ChipFind - документация

Электронный компонент: AS8201

Скачать:  PDF   ZIP
AS8201
TTP/C-C1 Communications
Controller
Data Sheet
Austria Mikro Systeme International AG
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 2 of 13
Austria Mikro Systeme International AG
K e y F e a t u r e s
First dedicated controller supporting TTP/C (time triggered protocol class C)
Device for building up TTP/C nodes in a TTP/C local area networks (clusters).
Suited for dependable distributed real-time systems with guaranteed response time
application examples:
automotive: braking, steering, vehicle dynamics control, drive train control
industry: air plane flap control, rail way points
Bit data rate 2 Mbits/s @ clock 20 MHz, 5.0V
Fabricated in 0.6u CMOS process, automotive temperature range of -40 to 125deg C
1k x 16 RAM message, status and control area
RAM for instruction code and configuration data
16 bit non-multiplexed host CPU interface
16 bit RISC architecture
external firmware (FLASH memory) conforming the TTP/C specification
automatic booting after power on
software tools, design-in support, development boards available (
http://www.tttech.com)
120 pin PQFP Package
D e s c r i p t i o n
The TTP/C-C1 communications controller is the first integrated device supporting serial
communication according to the TTP/C specification (time triggered protocol class C). It
performs all communications tasks such as reception and transmission of messages in a
TTP/C cluster without interaction of the host CPU.
TTP/C provides mechanisms that allow the deployment in high-dependability distributed real-
time systems. It provides the following services:
predictable transmission of messages with minimal jitter
fault-tolerant distributed clock synchronisation
consistent membership service with small delay
masking of single faults
RXD[1:0]
BDE[1:0]
XENA1
XIN1
XOUT1
TXD[1:0]
CTS[1:0]
OE[1:0]
TEST_SE
FTEST
FTEST_IEN
LED[7:0]
Boot ROM
Interface
RAM_DATA[15:0]
RAM_ADDRESS[10:0]
RAM_CEB
RAM_OEB
RAM_WEB
RAM_READYB
TIME_OVERFLOW
TIME_SIGNAL
TIME_TICK
MICROTICK
XENA0
XIN0
XOUT0
RESETB
ROM_ADDRESS[16:0]
ROM_DATA[15:0]
ROM_RESETB
ROM_CEB
ROM_OEB
ROM_WEB
ROM_READY
Quarz or
Oscillator
Controller
network
interface
(CNI)
TTP/C-C1
protocol
processor core
Instruction
memory
Network
configuration
memory
(MEDL)
TTP/C
bus -
Meadia
Drivers
Bus
guardian
Receiver
Transmitter
Reset &
Time
base
Host
processor
Interface
Test
Inter-
face
Figure 1 Block Diagramm
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 3 of 13
Austria Mikro Systeme International AG
The CNI (controller network interface) forms a temporal firewall. It decouples the controller
network from the host subsystem by use of a dual ported RAM. This prevents the propagation
of control errors. The interface to the host CPU is implemented as 16 bit wide non-multiplexed
asynchronous bus interface.
TTP/C follows a conflict-free media access strategy called time-division-multiple access
(TDMA). This means, TTP/C deploys a time slot technique based on a global time which is
permanently synchronised. Each node is assigned a time slot in which it is allowed to perform
transmit operation. The sequence of time slots is called TDMA round, a set of TDMA rounds
forms a cluster cycle. After one cluster cycle the operation of the network repeats. The
sequence of interactions forming the cluster cycle is defined in a static time schedule, called
message-descriptor-list (MEDL). The definition of the MEDL in conjunction with the global time
determines the response time for a service request.
The membership of all nodes in the network is evaluated by the communication controller. This
information is presented in a consistent fashion to all correct cluster members. During
operation, the status of every other node is propagated within one TDMA round. The MEDL is
loaded into the configuration memory before run time when the system starts up.
P a c k a g e a n d P i n A s s i g n m e n t
Type: PQFP 120, plastic quad flat package
TTP/C-C1
Communications
Controller
(TOP VIEW)
Figure 1 PQFP 120 pin package and pin assignment
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 4 of 13
Austria Mikro Systeme International AG
P i n D e s c r i p t i o n
PinNr. Pin Name
Dir Description
1
VDD
P
positive power supply
2
VSS
P
negative power supply
3-18
RAM_DATA[0:15]
I/O DPRAM data bus, tristate
19
VDD
P
positive power supply
20
VSS
P
negative power supply
21
RAM_OEB
I
DPRAM output enable, active low
22
RAM_WEB
I
DPRAM write enable, active low
23
RAM_READYB
O
DPRAM ready, active low, indicates read/write operation finished
24
TIME_OVERFLOW
O
CNI control signal, overflow of global time
25
TIME_SIGNAL
O
CNI control signal, CNI time signal
26
TIME_TICK
O
CNI clock signal, macrotick, typically about 1us at 20 MHz clock.
27
MICROTICK
O
output of main clock, inverted to signal applied at pin XOUT0.
28
XENA0
I
oscillator 0 (main clock) enable, active low.
29
VDD
P
positive power supply
30
VSS
P
negative power supply
31
XIN0
A
analog pad from oscillator / use as input when providing external
clock
32
XOUT0
A
analog pad from oscillator / leave open when providing external
clock
33
VSS
P
positive power supply
34
VDD
P
negative power supply
35
OE[0]
I
channel [0]: transmitter output enable
36
RXD[0]
I
PU
channel [0]: receiver input
37
TXD[0]
O
channel [0]: transmit data
38
CTS[0]
O
channel [0]: transmitter clear to send
39
BDE[0]
O
channel [0]: bus driver enable
40
RESETB
I
(1) main reset input signal, active low. When connected the in-
ternal power-on reset function is overridden
(2) if unconnected: an internal reset is generated after power-on.
Reset pulse duration typically 24 us.
41
TEST_SE
I
PD
test input: scan enable, active high
42
FTEST
I
PD
test input: functional test mode, active high
43
FTEST_IEN
I
PD
test input: instruction insertion enable, active high
44-50 LED[0:6]
O
test outputs:
(1) in production test used as scan chain outputs
(2) in operation: can be used as generic output port, e.g. to drive
LEDs
51
OE[1]
I
channel [1]: transmitter output enable
52
RXD[1]
I
PU
channel [1]: receiver input
53
TXD[1]
O
channel [1]: transmit data
54
CTS[1]
O
channel [1]: transmitter clear to send
55
BDE[1]
O
channel [1]: bus driver enable
56
XENA1
I
oscillator 1 (bus guardian) enable, active low.
57
VDD
P
positive power supply
58
VSS
P
negative power supply
59
XIN1
A
analog pad from oscillator / use as input when providing external
clock
60
XOUT1
A
analog pad from oscillator / leave open when providing external
clock
61
VSS
P
positive power supply
62
VDD
P
negative power supply
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 5 of 13
Austria Mikro Systeme International AG
63-79 ROM_ADDRESS[0:16] O
ROM address bus, range = 2^17 = 128k
80
ROM_RESETB
O
ROM reset line, active low
81
ROM_CEB
O
ROM chip enable, active low
82
ROM_OEB
O
ROM output enable, active low
83
ROM_WEB
O
ROM write enable, active low; "read" if high.
84
ROM_READY
I
PU
ROM ready, signals read operation ready, leave open when un-
used
85
VDD
P
positive power supply
86
VSS
P
negative power supply
87-94 ROM_DATA[0:7]
I/O ROM data bus (lower byte)
95
VDD
P
positive power supply
96
VSS
P
negative power supply
97-
104
ROM_DATA[8:15]
I/O ROM data bus (higher byte)
105
VDD
P
positive power supply
106
VSS
P
negative power supply
107-
117
RAM_ADDRESS[0:10]
I
DPRAM address bus, range = 2^11 = 2048
118
RAM_CEB
I
DPRAM chip enable, active low
119
VDD
P
positive power supply
120
VSS
P
negative power supply
I
Input CMOS
I
PU
Input CMOS with pull up
I
PD
Input CMOS with pull down
O
Output CMOS
I/O
Input/Output CMOS tristate
P
Power Pin
A
Analog Pin
E l e c t r i c a l S p e c i f i c a t i o n s
Absolute Maximum Ratings ( Non Operating)
SYMBOL PARAMETER
MIN
MAX
NOTE
VDD
DC Supply Voltage
-0.3 V
7.0 V
V
in
Input Voltage on any Pin
- 0.3 V
VDD + 0.3 V
I
in
Input Current on any Pin
-100 mA
100 mA
25C
T
strg
Storage Temperature
-55 oC
150 oC
T
sold
Soldering Temperature
260 oC
1)
t
sold
Soldering Time
10 sec
Reflow and Wave
H
Humidity
5 %
85 %
ESD
Electrostatic Discharge
1000 V
HBM: R = 1.5 k
, C = 100 pF
1)
300 oC all ceramic packages and DIL plastic packages, 260 oC for surface mounting plastic packages
Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may effect device reliability (e.g. hot carrier degradation).
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 6 of 13
Austria Mikro Systeme International AG
Recommended Operating Conditions
PARAMETER
SYMBOL MIN
TYP
MAX
NOTE
DC Supply Voltage
VDD
4.5 V
5.0 V
5.5 V
1)
Circuit Ground
VSS
0.0 V
0.0 V
0.0 V
Static Supply Current
IDDS
----
40
A
100
A
2)
Operating Supply
Current
IDD
----
110 mA
160 mA
fCLK = 20 MHz, VDD = 5.5 V
3)
Main clock frequency
CLK
5 MHz
20 MHz
oscillator pins XIN0, XOUT0
Bus Guardian clock
frequency
CLK2
4 MHz
16 MHz
oscillatpr pins XIN1, XOUT1
Ambient Temperature
Ta
-40 oC
+125 oC
1)
1) The input and output parameter values in this table are directly related to ambient temperature and DC supply
voltage. A temperature range other Ta
min
to Ta
max
or a supply voltage range other than VDD
min
to VDD
max
will
affect these values and must be evaluated extra.
2) Static supply current IDDS is exclusive of input/output drive requirements and is measured at maximum VDD
with the clocks stopped and all inputs tied to VDD or VSS, configured to draw minimum current.
3) Operating current is exclusive of input/output drive requirements and is measured at maximum VDD and maxi-
mum clock frequency 20 MHz.
DC Characteristics and Voltage Levels
CMOS I/O levels for specified voltage and temperature range unless otherwise noted.
Inputs Pins
Pin Name
Vil
Vih
Iil (1)
Iih(2)
NOTE
max
min
min
max
min
max
All inputs and IO pins
(except: ROM_READY,
RXD[0], RXD[1], FTEST,
FTEST_IEN, TEST_SE)
30%
VDD
70%
VDD
NA
-1.0
A
NA
1.0
A
CMOS input (3)
ROM_READY, RXD[0],
RXD[1]
30%
VDD
70%
VDD
-50
A
-160
A
NA
NA
CMOS with pull
up (3)
FTEST, FTEST_IEN,
TEST_SE
30%
VDD
70%
VDD
NA
NA
30
A
160
A
CMOS with pull
down (3)
Notes:
1) Iil ist tested at VDDmax and Vin = 0
2) Iih ist tested at VDDmax and Vin = VDDmax
3) CMOS input levels are in percentage of VDD
4)
Output Pins
Pin Name
Vol
Voh
Iol (1)
Ioh(2)
Ioz(3)
NOTE
V
V
mA
mA
A
All output pins
(except XOUT0,XOUT1)
0.4
4.0
4.0
-4.0
NA
CMOS output
All I/O pins
0.4
4.0
4.0
-4.0
+/-10
CMOS output, Tristate
1) Vol, Iol is tested at VDD = 4.5V
2) Voh, Ioh is tested at VDD = 4.5V
3) Ioz is tested at VDD = 5.5V
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 7 of 13
Austria Mikro Systeme International AG
AC Characteristics
Clock applied at XOUT0, resp. XOUT1.
PARAMETER
SYMBOL
PIN
MIN
MAX
NOTE
data in setup
time
tsetup
all IN,
all IO
20 ns
vs. Falling edge of clk @XOUT0, XOUT1
data output
valid
tdav
all OUT,
all IO
35 ns
vs. rising edge of clk @ XOUT0, XOUT1
A p p l i c a t i o n I n f o r m a t i o n
ROM Interface
Pin name
mode
width
comment
ROM_DATA
inout (tri)
16
ROM data bus
ROM_ADDRESS
out
17
ROM address bus
ROM_CEB
out
1
ROM chip enable
ROM_WEB
out
1
ROM write enable
ROM_OEB
out
1
ROM output enable
ROM_READY
in
1
ROM ready
ROM_RESETB
out
1
external reset line
Table 1 ROM Interface Ports
The timing and behaviour of the ROM Interface is designed to operate with the AM29F200
Flash EPROM or compatible devices. For detailed timing information see [AM29F200]
1
. Figure
2 shows the connection between TTP/C-C1 controller and the AM29F200 Flash. The contents
of the Flash memory is loaded into the instruction memory by a boot sequencer automatically
after power on.
AM29F200
17
TTA-C1
RY/BY
RESET
WE
CE
OE
A0-A16
DQ0-DQ15
BYTE
VCC
16
rom_resetb
rom_web
rom_ceb
rom_oeb
rom_address
rom_ready
rom_data
Figure 2 ROM Interface
2
Host CPU Interface
The host CPU interface also referred as CNI (controller network interface) connects the
application circuitry to the TTP/C network. As shown in Table 2 all RAM_-lines provide
asynchronous read/write access to a dual ported RAM. There are no setup/hold constraints
referred to the microtick (main clock "clk"). The signals have to be applied for certain duration
according to Table 3. So, the applied signals get synchronised with the microtick. The TIME_-
1
[AMD96] Advanced Micro Devices, "Flash Memory Products - 1996 Data Book/Handbook", Advanced Micro Devices Inc., 1996.
2
The label TTA-C1 stands for TTP/C-C1 in the following diagrams
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 8 of 13
Austria Mikro Systeme International AG
lines signal to host CPU the global synchronous time of the TTP network and determine when
to deliver, resp. to fetch data from the host interface. One of the lines may be connected to a
interrupt inputs of the host CPU.
Pin Name
mode
width
comment
RAM_ADDRESS
in
11
DPRAM address bus, 11 bit
RAM_DATA
inout (tri)
16
DPRAM data bus, 16 bit
RAM_CEB
in
1
DPRAM chip enable
RAM_WEB
in
1
DPRAM write enable
RAM_OEB
in
1
DPRAM output enable
RAM_READYB
out
1
DPRAM ready
TIME_OVERFLOW
out
1
overflow of global time
TIME_SIGNAL
out
1
CNI time signal
TIME_TICK
out
1
macrotick
Table 2 Host Interface Ports
microtick
t
ct
ram_data
XXX
t
dv
ram_address
XXX
t
a
ram_ceb
t
ce
t
rwct
address stable
ram_web
Figure 3: Read Cycle Timing
Addresses and RAM_WEB have to be stable before the falling edge of RAM_CEB. RAM_CEB
has to be applied for 2 microticks. Addresses and RAM_WEB have to be applied for 3
microticks. Data can be read from RAM_DATA after 6 microticks. RAM_OEB drives the result
of the (last) read operation to the RAM_DATA bus.
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 9 of 13
Austria Mikro Systeme International AG
microtick
t
ct
ram_web
ram_ceb
t
ce
ram_address
XXX
t
a
ram_data
XXXX
t
rwct
address stable
data stable
Figure 4: Write Cycle Timing
Addresses, data and RAM_WEB have to be stable before the falling edge of RAM_CEB.
RAM_CEB has to be applied for 2 microticks. Addresses, data, and RAM_WEB have to be
applied for 3 microticks.
Parameter
Symbol
Min
Typ
Max
controller cycle time
t
ct
50ns
duration of chip enable
t
ce
87.5ns
100ns
112.5ns
address time
t
a
137.5ns
150ns
162.5ns
data valid time
t
dv
300ns
read write cycle time
t
rwct
300ns
Table 3: Host Interface Timing
Reset and Oscillator
Pin Name
mode
width
Comment
XIN0
in
1
controller oscillator input
XENA0
in
1
controller clock enable
XOUT0
out
1
controller oscillator output
XIN1
in
1
bus guardian oscillator input
XOUT1
out
1
bus guardian oscillator output
XENA1
in
1
bus guardian clock enable
RESETB
in
1
external reset
MICROTICK
out
1
controller clock (inverted)
Table 4: Reset and Oscillator Ports
External Reset Signal
To issue a reset of the chip the RESETB port has to be driven low for at least
200
s. After
power-up the reset must overlap the build-up time of the oscillator circuit.
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 10 of 13
Austria Mikro Systeme International AG
Integrated Power-On Reset
An internal Power-On Reset generator is integrated. When The supply voltage ramps up, the
internal reset signal is kept active (low) for about 24 us typical. To activate this function the
RESETB must be left unconnected.
Parameter
Symbol
Min
Typ
Max
Unit
supply voltage slope
dV/dt
250
-
-
kV/s
power on reset active time after VDD >
1,2V
t
pon_res
16
24
34
us
external reset low to internal high
t
res_fall
81
118
173
ns
external reset high to internal low
t
reset_rise
130
129
104
ns
Oscillator circuitry
The internal oscillator cell requires an external quartz or an external oscillator respectively
(Figure 5, Figure 6). The internal controller clock is available at the port MICROTICK (inverted
to clock signal applied at XOUT0).
TTA-C1
XIN0
XOUT0
XENA0
VSS
XIN1
XOUT1
XENA1
VSS
20Mhz
16Mhz
TTA-C1
XIN0
XOUT0
XENA0
VSS
XIN1
XOUT1
XENA1
VSS
20Mhz
OSC
16Mhz
OSC
XENA0 XOUT0 XIN0 XENA1 XOUT1 XIN1
Figure 5: Quartz Circuit
Figure 6: Oscillator Circuit
TTP/C Bus Interface
Pin Name
mode
width
comment
CTS
out
2
transmitter clear to send
OE
in
2
transmitter output enable
TXD
out
2
transmit data
RXD
in
2
receiver input
BDE
out
2
bus driver enable
Table 5: TTP/C Bus Interface Ports
The controller can be connected to transceivers with recessive state and to transceivers with
three-state outputs, respectively. For safe operation of the device the bus driver enable signal
BDE must be connected with output enable OE. To deactivate the bus guardian the OE signal
has to be tied to VCC. Applications with recessive state transceivers do not use the CTS
signal.
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 11 of 13
Austria Mikro Systeme International AG
TTA-C1
OE[0]
CTS[0]
TXD[0] RXD[0]
BDE[0]
PCA82C250
TXD
RXD
CL
CH
OE[1]
CTS[1]
TXD[1] RXD[1]
BDE[1]
PCA82C250
TXD
RXD
CL
CH
BUS0
BUS1
TTA-C1
OE[0]
CTS[0]
TXD[0] RXD[0]
BDE[0]
MAX1487
DI
DO
CL
CH
OE[1]
CTS[1]
TXD[1] RXD[1]
BDE[1]
BUS0
DE
RE
MAX1487
DI
DO
CL
CH
BUS1
DE
RE
Figure 7: Transceivers with Recessive State
Figure 8: Transceivers with Three-State Output
Test Interface
Pin Name
mode
width
comment
FTEST
in (pull down)
1
functional test mode
FTEST_EIN
in (pull down)
1
instruction insertion enable
LED
out
7
LED vector
TEST_SE
in (pull down)
1
scan enable
Table 6: Test Interface Ports
The ports of the test interface support the manufacturing test of the chip. In the application
environment FTEST, FTEST_IEN, and TEST_SE are not connected. The LED bus can be
used as a universal output port. The driver strength of the LED ports is 4mA.
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 12 of 13
Austria Mikro Systeme International AG
P r i n c i p l e s o f O p e r a t i o n
The next 2 figures show a typical TTP/C node as it is to be deployed in a TTP/C
communication cluster. The circuit example uses the MAX1487 as driver, the host CPU may
be selected by the user and a 29F200 Flash memory. For detailed information the protocol on
application programming refer to the manuals provided by TTTech Computer Technik GmbH.
Sensor / Actor interface
Controller network interface (CNI)
TTP/C
Protocol
processor
Boot ROM
(external)
Instruction
memory
Configuration
memory
(MEDL)
Host CPU
Bus guardian - Rx / Tx
Media Divers
TTP/C-C1
controller chip
TTP/C bus
Figure 9 Typical node in a TTP/C cluster using the TTP/C-C1
TTP/C-C1
controller
RAM_DATA[15:0]
RAM_ADDRESS[10:0]
RAM_CEB
RAM_OEB
RAM_WEB
RAM_READYB
TIME_OVERFLOW
TIME_SIGNAL
TIME_TICK
MICROTICK
XENA0
XIN0
XOUT0
RESETB
ROM_ADDRESS[16:0]
ROM_DATA[15:0]
ROM_RESETB
ROM_CEB
ROM_OEB
ROM_WEB
ROM_READY
TXD[0]
RXD[0]
CTS[0]
BDE[0]
OE[0]
TXD[1]
RXD[1]
CTS[1]
BDE[1]
OE[1]
XENA1
XIN1
XOUT1
TEST_SE
FTEST
FTEST_IEN
LED[7:0]
Host
CPU
Flash
EPROM
29F200
20 MHz
Quartz
16 MHz
Quartz
RE
DI
CL
DO
CH
DE
MAX1487
RE
DI
CL
DO
CH
DE
MAX1487
Bus0
Bus1
Figure 10 Typical application circuit
TTP/C-C1 Communications Controller Data Sheet
AS8201
Rev. NC, October 1999
Page 13 of 13
Austria Mikro Systeme International AG
O r d e r i n g I n f o r m a t i o n
Part Number:
AS8201
Part Name:
TTP/C-C1 Communications Controller
Package:
PQFP 120
S u p p o r t
Software tools, hardware development boards, evaluation systems and extensive support on
TTP/C system integration as well as consulting is provided by
TTTech Computertechnik GmbH
Time-Triggered Technology
Schnbrunnerstrae 7
A-1040 Vienna
Austria
Voice:
+43 1 5853434 - 0
Fax:
+43 1 5853434 - 90
email:
office@tttech.com
web:
http://www.tttech.com
TTP is a trademark of FTS Computertechnik Ges.m.b.H.
TTTech is a trademark of TTTech Computertechnik GmbH.
(c) 1999 Austria Mikro Systeme International AG and TTTech Computertechnik GmbH.
All rights reserved.
Copyright
1999, Austria Mikro Systeme International AG, Schlo Premsttten, 8141 Unterpremsttten, Austria.
Telefon +43-(0)3136-500-0, Telefax +43-(0)3136-52501, E-Mail info@amsint.com
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, without the prior permission in writing by the copyright holder. To the best of its knowledge, Austria Mikro Systeme International
asserts that the information contained in this publication is accurate and correct.