu
48 Macrocell Register/Latch, Setup Time
2.7
4.5
6.9
ns
t
mh
49 Macrocell Register/Latch, Hold Time
1.0
1.2
1.1
ns
t
mrst
50 Macrocell Register/Latch, Reset or Set Time
2.0
1.5
1.6
ns
t
msuce
51 Macrocell Register/Latch, Setup Time for Clk Enable
1.0
1.3
1.7
ns
t
mhce
52 Macrocell Register/Latch, Hold Time for Clk Enable
2.3
2.6
3.9
ns
t
floc
54 Local Feedback to AND Array
0.1
0.1
0.6
ns
t
pck
55 Single Product Term, Clk
1.3
1.3
1.6
1.6
2.5
2.5
ns
t
pcken
56 Single Product Term, Clk Enable
1.7
2.0
3.1
ns
t
sck
57 Shared Product Term, Clk
1.7
1.9
2.0
2.3
3.1
3.5
ns
t
scken
58 Shared Product Term, Clk Enable
1.7
1.9
2.0
2.3
3.1
3.5
ns
t
prst
59 Single Product Term, Reset or Set Delay
1.5
1.7
2.6
ns
t
rdir
60 Macrocell Register, Direct Input from GRP
7.2
8.4
12.7
ns
-125
-90
-60
MIN
MAX
MIN
MAX
MIN
MAX
UNITS
PARA-
METER #
2
DESCRIPTION
Specifications
ispLSI 8600V
16
Internal Timing Parameters
Over Recommended Operating Conditions
BFM / Global Routing Pool Delay
t
bfmi
61 BFM Routing Delay, Signal from I/O Cell
0.4
1.0
0.6
1.3
0.8
1.9
ns
t
grpi
62 GRP Delay, Signal from I/O Cell
1.6
1.9
2.8
ns
t
grpiz
63 Internal Tristate Bus Enable/Disable, I/O Cell Buffer
4.1
4.9
7.3
ns
t
bfmm
64 BFM Routing Delay, Signal from Macrocell
0.6
0.7
1.1
ns
t
grpm
65 GRP Delay, Signal from Macrocell
2.0
3.0
4.5
ns
t
grpmz
66 Internal Tristate Bus Enable/Disable, Macrocell Buffer
3.0
4.3
6.5
ns
t
bfmg
67 BFM Routing Delay, Signal from GRP
2.5
3.3
4.9
ns
t
grpb
68 GRP Delay, Signal from BFM Routing
1.3
1.5
2.3
ns
t
bcom
69 BFM Routing to I/O Cell, Combinatorial Path
1.5
1.7
2.6
ns
t
breg
70 BFM Routing to I/O Cell, Registered Path
2.3
2.6
4.0
ns
t
gcom
71 GRP to I/O Cell, Combinatorial Path
0.8
0.8
1.2
ns
t
greg
72 GRP to I/O Cell, Registered Path
1.6
1.7
2.6
ns
I/O Control Bus Delay
t
piock
73 Product Term as I/O Cell Register Clock
4.1
4.7
7.2
ns
t
piocken 74 Product Term as I/O Cell Register Clock Enable
4.6
5.3
8.1
ns
t
poe
75 Product Term as Output Buffer Enable/Disable
5.6
6.5
9.9
ns
t
piorst
76 Product Term as I/O Cell Register Reset or Set Delay
4.3
5.0
7.6
ns
t
pioz
77 Internal Tristate Bus Control Signal for I/O Cell Buffer
3.3
3.8
5.8
ns
Global Control Delay
t
gck
78 Global Macrocell Register Clk
3.9
4.1
4.3
4.9
6.6
7.5
ns
t
gcken
79 Global Macrocell Register Clk Enable
6.4
6.4
7.5
7.5
11.4
11.4
ns
t
giock
80 Global I/O Register Clk
3.4
3.9
4.0
4.4
6.1
6.5
ns
t
giocken 81 Global I/O Register Clk Enable
6.5
6.5
7.5
7.5
11.4
11.4
ns
t
qck
82 Quadrant I/O Register Clk
1.9
1.9
2.0
2.9
3.1
4.5
ns
t
goe
83 Global Output Enable
5.6
8.3
12.4
ns
t
toe
84 Test Output Enable
8.5
10.1
15.2
ns
t
gmrst
85 Global GLB Register Reset
7.6
7.8
11.8
ns
t
giorst
86 Global I/O Cell Register Reset
5.4
6.4
9.6
ns
1. Internal Timing Parameters are not tested and are for reference only.
2. Refer to Timing Model in this data sheet for further details.
-125
-90
-60
MIN
MAX
MIN
MAX
MIN
MAX
UNITS
PARA-
METER #
2
DESCRIPTION
Specifications
ispLSI 8600V
17
ispLSI 8600V Timing Model
I/O register delays
BFM Routing Pool
Output routing
Output
buffer
delays
Output
slew rate
adders
I/O
pad
AND array
PTSA
Macrocell
Register
I/O
pad
Input
pad
8840V_Model.eps
t
slf
t
#37,
#38,
sls
t
odreg
t
odcom
t
#34,
#35,
#36,
odz
t
bcom
t
breg
t
gcom
t
#69,
#70,
#71,
#72,
greg
t
obp
#25,
t
ibp
#26,
t
iolat
#27,
t
ioco
#28,
t
iosu
#29,
t
ioh
#30,
t
iosuce
#32,
t
iohce
#33,
t
#31,
iorst
t
#23,
idcom
t
#24,
idreg
t
#61,
bfmi
t
#67,
bfmg
t
#64,
bfmm
t
grpi
t
grpiz
t
grpm
t
grpmz
t
#62,
#63,
#65,
#66,
#68,
grpb
t
andhs
t
andlp
t
1pt
t
4ptcom
t
4ptreg
t
#41,
#42,
#43,
#44,
ptsa
t
mbp
t
mlat
t
mco
t
msu
t
mh
t
mrst
t
msuce
t
#45,
#46,
#47,
#48,
#49,
#50,
#51,
#52,
mbce
t
giock
#80,
#39,
#40,
t
giocken
#81,
t
qck
#82,
t
giorst
#86,
t
gck
#78,
t
gcken
#79,
t
gmrst
#85,
t
goe
#83,
t
#84,
toe
t
pck
t
pcken
t
sck
t
scken
t
#55,
#56,
#57,
#58,
#59,
prst
t
#54,
floc
t
#60,
rdir
GLB/
Macrocell
Global
Routing
Plane
PT Mcell controls
Local feedback
Bus direct
Input Buffer and I/O Cell Register
Output path
Input path
z
t
piock
t
piocken
t
poe
t
piorst
t
#73,
#74,
#75,
#76,
#77,
pioz
PT I/O control bus
Input buffer
delays
Global control
delay
Specifications
ispLSI 8600V
18
Example Timing Calculations
t
pd1
= (BFM Input Path Delay) + (GLB Delay) + (Output Path Delay)
= (
t
idcom +
t
ibp +
t
bfmi max) + (
t
andhs +
t
4ptcom +
t
mbp) + (
t
bfmm +
t
bcom +
t
obp +
t
odcom +
t
slf)
= (#23 + #26 + #61) + (#39 + #42 + #45) + (#64 + #69 + #25 + #35 + #37)
= (0.3 + 0.4 + 1.0) + (2.6 + 0.5 + 0.0) + (0.6 + 1.5 + 0.0 + 1.6 + 0.0)
= 8.5 ns
t
pd (within BFM)
= (BFM Delay) + (GLB Delay)
= (
t
bfmm) + (
t
andhs +
t
4ptcom +
t
mbp)
= (#64) + (#39 + #42 + #45)
= (0.6) + (2.6 + 0.5 + 0.0)
= 3.7 ns
t
pd (between BFMs)
= (GRP Delay) + (BFM Delay) + (GLB Delay)
= (
t
grpm) + (
t
bfmg) + (
t
andhs +
t
4ptcom +
t
mbp)
= (#65) + (#67) + (#39 + #42 + #45)
= (2.0) + (2.5) + (2.6 + 0.5 + 0.0)
= 7.6 ns
BFM I/O to internal tri-state Enable/Disable
= (BFM Input Path Delay) + (GLB Delay, 1PT) + (Tri-state Control Delay)
= (
t
idcom +
t
ibp +
t
bfmi max) + (
t
andhs +
t
1pt +
t
mbp) + (
t
grpmz)
= (#23 + #26 + #61) + (#39 + #41 + #45) + (#66)
= (0.3 + 0.4 + 1.0) + (2.6 + 1.9 + 0.0) + (3.0)
= 9.2 ns
t
su1
= (BFM Input Path Delay) + (GLB Setup Time) - (Min. Global Clock Delay)
= (
t
idcom +
t
ibp +
t
bfmi max) + (
t
andhs +
t
4ptreg +
t
msu) (
t
gck min)
= (#23 + #26 + #61) + (#39 + #43 + #48) (#78)
= (0.3 + 0.4 + 1.0) + (2.6 + 1.4 + 2.7) (3.9)
= 4.5 ns
1/
F
max = (Global Clk to MC Output) + (Local Feedback) + (GLB Setup Time)
= (
t
mco) + (
t
floc) + (
t
andhs +
t
ptsa +
t
msu)
= (#47) + (#54) + (#39 + #44 + #48)
= (0.2) + (0.1) + (2.6 + 2.4 + 2.7)
= 8.0 ns
F
max
= 125 MHz
Note: Calculations are based upon timing specifications for the ispLSI 8600V-125L
Specifications
ispLSI 8600V
19
Power Consumption
Power consumption in the ispLSI 8600V device depends
on two primary factors: the speed at which the device is
operating and the number of product terms used. The
product terms have a fuse-selectable speed/power
tradeoff setting. Each group of four product terms has a
single speed/power tradeoff control fuse that acts on the
complete group of four. The fast "high-speed" setting
operates product terms at their normal full power con-
sumption. For portions of the logic that can tolerate
longer propagation delays, selecting the slower "low-
power" setting will significantly reduce the power
dissipation for these product terms. Figure 10 shows the
relationship between power and operating speed.
0127/8600V
The ICC estimate is based on typical conditions (VCC = 3.3V, room temperature) and an assumption of two GLB loads
on average exists. These values are for estimates only. Since the value of ICC is sensitive to operating conditions
and the program in the device, the actual ICC should be verified.
ICC can be estimated for the ispLSI 8600V using the following equation:
ICC = 25.0 + (# of Turbo PTs * 0.25) + (# of Non-Turbo PTs * 0.11) + (# of Macrocells Used * fmax * AF * 0.04)
# of Turbo PTs = Number of Turbo Product Terms Used in Design
# of Non-Turbo PTs = Number of Non-Turbo Product Terms Used in Design
fmax = Maximum Operating Frequency
Average Macrocell Toggle Frequency
Note: An Activity Factor of 1.0 means all macrocell registers toggle at fmax. An Activity Factor of 0.5 means the
average macrocell register toggles at half of fmax.
Fmax
AF (Activity Factor) =
f
max (MHz)
I
CC (mA)
Notes: Configuration of 30 20-bit counters
Typical current at 3.3V, 25 C
600
500
400
300
200
100
0
0
10
20
30
40
50
60
70
80
90
100
Turbo
Non-Turbo
110
ispLSI 8600V
120 130
Figure 10. Typical Device Power Consumption vs fmax
Specifications
ispLSI 8600V
20
CLK0, CLK1,
Dedicated clock input for the GLB registers only. These clock inputs are connected to one of the clock
CLK2
inputs of all GLB registers in the device.
CLKEN
Dedicated clock enable input for the GLB registers only. This input is available as a clock enable for
each GLB register in the device. Use of the clock enable input eliminates the need for the user to gate
the clock to the register.
GND
Ground (GND)
GOE0, GOE1,
Global Output Enable inputs.
GOE2, GOE3
SET/RESET
Dedicated, reset/preset pin connected to ALL registers in the device, GLB registers and
I/O registers. Each register can independently choose to be reset or preset when this signal goes
active. The active polarity is user selectable.
IOCLKEN
Dedicated clock enable input for the I/O registers only. This input is available as a clock enable input for
all I/O registers in the device. Use of the clock enable input eliminates the need for the user to tie the
clock to the I/O register.
I/O
Input/Output These are the general purpose I/O used by the logic array.
EPEN
Embedded Port Enable Pin When this pin is high, the port is enabled. When this pin is low, the
state machine is held at reset asynchronously and TCK, TMS and TDI are ignored.
TMS
Input This signal is the Test Mode Select input signal.
QIOCLK0,
Dedicated clock inputs for the I/O registers only. These clock inputs are connected to the I/O registers
QIOCLK1,
on the same side of the device only, they are not connected to all of the I/O registers. Use of these
QIOCLK2,
quadrant I/O clocks gives the fastest tco from the device.
QIOCLK3
TCK
Input This signal is the Test Clock input signal.
TDI
Input This signal is the Test Data input signal.
TDO
Output This signal is the Test Data Out Output Signal.
TOE
Test Output Enable. Tristates all I/O pins when a logic low is driven.
VCC
Vcc
VCCIO
Power supply for the output drivers. The internal logic of the device is connected to VCC which is
always 3.3V. The output drivers are connected to VCCIO which can be equal to VCC or 2.5V. This
allows the output drivers to be powered from 2.5V, for example, to interface directly with another 2.5V
device.
NC
1
No connect.
Signal Descriptions
Signal Name Description
1. NC pins are not to be connected to any active signals, VCC or GND.
Specifications
ispLSI 8600V
21
Signal Locations
QIOCLK0, QIOCKL1, Y8, M20, C8, N2
AE14, P22, A15, N3
QIOCLK2, QIOCLK3
CLK0, CLK1, CLK2
Y9, P18, D8
AC15, R24, B15
CLKEN
V9
AB17
IOCLKEN
B9
E16
EPEN
C17
B26
TCK
A4
A2
TDI
U5
AF1
TDO
C4
B3
TMS
W4
AC4
GOE0, GOE1,
Y10, M19, C9, N1
AF15, P23, D16, N5
GOE2, GOE3
TOE
L3
L5
SET/RESET
P3
P2
VCC
D9, D10, D11, D12, J4, J17, K4, K17, L4, L17, M4,
E9, E12, E15, E18, F5, F10, F17, F22, G5, G22,
M17, U9, U10, U11, U12
K5, K22, L22, M5, N22, P5, R22, T5, U5, U22,
Y5, Y22, AA5, AA10, AA17, AA22, AB9, AB12,
AB15, AB18
VCCIO
A7, A8, A20, B16, C5, C12, E4, G20, H4, M1, N17,
E8, E13, E19, F7, F20, J6, J21, K3, L24, N1,
U2, U20, V2, V6, W7, W8, W16, W19, Y13
P24, T3, U25, V6, Y23, AA7, AA20, AB8, AB14,
AB19
GND
D4, D16, D17, J9, J10, J11, J12, K9, K10, K11,
E5, E11, E14, E22, F6, F21, L11, L12, L13, L14,
K12, L9, L10, L11, L12, M9, M10, M11, M12, U4,
L15, L16, M11, M12, M13, M14, M15, M16, N11,
U17
N12, N13, N14, N15, N16, P11, P12, P13, P14,
P15, P16, R11, R12, R13, R14, R15, R16, T11,
T12, T13, T14, T15, T16, AA6, AA21, AB5,
AB13, AB16, AB22
NC
1
A9, V17, W9
A1, A6, A7, A8, A16, A20, A21, A22, , B1, B2,
B7, B8, B9, B20, B21, C1, C2, C3, C7, C8, C9,
C19, C20, C21, C24, C25, C26, D1, D2, D3, D4,
D7, D8, D9, D19, D20, D21, D24,D25, D26, E6,
E17, E20, E21, E23, E24, E25, E26, F8, F9,
F18, F19, G6, G21, Y6, Y21, AA8, AA9, AA18,
AA19, AB1, AB2, AB3, AB4, AB6, AB10, AB20,
AB21, AB23, AC1, AC2, AC3, AC6, AC7, AC8,
AC18, AC19, AC20, AC23, AC24, AC25, AC26,
AD1, AD2, AD3, AD6, AD7, AD8, AD15, AD19,
AD20, AD25, AD26, AE1, AE6, AE7, AE8, AE19,
AE20, AE21, AE25, AE26, AF6, AF7, AF8,
AF19, AF20, AF21, AF25, AF26
Signal Name
1. NC pins are not to be connected to any active signals, VCC or GND.
272-Ball BGA
492-Ball BGA
Specifications
ispLSI 8600V
22
I/O Pin Locations (272-Ball BGA Package)
Signal BGA
Signal BGA
Signal BGA
Signal BGA
I/O G0 <0>
V4
I/O G0 <1>
Y3
I/O G0 <2>
Y2
I/O G0 <3>
W3
I/O G0 <4>
Y1
I/O G0 <5>
W2
I/O G0 <6>
W1
I/O G0 <7>
V3
I/O G0 <8>
V1
I/O G0 <9>
U3
I/O G0 <10>
R4
I/O G0 <11>
T4
I/O G0 <12>
U19
I/O G0 <13>
R17
I/O G0 <14>
V20
I/O G0 <15>
V19
I/O G0 <16>
U18
I/O G0 <17>
V18
I/O G0 <18>
T17
I/O G0 <19>
W20
I/O G0 <20>
Y20
I/O G0 <21>
Y19
I/O G0 <22>
W18
I/O G0 <23>
Y18
I/O G2 <0>
U1
I/O G2 <1>
T3
I/O G2 <2>
T2
I/O G2 <3>
T1
I/O G2 <4>
R3
I/O G2 <5>
R2
I/O G2 <6>
R1
I/O G2 <7>
P4
I/O G2 <8>
P2
I/O G2 <9>
N4
I/O G2 <10>
N3
I/O G2 <11>
P1
I/O G2 <12>
N18
I/O G2 <13>
N19
I/O G2 <14>
N20
I/O G2 <15>
P19
I/O G2 <16>
P17
I/O G2 <17>
P20
I/O G2 <18>
R20
I/O G2 <19>
R19
I/O G2 <20>
R18
I/O G2 <21>
T20
I/O G2 <22>
T19
I/O G2 <23>
T18
I/O G3 <0>
H2
I/O G3 <1>
H1
I/O G3 <2>
J3
I/O G3 <3>
J2
I/O G3 <4>
J1
I/O G3 <5>
K3
I/O G3 <6>
K2
I/O G3 <7>
K1
I/O G3 <8>
L2
I/O G3 <9>
L1
I/O G3 <10>
M2
I/O G3 <11>
M3
I/O G3 <12>
M18
I/O G3 <13>
L20
I/O G3 <14>
L19
I/O G3 <15>
L18
I/O G3 <16>
K20
I/O G3 <17>
K19
I/O G3 <18>
K18
I/O G3 <19>
J20
I/O G3 <20>
H20
I/O G3 <21>
J19
I/O G3 <22>
H19
I/O G3 <23>
J18
I/O G4 <0>
G2
I/O G4 <1>
G1
I/O G4 <2>
H3
I/O G4 <3>
G3
I/O G4 <4>
G4
I/O G4 <5>
F3
I/O G4 <6>
F1
I/O G4 <7>
F2
I/O G4 <8>
F4
I/O G4 <9>
E1
I/O G4 <10>
E2
I/O G4 <11>
E3
I/O G4 <12>
D20
I/O G4 <13>
F17
I/O G4 <14>
E19
I/O G4 <15>
G17
I/O G4 <16>
G18
I/O G4 <17>
F18
I/O G4 <18>
E20
I/O G4 <19>
F19
I/O G4 <20>
H17
I/O G4 <21>
F20
I/O G4 <22>
H18
I/O G4 <23>
G19
I/O G5 <0>
A3
I/O G5 <1>
B2
I/O G5 <2>
B3
I/O G5 <3>
A2
I/O G5 <4>
A1
I/O G5 <5>
B1
I/O G5 <6>
D3
I/O G5 <7>
D2
I/O G5 <8>
C3
I/O G5 <9>
C2
I/O G5 <10>
D1
I/O G5 <11>
C1
I/O G5 <12>
D19
I/O G5 <13>
E18
I/O G5 <14>
C20
I/O G5 <15>
B20
I/O G5 <16>
A19
I/O G5 <17>
C19
I/O G5 <18>
D18
I/O G5 <19>
B19
I/O G5 <20>
C18
I/O G5 <21>
E17
I/O G5 <22>
B18
I/O G5 <23>
A18
I/O B0 <0>
Y4
I/O B0 <1>
V5
I/O B0 <2>
W5
I/O B0 <3>
Y5
I/O B0 <4>
U6
I/O B0 <5>
U7
I/O B0 <6>
W6
I/O B0 <7>
V7
I/O B0 <8>
Y6
I/O B0 <9>
Y7
I/O B0 <10>
U8
I/O B0 <11>
V8
I/O B0 <12>
B8
I/O B0 <13>
C7
I/O B0 <14>
D7
I/O B0 <15>
B7
I/O B0 <16>
B6
I/O B0 <17>
C6
I/O B0 <18>
A6
I/O B0 <19>
D6
I/O B0 <20>
B5
I/O B0 <21>
A5
I/O B0 <22>
D5
I/O B0 <23>
B4
I/O B3 <0>
V10
I/O B3 <1>
W10
I/O B3 <2>
Y11
I/O B3 <3>
W11
I/O B3 <4>
V11
I/O B3 <5>
Y12
I/O B3 <6>
W12
I/O B3 <7>
V12
I/O B3 <8>
W13
I/O B3 <9>
U13
I/O B3 <10>
V13
I/O B3 <11>
Y14
Signal BGA
I/O B3 <12>
B14
I/O B3 <13>
D13
I/O B3 <14>
B13
I/O B3 <15>
A13
I/O B3 <16>
A12
I/O B3 <17>
B12
I/O B3 <18>
B11
I/O B3 <19>
A11
I/O B3 <20>
C11
I/O B3 <21>
B10
I/O B3 <22>
A10
I/O B3 <23>
C10
I/O B4 <0>
W14
I/O B4 <1>
V14
I/O B4 <2>
U14
I/O B4 <3>
Y15
I/O B4 <4>
W15
I/O B4 <5>
V15
I/O B4 <6>
U15
I/O B4 <7>
Y16
I/O B4 <8>
V16
I/O B4 <9>
U16
I/O B4 <10>
W17
I/O B4 <11>
Y17
I/O B4 <12>
B17
I/O B4 <13>
A17
I/O B4 <14>
C16
I/O B4 <15>
D15
I/O B4 <16>
C15
I/O B4 <17>
A16
I/O B4 <18>
B15
I/O B4 <19>
D14
I/O B4 <20>
C14
I/O B4 <21>
A15
I/O B4 <22>
A14
I/O B4 <23>
C13
Specifications
ispLSI 8600V
23
I/O Pin Locations (492-Ball BGA Package)
Signal BGA
Signal BGA
Signal BGA
Signal BGA
Signal BGA
I/O G0 <0>
AA4
I/O G0 <1>
AA3
I/O G0 <2>
AA2
I/O G0 <3>
AA1
I/O G0 <4>
Y4
I/O G0 <5>
Y3
I/O G0 <6>
Y2
I/O G0 <7>
Y1
I/O G0 <8>
W4
I/O G0 <9>
W3
I/O G0 <10>
W2
I/O G0 <11>
U6
I/O G0 <12>
U21
I/O G0 <13>
Y26
I/O G0 <14>
Y25
I/O G0 <15>
Y24
I/O G0 <16>
V21
I/O G0 <17>
AA26
I/O G0 <18>
AA25
I/O G0 <19>
AA24
I/O G0 <20>
AA23
I/O G0 <21>
AB26
I/O G0 <22>
AB25
I/O G0 <23>
AB24
I/O G1 <0>
T2
I/O G1 <1>
W5
I/O G1 <2>
U1
I/O G1 <3>
U2
I/O G1 <4>
U3
I/O G1 <5>
U4
I/O G1 <6>
V1
I/O G1 <7>
V5
I/O G1 <8>
V2
I/O G1 <9>
V3
I/O G1 <10>
V4
I/O G1 <11>
W1
I/O G1 <12>
W23
I/O G1 <13>
W24
I/O G1 <14>
W25
I/O G1 <15>
W26
I/O G1 <16>
V22
I/O G1 <17>
V23
I/O G1 <18>
V24
I/O G1 <19>
V25
I/O G1 <20>
V26
I/O G1 <21>
W22
I/O G1 <22>
U23
I/O G1 <23>
U24
I/O G2 <0>
T4
I/O G2 <1>
T1
I/O G2 <2>
W6
I/O G2 <3>
R2
I/O G2 <4>
R1
I/O G2 <5>
R3
I/O G2 <6>
R4
I/O G2 <7>
R5
I/O G2 <8>
P1
I/O G2 <9>
P3
I/O G2 <10>
P4
I/O G2 <11>
N4
I/O G2 <12>
P26
I/O G2 <13>
P25
I/O G2 <14>
R23
I/O G2 <15>
T22
I/O G2 <16>
R26
I/O G2 <17>
R25
I/O G2 <18>
T26
I/O G2 <19>
T23
I/O G2 <20>
W21
I/O G2 <21>
T24
I/O G2 <22>
T25
I/O G2 <23>
U26
I/O G3 <0>
K2
I/O G3 <1>
K1
I/O G3 <2>
L2
I/O G3 <3>
H6
I/O G3 <4>
L3
I/O G3 <5>
L4
I/O G3 <6>
L1
I/O G3 <7>
M2
I/O G3 <8>
M1
I/O G3 <9>
M3
I/O G3 <10>
M4
I/O G3 <11>
N2
I/O G3 <12>
N23
I/O G3 <13>
N24
I/O G3 <14>
N26
I/O G3 <15>
N25
I/O G3 <16>
M22
I/O G3 <17>
M23
I/O G3 <18>
M24
I/O G3 <19>
M26
I/O G3 <20>
H21
I/O G3 <21>
M25
I/O G3 <22>
L26
I/O G3 <23>
L23
I/O G4 <0>
K4
I/O G4 <1>
H5
I/O G4 <2>
J1
I/O G4 <3>
J2
I/O G4 <4>
J3
I/O G4 <5>
J4
I/O G4 <6>
H1
I/O G4 <7>
J5
I/O G4 <8>
H2
I/O G4 <9>
H3
I/O G4 <10>
H4
I/O G4 <11>
K6
I/O G4 <12>
H26
I/O G4 <13>
J23
I/O G4 <14>
J24
I/O G4 <15>
J25
I/O G4 <16>
J22
I/O G4 <17>
J26
I/O G4 <18>
K23
I/O G4 <19>
K24
I/O G4 <20>
K25
I/O G4 <21>
H22
I/O G4 <22>
K26
I/O G4 <23>
L25
I/O G5 <0>
E4
I/O G5 <1>
E3
I/O G5 <2>
E2
I/O G5 <3>
E1
I/O G5 <4>
F4
I/O G5 <5>
F3
I/O G5 <6>
F2
I/O G5 <7>
F1
I/O G5 <8>
G4
I/O G5 <9>
G3
I/O G5 <10>
G2
I/O G5 <11>
G1
I/O G5 <12>
K21
I/O G5 <13>
H25
I/O G5 <14>
H24
I/O G5 <15>
H23
I/O G5 <16>
G26
I/O G5 <17>
G25
I/O G5 <18>
G24
I/O G5 <19>
G23
I/O G5 <20>
F26
I/O G5 <21>
F25
I/O G5 <22>
F24
I/O G5 <23>
F23
I/O B0 <0>
AE2
I/O B0 <1>
AF2
I/O B0 <2>
AE3
I/O B0 <3>
AF3
I/O B0 <4>
AD4
I/O B0 <5>
AE4
I/O B0 <6>
AF4
I/O B0 <7>
AC5
I/O B0 <8>
AD5
I/O B0 <9>
AE5
I/O B0 <10>
AB7
I/O B0 <11>
AF5
I/O B0 <12>
B6
I/O B0 <13>
E7
I/O B0 <14>
C6
I/O B0 <15>
D6
I/O B0 <16>
A5
I/O B0 <17>
B5
I/O B0 <18>
C5
I/O B0 <19>
D5
I/O B0 <20>
A4
I/O B0 <21>
B4
I/O B0 <22>
C4
I/O B0 <23>
A3
I/O B1 <0>
AC9
I/O B1 <1>
AD9
I/O B1 <2>
AE9
I/O B1 <3>
AF9
I/O B1 <4>
AC10
I/O B1 <5>
AD10
I/O B1 <6>
AE10
I/O B1 <7>
AF10
I/O B1 <8>
AE11
I/O B1 <9>
AD11
I/O B1 <10>
AB11
I/O B1 <11>
AC11
I/O B1 <12>
A12
I/O B1 <13>
E10
I/O B1 <14>
B12
I/O B1 <15>
A11
I/O B1 <16>
D11
I/O B1 <17>
C11
I/O B1 <18>
B11
I/O B1 <19>
A10
I/O B1 <20>
B10
I/O B1 <21>
C10
I/O B1 <22>
D10
I/O B1 <23>
A9
I/O B2 <0>
AF11
I/O B2 <1>
AE12
I/O B2 <2>
AF12
I/O B2 <3>
AD12
I/O B2 <4>
AC12
I/O B2 <5>
AE13
I/O B2 <6>
AF13
I/O B2 <7>
AD13
I/O B2 <8>
AC13
I/O B2 <9>
AC14
I/O B2 <10>
AD14
I/O B2 <11>
AF14
I/O B2 <12>
C15
I/O B2 <13>
D15
I/O B2 <14>
B14
I/O B2 <15>
A14
I/O B2 <16>
C14
I/O B2 <17>
D14
I/O B2 <18>
D13
I/O B2 <19>
C13
I/O B2 <20>
A13
I/O B2 <21>
B13
I/O B2 <22>
D12
I/O B2 <23>
C12
I/O B3 <0>
AE15
I/O B3 <1>
AF16
I/O B3 <2>
AC16
I/O B3 <3>
AD16
I/O B3 <4>
AE16
I/O B3 <5>
AF17
I/O B3 <6>
AE17
I/O B3 <7>
AD17
I/O B3 <8>
AC17
I/O B3 <9>
AF18
I/O B3 <10>
AE18
I/O B3 <11>
AD18
I/O B3 <12>
B19
I/O B3 <13>
A19
I/O B3 <14>
D18
I/O B3 <15>
C18
I/O B3 <16>
B18
I/O B3 <17>
A18
I/O B3 <18>
D17
I/O B3 <19>
C17
I/O B3 <20>
B17
I/O B3 <21>
A17
I/O B3 <22>
B16
I/O B3 <23>
C16
I/O B4 <0>
AD21
I/O B4 <1>
AC21
I/O B4 <2>
AF22
I/O B4 <3>
AE22
I/O B4 <4>
AD22
I/O B4 <5>
AC22
I/O B4 <6>
AF23
I/O B4 <7>
AE23
I/O B4 <8>
AD23
I/O B4 <9>
AF24
I/O B4 <10>
AE24
I/O B4 <11>
AD24
I/O B4 <12>
A26
I/O B4 <13>
D23
I/O B4 <14>
B25
I/O B4 <15>
A25
I/O B4 <16>
B24
I/O B4 <17>
A24
I/O B4 <18>
C23
I/O B4 <19>
B23
I/O B4 <20>
A23
I/O B4 <21>
D22
I/O B4 <22>
C22
I/O B4 <23>
B22
Specifications
ispLSI 8600V
24
Signal Configuration
ispLSI 8600V 272-Ball BGA Signal Diagram
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
A
A
B
B
C
C
D
VCCIO
VCCIO
VCCIO
VCCIO
VCCIO
CLK 1
CLK 0
VCCIO
VCCIO
VCCIO
VCCIO
VCCIO
CLKEN
VCCIO
VCCIO
VCCIO
VCCIO
VCCIO
VCCIO
VCCIO
CLK 2
EPEN
VCCIO
VCCIO
IOCLKEN
VCCIO
TCK
TDO
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
NC
1
GND
VCC
VCC
VCC
VCC
VCC
VCC
VCC
TOE
SET/
RESET
VCC
TDI
TMS
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
D
E
E
F
ispLSI 8600V
F
G
Bottom View
G
H
H
J
J
K
K
L
L
M
M
N
N
P
P
R
R
T
T
U
U
V
V
W
W
Y
Y
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
1. NCs are not to be connected to any active signals, Vcc or GND.
Note: Ball A1 indicator dot on top side of package.
I/O G5
<16>
I/O G5
<23>
I/O B4
<13>
I/O B4
<17>
I/O B4
<21>
I/O B4
<22>
I/O B3
<15>
I/O B3
<16>
I/O B3
<19>
I/O B3
<22>
I/O B0
<18>
I/O B0
<21>
I/O G5
<0>
I/O G5
<3>
I/O G5
<4>
I/O G5
<5>
I/O G5
<1>
I/O G5
<2>
I/O B0
<23>
I/O G4
<6>
I/O G4
<7>
I/O G4
<5>
I/O G4
<8>
I/O G4
<1>
I/O G4
<0>
I/O G4
<3>
I/O G3
<1>
I/O G3
<0>
I/O G4
<2>
I/O G3
<4>
I/O G3
<3>
I/O G3
<2>
I/O G3
<7>
I/O G3
<6>
I/O G3
<9>
I/O G3
<8>
I/O G3
<11>
I/O G3
<10>
I/O G3
<5>
I/O G4
<4>
I/O G2
<3>
I/O G2
<2>
I/O G2
<1>
I/O G0
<11>
I/O G2
<6>
I/O G2
<5>
I/O G2
<4>
I/O G0
<10>
I/O G2
<11>
I/O G2
<8>
I/O G2
<7>
I/O G2
<9>
I/O G2
<10>
I/O B0
<20>
I/O B0
<16>
I/O B0
<15>
I/O B0
<12>
I/O B3
<21>
I/O B3
<18>
I/O B3
<17>
I/O B3
<14>
I/O B3
<12>
I/O B4
<18>
I/O B4
<12>
I/O G5
<22>
I/O G5
<19>
I/O G5
<15>
I/O G5
<14>
I/O G5
<17>
I/O G5
<20>
I/O B4
<14>
I/O B4
<16>
I/O B4
<20>
I/O B4
<23>
I/O B3
<20>
I/O B3
<23>
I/O B0
<13>
I/O B0
<17>
I/O G5
<8>
I/O G5
<9>
I/O G5
<11>
I/O G5
<10>
I/O G5
<7>
I/O G5
<6>
I/O G4
<9>
I/O G4
<10>
I/O G4
<11>
I/O B0
<22>
I/O B0
<19>
I/O B0
<14>
I/O B3
<13>
I/O B4
<19>
I/O B4
<15>
I/O G5
<18>
I/O G5
<12>
I/O G4
<12>
I/O G4
<18>
I/O G4
<14>
I/O G5
<13>
I/O G5
<21>
I/O G4
<21>
I/O G4
<19>
I/O G4
<17>
I/O G4
<13>
I/O G2
<18>
I/O G2
<19>
I/O G2
<20>
I/O G0
<13>
I/O G2
<21>
I/O G2
<22>
I/O G2
<23>
I/O G0
<12>
I/O G0
<16>
I/O B4
<9>
I/O B4
<6>
I/O B4
<2>
I/O B3
<9>
I/O B0
<10>
I/O B0
<5>
I/O B0
<4>
I/O G0
<9>
I/O G2
<0>
I/O G0
<8>
I/O G0
<7>
I/O G0
<0>
I/O B0
<1>
I/O B0
<6>
I/O B0
<2>
I/O G0
<3>
I/O G0
<5>
I/O G0
<6>
I/O G0
<4>
I/O G0
<20>
I/O G0
<19>
I/O G0
<14>
I/O G0
<15>
I/O G0
<17>
I/O B4
<8>
I/O B4
<5>
I/O B4
<1>
I/O B3
<10>
I/O B3
<7>
I/O B3
<4>
I/O B3
<0>
I/O G0
<22>
I/O B4
<10>
I/O B4
<4>
I/O B4
<0>
I/O B3
<8>
I/O B3
<6>
I/O B3
<3>
I/O B3
<1>
I/O G0
<21>
I/O G0
<23>
I/O B4
<11>
I/O B4
<7>
I/O B4
<3>
I/O B3
<11>
I/O B3
<5>
I/O B3
<2>
I/O G0
<2>
I/O G0
<1>
I/O B0
<0>
I/O B0
<3>
I/O B0
<8>
I/O B0
<9>
I/O B0
<7>
I/O B0
<11>
I/O G0
<18>
I/O G3
<20>
I/O G3
<22>
I/O G4
<22>
I/O G3
<19>
I/O G3
<21>
I/O G3
<23>
I/O G3
<16>
I/O G3
<17>
I/O G3
<18>
I/O G3
<13>
I/O G3
<14>
I/O G3
<15>
I/O G3
<12>
I/O G2
<14>
I/O G2
<13>
I/O G2
<12>
I/O G4
<20>
I/O G2
<17>
I/O G2
<15>
I/O G2
<16>
I/O G4
<23>
I/O G4
<16>
I/O G4
<15>
NC
1
QIOCLK
1
QIOCLK
3
QIOCLK
0
NC
1
GOE
1
GOE
2
GOE
0
GOE
3
QIOCLK
2
Specifications
ispLSI 8600V
25
Signal Configuration
ispLSI 8600V 492-Ball BGA Signal Diagram
1. NC pins are not to be connected to any active signals, VCC or GND.
Note: Ball A1 indicator dot on top side of package.
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
I/O B4
<12>
I/O B4
<15>
I/O B4
<17>
I/O B4
<20>
I/O B3
<13>
I/O B3
<17>
I/O B3
<21>
I/O B2
<15>
I/O B2
<20>
I/O B1
<12>
I/O B1
<15>
I/O B1
<19>
I/O B1
<23>
I/O B0
<16>
I/O B0
<20>
I/O B0
<23>
I/O B0
<21>
I/O B0
<22>
I/O B0
<18>
I/O B0
<14>
I/O B1
<21>
I/O B1
<17>
I/O B2
<23>
I/O B2
<19>
I/O B2
<16>
I/O B2
<12>
I/O B3
<23>
I/O B3
<19>
I/O B3
<15>
I/O B4
<22>
I/O B4
<18>
I/O B4
<13>
I/O G5
<20>
I/O G5
<16>
I/O G4
<12>
I/O G5
<13>
I/O G5
<14>
I/O G5
<15>
I/O G4
<21>
I/O G3
<20>
I/O G4
<17>
I/O G4
<22>
I/O G4
<20>
I/O G4
<19>
I/O G4
<18>
I/O G3
<23>
I/O G4
<23>
I/O G3
<22>
I/O G3
<19>
I/O G3
<14>
I/O G2
<12>
I/O G2
<13>
I/O G3
<15>
I/O G3
<13>
I/O G3
<12>
I/O G2
<14>
I/O G2
<17>
I/O G2
<16>
I/O G2
<18>
I/O G2
<23>
I/O G1
<20>
I/O G1
<15>
I/O G0
<13>
I/O G0
<17>
I/O G0
<18>
I/O G0
<19>
I/O G0
<20>
I/O G0
<14>
I/O G0
<15>
I/O G1
<14>
I/O G1
<13>
I/O G1
<12>
I/O G1
<21>
I/O G2
<20>
I/O G1
<19>
I/O G1
<18>
I/O G1
<17>
I/O G1
<16>
I/O G0
<16>
I/O G1
<23>
I/O G1
<22>
I/O G0
<12>
I/O G2
<22>
I/O G2
<21>
I/O G2
<19>
I/O G2
<15>
I/O G3
<21>
I/O G3
<18>
I/O G3
<17>
I/O G3
<16>
I/O G5
<12>
I/O G4
<15>
I/O G4
<14>
I/O G4
<13>
I/O G4
<16>
I/O G5
<17>
I/O G5
<18>
I/O G5
<19>
I/O G5
<21>
I/O G5
<22>
I/O G5
<23>
I/O G5
<4>
I/O G5
<8>
I/O G5
<9>
I/O G5
<10>
I/O G5
<11>
I/O G3
<3>
I/O G4
<1>
I/O G4
<7>
I/O G4
<11>
I/O G4
<0>
I/O G3
<5>
I/O G3
<4>
I/O G3
<2>
I/O G3
<6>
I/O G3
<0>
I/O G3
<1>
I/O G4
<5>
I/O G4
<4>
I/O G4
<3>
I/O G4
<2>
I/O G4
<10>
I/O G4
<9>
I/O G4
<8>
I/O G4
<6>
I/O G5
<5>
I/O G5
<6>
I/O G5
<7>
I/O B4
<21>
I/O B3
<14>
I/O B3
<18>
I/O B2
<13>
I/O B2
<17>
I/O B2
<18>
I/O B2
<22>
I/O B1
<16>
I/O B1
<22>
I/O B0
<15>
I/O B0
<19>
I/O G5
<3>
I/O G5
<2>
I/O G5
<1>
I/O G5
<0>
I/O B0
<13>
I/O B1
<13>
I/O B0
<17>
I/O B0
<12>
I/O B1
<20>
I/O B1
<18>
I/O B1
<14>
I/O B2
<21>
I/O B2
<14>
I/O B3
<22>
I/O B3
<20>
I/O B3
<16>
I/O B3
<12>
I/O B4
<23>
I/O B4
<19>
I/O B4
<16>
I/O B4
<14>
CLK2
EPEN
NC
1
QIOCLK
2
TCK
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
GOE 2
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
GND
VCCIO
VCCIO
VCCIO
VCC
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
VCC
VCC
VCC
VCC
VCC
NC
1
VCC
NC
1
NC
1
VCC
VCCIO
VCC
I/O G3
<10>
I/O G3
<9>
I/O G3
<7>
I/O G3
<11>
I/O G2
<11>
I/O G2
<10>
I/O G2
<9>
I/O G2
<8>
I/O G2
<4>
I/O G2
<3>
I/O G2
<5>
I/O G2
<6>
I/O G2
<0>
I/O G1
<0>
I/O G2
<1>
I/O G1
<2>
I/O G1
<3>
I/O G1
<4>
I/O G1
<5>
I/O G1
<7>
I/O G2
<2>
I/O G1
<1>
I/O G0
<8>
I/O G0
<4>
I/O B0
<10>
I/O B1
<10>
I/O G0
<23>
I/O B4
<5>
I/O B4
<1>
I/O B3
<8>
I/O B3
<2>
I/O B2
<9>
I/O B2
<8>
I/O B2
<4>
I/O B1
<11>
I/O B1
<4>
I/O B1
<0>
I/O B0
<7>
I/O B0
<4>
I/O B0
<8>
I/O B1
<1>
I/O B1
<5>
I/O B1
<9>
I/O B2
<3>
I/O B2
<7>
I/O B2
<10>
I/O B3
<3>
I/O B3
<7>
I/O B3
<11>
I/O B4
<0>
I/O B4
<4>
I/O B4
<8>
I/O B4
<11>
I/O B4
<10>
I/O B4
<7>
I/O B4
<3>
I/O B3
<10>
I/O B3
<6>
I/O B3
<4>
I/O B3
<0>
I/O B2
<5>
I/O B2
<1>
I/O B1
<8>
I/O B1
<6>
I/O B1
<2>
I/O B0
<9>
I/O B0
<5>
I/O B0
<2>
I/O B0
<0>
I/O B0
<1>
I/O B0
<3>
I/O B0
<6>
I/O B0
<11>
I/O B1
<3>
I/O B1
<7>
I/O B2
<0>
I/O B2
<2>
I/O B2
<6>
I/O B2
<11>
I/O B3
<1>
I/O B3
<5>
I/O B3
<9>
I/O B4
<2>
I/O B4
<6>
I/O B4
<9>
I/O G0
<22>
I/O G0
<21>
I/O G0
<5>
I/O G0
<6>
I/O G0
<7>
I/O G0
<3>
I/O G0
<2>
I/O G0
<1>
I/O G0
<0>
I/O G0
<9>
I/O G0
<10>
I/O G1
<11>
I/O G1
<10>
I/O G1
<9>
I/O G1
<8>
I/O G1
<6>
I/O G0
<11>
I/O G2
<7>
I/O G3
<8>
VCC
VCCIO
QIOCLK
3
GOE 3
VCC
VCC
VCC
VCCIO
VCCIO
SET/
RESET
TOE
VCCIO
VCCIO
VCC
GND
NC
1
NC
1
GND VCCIO
VCCIO
VCC
VCC
VCC
VCCIO
VCCIO GOE 1
QIOCLK
1
VCC
CLK 1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
IOCLKEN
NC
1
NC
1
VCC
TDO
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
CLK 0
QIOCLK
0
GOE 0
NC
1
TMS
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
TDI
GND
VCCIO
VCC
VCC
VCC
VCC
VCCIO
VCCIO
VCCIO VCC
VCC
VCCIO
VCC
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
NC
1
GND
NC
1
VCCIO
VCC
GND
GND
GND
CLKEN
VCC
VCC
VCCIO
VCC
NC
1
NC
1
GND
ispLSI 8600V
Bottom View
Specifications
ispLSI 8600V
26
Table 2-0041/8600V
FAMILY
fmax (MHz)
125
ORDERING NUMBER
PACKAGE
492-Ball BGA
tpd (ns)
8.5
ispLSI
ispLSI 8600V-125LB492
90
492-Ball BGA
10
ispLSI 8600V-90LB492
60
492-Ball BGA
15
ispLSI 8600V-60LB492
125
272-Ball BGA
8.5
ispLSI 8600V-125LB272
90
272-Ball BGA
10
ispLSI 8600V-90LB272
60
272-Ball BGA
15
ispLSI 8600V-60LB272
Part Number Description
Ordering Information
COMMERCIAL
Device Number
Grade
Blank = Commercial
ispLSI 8600V - XXX
X
XXXX
X
Speed
125 = 125 MHz
f
max
90 = 90 MHz
f
max
60 = 60 MHz
f
max
Power
L = Low
Package
B272 = 272-Ball BGA
B492 = 492-Ball BGA
Device Family
0212/8600V