ChipFind - документация

Электронный компонент: APT50GT60BRDQ1G

Скачать:  PDF   ZIP
052-6281 Rev A 11-2005
APT50GT60BRDQ1(G)
TYPICAL PERFORMANCE CURVES
600V
APT50GT60BRDQ1
APT50GT60BRDQ1G*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
TO-2
47
G
C
E
C
E
G
The Thunderblot
IGBT
is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot
IGBT
offers superior ruggedness and ultrafast
switching speed.
Low Forward Voltage Drop

High Freq. Switching to 100KHz
Low Tail Current

Ultra Low Leakage Current
RBSOA and SCSOA Rated
Thunderbolt IGBT
MAXIMUM RATINGS
All Ratings: T
C
= 25C unless otherwise specified.


































































STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 2mA)
Gate Threshold Voltage (V
CE
= V
GE
, I
C
= 1mA, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 50A, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 50A, T
j
= 125C)
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 25C)
2
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 125C)
2
Gate-Emitter Leakage Current (V
GE
= 20V)
Symbol
V
(BR)CES
V
GE(TH)
V
CE(ON)
I
CES
I
GES
Units
Volts
A
nA
Symbol
V
CES
V
GE
I
C1
I
C2
I
CM
SSOA
P
D
T
J
,T
STG
T
L
APT50GT60BRDQ1(G)
600
30
110
52
150
150A @ 600V
446
-55 to 150
300
UNIT
Volts
Amps
Watts
C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current
7
@ T
C
= 25C
Continuous Collector Current @ T
C
= 110C
Pulsed Collector Current
1
Switching Safe Operating Area @ T
J
= 150C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
MIN
TYP
MAX
600
3
4
5
1.7
2.0
2.5
2.2
25
TBD
120
052-6281 Rev A 11-2005
APT50GT60BRDQ1(G)
THERMAL AND MECHANICAL CHARACTERISTICS
UNIT
C/W
gm
MIN
TYP
MAX
.28
1.35
5.9
Characteristic
Junction to Case
(IGBT)
Junction to Case
(DIODE)
Package Weight
Symbol
R
JC
R
JC
W
T
DYNAMIC CHARACTERISTICS
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
Test Conditions
Capacitance
V
GE
= 0V, V
CE
= 25V
f = 1 MHz
Gate Charge
V
GE
= 15V
V
CE
= 300V
I
C
= 50A
T
J
= 150C, R
G
= 4.3, V
GE
=
15V, L = 100H,V
CE
= 600V
Inductive Switching (25C)
V
CC
= 400V
V
GE
= 15V
I
C
= 50A
R
G
= 4.3
T
J
= +25C
Inductive Switching (125C)
V
CC
= 400V
V
GE
= 15V
I
C
= 50A
R
G
= 4.3
T
J
= +125C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller") Charge
Switching Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
Turn-on Switching Energy (Diode)
5
Turn-off Switching Energy
6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
4
Turn-on Switching Energy (Diode)
5
5
Turn-off Switching Energy
6
MIN
TYP
MAX
2500
250
155
7.5
240
20
110
150
14
32
240
36
995
1110
1070
14
32
270
95
1035
1655
1505
UNIT
pF
V
nC
A
ns
J
ns
J
1
Repetitive Rating: Pulse width limited by maximum junction temperature.
2
For Combi devices, I
ces
includes both IGBT and FRED leakages
3
See MIL-STD-750 Method 3471.
4
E
on1
is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5
E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6
E
off
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
APT Reserves the right to change, without notice, the specifications and information contained herein.
052-6281 Rev A 11-2005
APT50GT60BRDQ1(G)
TYPICAL PERFORMANCE CURVES
V
GS(TH)
, THRESHOLD VOLTAGE
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
I
C
, COLLECTOR CURRENT (A)
I
C
, COLLECTOR CURRENT (A)
(NORMALIZED)
I
C,
DC COLLECTOR CURRENT(A)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
I
C
, COLLECTOR CURRENT (A)
250s PULSE
TEST<0.5 % DUTY
CYCLE
160
140
120
100
80
60
40
10
0
160
140
120
100
80
60
40
20
0
5
4
3
2
1
0
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0
1
2
3
4
5
0
5
10
15
20
0
2
4
6
8
10
12
0
50 100 150 200 250
6
8
10
12
14
16
0
25
50
75
100
125
-50 -25
0
25 50 75 100 125 150
-50 -25
0
25 50 75 100 125 150
200
180
160
140
120
100
80
60
40
20
0
16
14
12
10
8
6
4
2
0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
160
140
120
100
80
60
40
20
0
T
J
= 125C
T
J
= 25C
T
J
= 25C.
250s PULSE TEST
<0.5 % DUTY CYCLE
V
GE
= 15V.
250s PULSE TEST
<0.5 % DUTY CYCLE
T
J
= 125C
T
J
= 25C
V
GE
= 15V
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(T
J
= 25C)
FIGURE 2, Output Characteristics (T
J
= 125C)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics
FIGURE 4, Gate Charge
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
T
J
, Junction Temperature (C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
FIGURE 6, On State Voltage vs Junction Temperature
T
J
, JUNCTION TEMPERATURE (C)
T
C
, CASE TEMPERATURE (C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
FIGURE 8, DC Collector Current vs Case Temperature
I
C
= 25A
I
C
= 50A
I
C
= 100A
I
C
= 25A
I
C
= 50A
I
C
= 100A
T
J
= -55C
15V
11V
10V
9V
13V
8V
7V
6V
T
J
= -55C
I
C
= 50A
T
J
= 25C
V
CE
= 480V
V
CE
= 300V
V
CE
= 120V
Lead Temperature
Limited
Lead Temperature
Limited
052-6281 Rev A 11-2005
APT50GT60BRDQ1(G)
V
GE
=15V,T
J
=125C
V
GE
=15V,T
J
=25C
V
CE
=
400V
R
G
=
4.3
L = 100H
SWITCHING ENERGY LOSSES (J)
E
ON2
, TURN ON ENERGY LOSS (J)
t
r,
RISE TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (J)
E
OFF
, TURN OFF ENERGY LOSS (J)
t
f,
FALL TIME (ns)
t
d
(OFF)
, TURN-OFF DELAY TIME (ns)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
FIGURE 10, Turn-Off Delay Time vs Collector Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
FIGURE 12, Current Fall Time vs Collector Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
FIGURE 14, Turn Off Energy Loss vs Collector Current
R
G
, GATE RESISTANCE (OHMS)
T
J
, JUNCTION TEMPERATURE (C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
FIGURE 16, Switching Energy Losses vs Junction Temperature
V
CE
= 400V
V
GE
= +15V
R
G
= 4.3
V
CE
= 400V
T
J
= 25C
,
or 125C
R
G
= 4.3
L = 100H
25
20
15
10
5
0
90
80
70
60
50
40
30
20
10
0
5000
4000
3000
2000
1000
0
10,000
8,000
6,000
4,000
2,000
0
350
300
250
200
150
50
0
180
160
140
120
100
80
60
40
20
0
3500
3000
2500
2000
1500
1000
500
0
5,000
4,000
3,000
2,000
1,000
0
V
GE
= 15V
V
CE
= 400V
V
GE
= +15V
R
G
= 4.3
0
20
40
60
80
100
120
0
20
40
60
80
100
125
0
20
40
60
80
100
120
0
20
40
60
80
100
120
0
20
40
60
80
100
120
0
20
40
60
80
100
120
0
10
20
30
40
50
0
25
50
75
100
125
R
G
=
4.3, L
=
100
H, V
CE
=
400V
T
J
=
125C
T
J
=
25C
R
G
=
4.3, L
=
100
H, V
CE
=
400V
T
J
=
25 or 125C,V
GE
=
15V
T
J
=
125C, V
GE
=
15V
T
J
=
25C, V
GE
=
15V
E
on2,
100A
E
off,
100A
E
on2,
50A
E
off,
50A
E
on2,
25A
E
off,
25A
V
CE
= 400V
V
GE
= +15V
T
J
= 125C
V
CE
= 400V
V
GE
= +15V
R
G
= 4.3
T
J
=
125C
T
J
=
25C
E
on2,
100A
E
off,
100A
E
on2,
50A
E
off,
50A
E
on2,
25A
E
off,
25A
052-6281 Rev A 11-2005
APT50GT60BRDQ1(G)
TYPICAL PERFORMANCE CURVES
0.30
0.25
0.20
0.15
0.10
0.05
0
Z
JC
, THERMAL IMPEDANCE (C/W)
0.3
D = 0.9
0.7
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
-5
10
-4
10
-3
10
-2
10
-1
1.0
4,000
1,000
500
100
160
140
120
100
80
60
40
20
0
C, CAPACITANCE (
P
F)
I
C
, COLLECTOR CURRENT (A)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage
Figure 18,Minimim Switching Safe Operating Area
0
10
20
30
40
50
0
100 200 300 400 500 600 700
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
10 20 30 40 50 60 70 80 90 100
F
MAX
, OPERATING FREQUENCY (kHz)
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
120
50
10
2
0.5
0.1
0.05
F
max
=
min (f
max
, f
max2
)
0.05
f
max1
=
t
d(on)
+ t
r
+ t
d(off)
+ t
f
P
diss
- P
cond
E
on2
+ E
off
f
max2
=
P
diss
=
T
J
- T
C
R
JC
C
oes
C
res
C
ies
Peak TJ = PDM x ZJC + TC
Duty Factor D =
t1
/
t2
t2
t1
P
DM
Note:
0.114
0.113
0.0057
0.0276
Power
(watts)
RC MODEL
Junction
temp. (C)
Case temperature. (C)
T
J
= 125
C
T
C
= 75
C
D = 50 %
V
CE
= 400V
R
G
= 4.3
052-6281 Rev A 11-2005
APT50GT60BRDQ1(G)
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
T
J
= 125C
Collector Current
Collector Voltage
Gate Voltage
Switching Energy
5%
10%
t
d(on)
90%
10%
t
r
5%
T
J
= 125C
Collector Voltage
Collector Current
Gate Voltage
Switching Energy
0
90%
t
d(off)
10%
t
f
90%
APT15DQ60
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
052-6281 Rev A 11-2005
APT50GT60BRDQ1(G)
TYPICAL PERFORMANCE CURVES
Characteristic / Test Conditions
Maximum Average Forward Current (T
C
= 129C, Duty Cycle = 0.5)
RMS Forward Current (Square wave, 50% duty)
Non-Repetitive Forward Surge Current (T
J
= 45C, 8.3ms)
Symbol
I
F(AV)
I
F(RMS)
I
FSM
Symbol
V
F
Characteristic / Test Conditions
I
F
= 15A
Forward Voltage
I
F
= 30A
I
F
= 15A, T
J
= 125C
STATIC ELECTRICAL CHARACTERISTICS
UNIT
Amps
UNIT
Volts
MIN
TYP
MAX
2.0
2.5
1.56
APT50GT60BRDQ1(G)
15
30
110
DYNAMIC CHARACTERISTICS
MAXIMUM RATINGS
All Ratings: T
C
= 25C unless otherwise specified.


































































ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MIN
TYP
MAX
-
15
-
19
-
21
-
2
-
-
105
-
250
-
5
-
-
55
-
420
-
15
UNIT
ns
nC
Amps
ns
nC
Amps
ns
nC
Amps
Characteristic
Reverse Recovery Time
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Reverse Recovery Time
Reverse Recovery Charge
Maximum Reverse Recovery Current
Symbol
t
rr
t
rr
Q
rr
I
RRM
t
rr
Q
rr
I
RRM
t
rr
Q
rr
I
RRM
Test Conditions
I
F
= 15A, di
F
/dt = -200A/s
V
R
= 400V, T
C
= 25C
I
F
= 15A, di
F
/dt = -200A/s
V
R
= 400V, T
C
= 125C
I
F
= 15A, di
F
/dt = -1000A/s
V
R
= 400V, T
C
= 125C
I
F
= 1A, di
F
/dt = -100A/s, V
R
= 30V, T
J
= 25C
Z
JC
, THERMAL IMPEDANCE (C/W)
10
-5
10
-4
10
-3
10
-2
10
-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0
0.5
SINGLE PULSE
0.1
0.3
0.7
0.05
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
Peak TJ = PDM x ZJC + TC
Duty Factor D =
t1
/
t2
t2
t1
P
DM
Note:
0.676
0.504
0.00147
0.0440
Power
(watts)
RC MODEL
Junction
temp. (C)
Case temperature. (C)
D = 0.9
052-6281 Rev A 11-2005
APT50GT60BRDQ1(G)
T
J
=125C
V
R
=400V
7.5A
15A
30A
T
J
= -55C
T
J
= 25C
T
J
= 125C
T
J
= 175C
Duty cycle = 0.5
T
J
=175C
0
25
50
75
100
125
150
25
50
75
100
125
150
175
1
10
100 200
35
30
25
20
15
10
5
0
C
J
, JUNCTION CAPACITANCE
K
f
, DYNAMIC PARAMETERS
(pF)
(Normalized to 1000A/

s)
I
F(AV)
(A)
T
J
, JUNCTION TEMPERATURE (C)
Case Temperature (C)
Figure 29. Dynamic Parameters vs. Junction Temperature
Figure 30. Maximum Average Forward Current vs. CaseTemperature
V
R
, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
Q
rr
, REVERSE RECOVERY CHARGE
I
F
, FORWARD CURRENT
(nC)
(A)
I
RRM
, REVERSE RECOVERY CURRENT
t
rr
, REVERSE RECOVERY TIME
(A)
(ns)
T
J
=125C
V
R
=400V
30A
7.5A
15A
100
90
80
70
60
50
40
30
20
10
0
700
600
500
400
300
200
100
0
140
120
100
80
60
40
20
0
25
20
15
10
5
0
0
1
2
3
4
0 200 400 600 800 1000 1200 1400 1600
0 200 400 600 800 1000 1200 1400 1600
0 200 400 600 800 1000 1200 1400 1600
T
J
=125C
V
R
=400V
30A
15A
7.5A
Q
rr
t
rr
t
rr
Q
rr
I
RRM
1.2
1.0
0.8
0.6
0.4
0.2
0.0
90
80
70
60
50
40
30
20
10
0
V
F
, ANODE-TO-CATHODE VOLTAGE (V)
-di
F
/dt, CURRENT RATE OF CHANGE(A/s)
Figure 25. Forward Current vs. Forward Voltage
Figure 26. Reverse Recovery Time vs. Current Rate of Change
-di
F
/dt, CURRENT RATE OF CHANGE (A/s)
-di
F
/dt, CURRENT RATE OF CHANGE (A/s)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
Figure 28. Reverse Recovery Current vs. Current Rate of Change
052-6281 Rev A 11-2005
APT50GT60BRDQ1(G)
TYPICAL PERFORMANCE CURVES
4
3
1
2
5
5
Zero
1
2
3
4
di
F
/dt - Rate of Diode Current Change Through Zero Crossing.
I
F
- Forward Conduction Current
I
RRM
- Maximum Reverse Recovery Current.
trr - Reverse
R
ecovery Time, measured from zero crossing where
diode
Qrr - Area Under the Curve Defined by I
RRM
and trr.
current goes from positive to negative, to the point at which the straight
line through I
RRM
and 0.25 I
RRM
passes through zero.
Figure 32. Diode Test Circuit
Figure 33, Diode Reverse Recovery Waveform and Definitions
0.25 IRRM
PEARSON 2878
CURRENT
TRANSFORMER
di
F
/dt Adjust
30H
D.U.T.
+18V
0V
Vr
trr/Qrr
Waveform
APT6017LLL
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
6.15 (.242) BSC
4.50 (.177) Max.
19.81 (.780)
20.32 (.800)
20.80 (.819)
21.46 (.845)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
3.55 (.138)
3.81 (.150)
2.87 (.113)
3.12 (.123)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
2.21 (.087)
2.59 (.102)
0.40 (.016)
0.79 (.031)
Dimensions in Millimeters and (Inches)
2-Plcs.
Collector
(Cathode)
Emitter
(Anode)
Gate
Collector (Cathode)
APT's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.