ChipFind - документация

Электронный компонент: IRF3103

Скачать:  PDF   ZIP
HEXFET
Power MOSFET
IRL3103
PD - 9.1337C
l
Logic-Level Gate Drive
l
Advanced Process Technology
l
Dynamic dv/dt Rating
l
175C Operating Temperature
l
Fast Switching
l
Fully Avalanche Rated
V
DSS
= 30V
R
DS(on)
= 0.014
I
D
= 64A
S
D
G
TO-220AB
8/25/97
Parameter
Min.
Typ.
Max.
Units
R
JC
Junction-to-Case
1.4
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
C/W
R
JA
Junction-to-Ambient
62
Thermal Resistance
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve the
lowest possible on-resistance per silicon area. This benefit,
combined with the fast switching speed and ruggedized
device design that HEXFET Power MOSFETs are well
known for, provides the designer with an extremely efficient
device for use in a wide variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal resistance
and low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
Description
Parameter
Max.
Units
I
D
@ T
C
= 25C
Continuous Drain Current, V
GS
@ 10V
64
I
D
@ T
C
= 100C
Continuous Drain Current, V
GS
@ 10V
45
A
I
DM
Pulsed Drain Current
220
P
D
@T
C
= 25C
Power Dissipation
110
W
Linear Derating Factor
0.71
W/C
V
GS
Gate-to-Source Voltage
16
V
E
AS
Single Pulse Avalanche Energy
240
mJ
I
AR
Avalanche Current
34
A
E
AR
Repetitive Avalanche Energy
11
mJ
dv/dt
Peak Diode Recovery dv/dt
5.0
V/ns
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
C
Soldering Temperature, for 10 seconds
300 (1.6mm from case)
Mounting torque, 6-32 or M3 screw.
10 lbfin (1.1Nm)
Absolute Maximum Ratings
IRL3103
Parameter
Min. Typ. Max. Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
30
V
V
GS
= 0V, I
D
= 250A
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
0.037
V/C
Reference to 25C, I
D
= 1mA
0.014
V
GS
= 10V, I
D
= 34A
0.019
V
GS
= 4.5V, I
D
= 28A
V
GS(th)
Gate Threshold Voltage
1.0
V
V
DS
= V
GS
, I
D
= 250A
g
fs
Forward Transconductance
23
S
V
DS
= 25V, I
D
= 34A
25
V
DS
= 30V, V
GS
= 0V
250
V
DS
= 18V, V
GS
= 0V, T
J
= 150C
Gate-to-Source Forward Leakage
100
V
GS
= 16V
Gate-to-Source Reverse Leakage
-100
V
GS
= -16V
Q
g
Total Gate Charge
50
I
D
= 34A
Q
gs
Gate-to-Source Charge
14
nC
V
DS
= 24V
Q
gd
Gate-to-Drain ("Miller") Charge
28
V
GS
= 4.5V, See Fig. 6 and 13
t
d(on)
Turn-On Delay Time
9.0
V
DD
= 15V
t
r
Rise Time
210
I
D
= 34A
t
d(off)
Turn-Off Delay Time
20
R
G
= 3.4
,
V
GS
=4.5V
t
f
Fall Time
54
R
D
= 0.43
,
See Fig. 10
Between lead,
6mm (0.25in.)
from package
and center of die contact
C
iss
Input Capacitance
1600
V
GS
= 0V
C
oss
Output Capacitance
640
pF
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
320
= 1.0MHz, See Fig. 5
Electrical Characteristics @ T
J
= 25C (unless otherwise specified)
nA
S
D
G
I
DSS
Drain-to-Source Leakage Current
R
DS(on)
Static Drain-to-Source On-Resistance
I
GSS
L
D
Internal Drain Inductance
4.5
L
S
Internal Source Inductance
7.5
ns
A
nH
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
I
SD
34A, di/dt
140A/s, V
DD
V
(BR)DSS
,
T
J
175C
Notes:
V
DD
= 15V, starting T
J
= 25C, L = 300H
R
G
= 25
, I
AS
= 34A. (See Figure 12)
Pulse width
300s; duty cycle
2%.
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
1.3
V
T
J
= 25C, I
S
= 34A, V
GS
= 0V
t
rr
Reverse Recovery Time
81
120
ns
T
J
= 25C, I
F
= 34A
Q
rr
Reverse RecoveryCharge
210
310
nC
di/dt = 100A/s
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
Source-Drain Ratings and Characteristics
A
220
64
S
D
G
IRL3103
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output Characteristics
1
10
100
1000
0.1
1
10
100
I
,
D
r
ai
n-
t
o
-
S
o
u
r
c
e
C
u
r
r
en
t
(
A
)
D
V , Dra in-to-So urce V olta ge (V )
D S
A
20 s PU LSE W ID TH
T = 2 5C
J
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTT OM 2.5V
2.5 V
1
10
100
1000
0.1
1
10
100
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
D
V , Drain -to -S o urce Vo lta ge (V )
D S
A
2 0 s PU L SE W ID TH
T = 1 75 C
VGS
TOP 15V
12V
10V
8.0V
6.0V
4.0V
3.0V
BOTTOM 2.5V
2. 5V
J
1
1 0
1 0 0
1 0 0 0
2 . 0
3 . 0
4 . 0
5 . 0
6 . 0
7 . 0
8 . 0
9 . 0
T = 2 5 C
J
G S
V , Ga te -to -S o u rce V o l ta g e (V )
D
I
, D
r
a
i
n
-
to
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
T = 1 7 5 C
J
A
V = 1 5 V
2 0 s P U L S E W ID T H
DS
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
- 6 0
- 4 0
- 2 0
0
2 0
4 0
6 0
8 0
1 0 0 1 2 0 1 4 0 1 6 0 1 8 0
J
T , Ju nctio n T emp eratu re (C)
R
,
D
r
a
i
n
-
to
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
D
S
(
on)
(
N
o
r
m
a
l
i
z
ed)
V = 10 V
G S
A
I = 56 A
D
IRL3103
Fig 7. Typical Source-Drain Diode
Forward Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
0
400
800
1200
1600
2000
2400
2800
3200
1
10
100
C
,
C
a
pac
i
t
anc
e (
p
F
)
D S
V , Drai n-to -So urce V oltag e (V)
A
V = 0V , f = 1MH z
C = C + C , C SH OR TED
C = C
C = C + C
G S
is s gs g d ds
rs s g d
os s ds gd
C
is s
C
o s s
C
rs s
0
3
6
9
12
15
0
10
20
30
40
50
60
70
Q , T otal Ga te C harg e (nC )
G
V


,
G
a
t
e
-
t
o-
S
o
u
r
c
e

V
o
l
t
ag
e (
V
)
GS
A
FO R TEST CI R CU I T
SEE FIG UR E 13
V = 2 4V
V = 1 5V
I = 34A
DS
DS
D
1 0
1 0 0
1 0 0 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4
2 . 8
T = 2 5C
J
V = 0 V
G S
V , S o urce-to -Drain Vo lta ge (V )
I
,
Re
v
e
r
s
e
Dr
a
i
n
Cu
r
r
e
n
t
(
A
)
S D
SD
A
T = 17 5C
J
1
10
100
1000
1
10
100
V , Dra in -to-So urce Vo ltag e (V)
D S
I ,
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
OPE R ATIO N IN TH IS A RE A LI MI TE D
BY R
D
D S(o n)
10 s
1 00s
1 ms
1 0m s
A
T = 25 C
T = 17 5C
S ing le Pulse
C
J
IRL3103
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10a. Switching Time Test Circuit
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Pulse Width
1
s
Duty Factor
0.1 %
V
GS
R
G
D.U.T.
4.5V
+
-
V
DD
25
50
75
100
125
150
175
0
10
20
30
40
50
60
70
T , Case Temperature
( C)
I , Drain Current (A)
C
D
0.01
0.1
1
10
0.00001
0.0001
0.001
0.01
0.1
Notes:
1. Duty factor D = t / t
2. Peak T = P
x Z
+ T
1
2
J
DM
thJC
C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response
(Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRL3103
Fig 12a. Unclamped Inductive Test Circuit
Fig 12b. Unclamped Inductive Waveforms
V
DS
L
D.U.T.
V
DD
I
AS
t
p
0.01
R
G
+
-
t
p
V
DS
I
AS
V
DD
V
(BR)DSS
4.5 V
Q
G
Q
GS
Q
GD
V
G
Charge
Fig 13a. Basic Gate Charge Waveform
D.U.T.
V
DS
I
D
I
G
3mA
V
GS
.3
F
50K
.2
F
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
4.5 V
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 13b. Gate Charge Test Circuit
0
100
200
300
400
500
600
25
50
75
100
125
150
175
J
E
,

S
i
n
g
l
e
P
u
l
s
e A
v
a
l
anc
he

E
ner
g
y
(
m
J
)
AS
A
Startin g T , Jun ctio n T emp era tu re (C)
V = 1 5V
I
TO P 1 4A
24 A
BO TTO M 3 4A
D D
D
IRL3103
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple
5%
Body Diode
Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D =
P.W.
Period
+
-
+
+
+
-
-
-
Fig 14. For N-Channel HEXFETS
*
V
GS
= 5V for Logic Level Devices
Peak Diode Recovery dv/dt Test Circuit
R
G
V
DD
dv/dt controlled by R
G
Driver same type as D.U.T.
I
SD
controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRL3103
TO-220AB Outline
Dimensions are shown in millimeters (inches)
TO-220AB
Part Marking Information
L E A D A S S IG N M E N T S
1 - G A T E
2 - D R A I N
3 - S O U R C E
4 - D R A I N
- B -
1 .3 2 (. 0 5 2 )
1 .2 2 (. 0 4 8 )
3 X
0 . 5 5 (. 0 2 2 )
0 . 4 6 (. 0 1 8 )
2 .9 2 (. 1 1 5 )
2 .6 4 (. 1 0 4 )
4 . 6 9 ( .1 8 5 )
4 . 2 0 ( .1 6 5 )
3 X
0 . 9 3 ( .0 3 7 )
0 . 6 9 ( .0 2 7 )
4 . 0 6 (. 1 6 0 )
3 . 5 5 (. 1 4 0 )
1 . 1 5 ( .0 4 5 )
M IN
6 . 4 7 (. 2 5 5 )
6 . 1 0 (. 2 4 0 )
3 . 7 8 (. 1 4 9 )
3 . 5 4 (. 1 3 9 )
- A -
1 0 . 5 4 (. 4 1 5 )
1 0 . 2 9 (. 4 0 5 )
2 . 8 7 ( .1 1 3 )
2 . 6 2 ( .1 0 3 )
1 5 . 2 4 ( .6 0 0 )
1 4 . 8 4 ( .5 8 4 )
1 4 . 0 9 (.5 5 5 )
1 3 . 4 7 (.5 3 0 )
3 X
1 .4 0 (. 0 5 5 )
1 .1 5 (. 0 4 5 )
2 . 5 4 ( .1 0 0 )
2 X
0 .3 6 (. 0 1 4 ) M B A M
4
1 2 3
N O T E S :
1 D I M E N S IO N I N G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 3 O U T L IN E C O N F O R M S T O J E D E C O U T L I N E T O -2 2 0 -A B .
2 C O N T R O L L I N G D IM E N S IO N : I N C H 4 H E A T S IN K & L E A D M E A S U R E M E N T S D O N O T IN C L U D E B U R R S .
P A RT NU M BE R
IN TE R NA T ION A L
R EC T IF IER
LO GO
E X AM PL E : T HI S IS A N IRF 1 01 0
W IT H A S S E MB L Y
L O T CO DE 9 B 1 M
A S S EM B L Y
LO T CO DE
D A TE C OD E
(Y YW W )
Y Y = YE A R
W W = W E EK
924 6
IR F 101 0
9B 1M
A
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
8/97