ChipFind - документация

Электронный компонент: APT50GN120B2G

Скачать:  PDF   ZIP
050-7602 Rev C 10-2005
APT50GN120B2(G)
TYPICAL PERFORMANCE CURVES
MAXIMUM RATINGS
All Ratings: T
C
= 25C unless otherwise specified.


































































STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 400A)
Gate Threshold Voltage (V
CE
= V
GE
, I
C
= 2mA, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 50A, T
j
= 25C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 50A, T
j
= 125C)
Collector Cut-off Current (V
CE
= 1200V, V
GE
= 0V, T
j
= 25C)
2
Collector Cut-off Current (V
CE
= 1200V, V
GE
= 0V, T
j
= 125C)
2
Gate-Emitter Leakage Current (V
GE
= 20V)
Intergrated Gate Resistor
Symbol
V
(BR)CES
V
GE(TH)
V
CE(ON)
I
CES
I
GES
R
GINT
Units
Volts
A
nA
Symbol
V
CES
V
GE
I
C1
I
C2
I
CM
SSOA
P
D
T
J
,T
STG
T
L
APT50GN120B2(G)
1200
30
134
66
150
150A @ 1200V
543
-55 to 150
300
UNIT
Volts
Amps
Watts
C
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Continuous Collector Current
8
@ T
C
= 25C
Continuous Collector Current @ T
C
= 110C
Pulsed Collector Current
1
@ T
C
= 150C
Switching Safe Operating Area @ T
J
= 150C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
APT Website - http://www.advancedpower.com
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Utilizing the latest Non-Punch Through (NPT) Field Stop technology, these IGBT's
have a very short, low amplitude tail current and low Eoff. The Trench Gate design
results in superior V
CE(on)
performance. Easy paralleling results from very tight
parameter distribution and slightly positive V
CE(on)
temperature coefficient. Built-in
gate resistance ensures ultra-reliable operation. Low gate charge simplifies gate drive
design and minimizes losses.
1200V NPT Field Stop
Trench Gate: Low V
CE(on)
Easy Paralleling
10s Short Circuit Capability
Intergrated Gate Resistor: Low EMI, High Reliability
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MIN
TYP
MAX
1200
5
5.8
6.5
1.4
1.7
2.1
1.9
100
TBD
600
4
1200V
APT50GN120B2
APT50GN120B2G*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
G
C
E
(B2)
T-Max
050-7602 Rev C 10-2005
APT50GN120B2(G)
DYNAMIC CHARACTERISTICS
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
SCSOA
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
Test Conditions
Capacitance
V
GE
= 0V, V
CE
= 25V
f = 1 MHz
Gate Charge
V
GE
= 15V
V
CE
= 600V
I
C
= 50A
T
J
= 150C, R
G
= 2.2
7
, V
GE
=
15V, L = 100H,V
CE
= 1200V
V
CC
= 960V, V
GE
= 15V,
T
J
= 125C, R
G
= 2.2
7
Inductive Switching (25C)
V
CC
= 800V
V
GE
= 15V
I
C
= 50A
R
G
= 2.2
7
T
J
= +25C
Inductive Switching (125C)
V
CC
= 800V
V
GE
= 15V
I
C
= 50A
R
G
= 2.2
7
T
J
= +125C
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller") Charge
Switching Safe Operating Area
Short Circuit Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
Turn-on Switching Energy (Diode)
5
Turn-off Switching Energy
6
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
4
4
Turn-on Switching Energy (Diode)
5
5
Turn-off Switching Energy
6
6
MIN
TYP
MAX
3600
210
170
9.5
315
20
190
150
10
28
27
320
115
TBD
3900
4495
28
27
395
205
TBD
5660
6795
UNIT
pF
V
nC
A
s
ns
J
ns
J
UNIT
C/W
gm
MIN
TYP
MAX
.23
N/A
5.9
Characteristic
Junction to Case
(IGBT)
Junction to Case
(DIODE)
Package Weight
Symbol
R
JC
R
JC
W
T
THERMAL AND MECHANICAL CHARACTERISTICS
1
Repetitive Rating: Pulse width limited by maximum junction temperature.
2
For Combi devices, I
ces
includes both IGBT and FRED leakages
3
See MIL-STD-750 Method 3471.
4
E
on1
is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5
E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6
E
off
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 R
G
is external gate resistance, not including R
Gint
nor gate driver impedance.
8 Continuous current limited by package lead temperature.
APT Reserves the right to change, without notice, the specifications and information contained herein.
050-7602 Rev C 10-2005
APT50GN120B2(G)
TYPICAL PERFORMANCE CURVES
BV
CES
, COLLECTOR-TO-EMITTER BREAKDOWN
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
I
C
, COLLECTOR CURRENT (A)
I
C
, COLLECTOR CURRENT (A)
VOLTAGE (NORMALIZED)
I
C,
DC COLLECTOR CURRENT(A)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
I
C
, COLLECTOR CURRENT (A)
I
C
= 50A
T
J
= 25C
250s PULSE
TEST<0.5 % DUTY
CYCLE
160
140
120
100
80
60
40
20
0
160
140
120
100
80
60
40
20
0
4
3.5
3
2.5
2
1.5
1.0
0.5
0
1.10
1.05
1.00
0.95
0.90
V
CE
= 600V
V
CE
= 240V
V
CE
= 960V
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(T
J
= 25C)
FIGURE 2, Output Characteristics (T
J
= 125C)
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
GATE CHARGE (nC)
FIGURE 3, Transfer Characteristics
FIGURE 4, Gate Charge
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
T
J
, Junction Temperature (C)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
FIGURE 6, On State Voltage vs Junction Temperature
T
J
, JUNCTION TEMPERATURE (C)
T
C
, CASE TEMPERATURE (C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
FIGURE 8, DC Collector Current vs Case Temperature
15V
11V
9V
8V
12V
10V
7V
15V
11V
10V
9V
12V
8V
7V
T
J
= 125C
T
J
= 25C
T
J
= -55C
T
J
= 25C.
250s PULSE TEST
<0.5 % DUTY CYCLE
I
C
= 100A
I
C
= 50A
I
C
= 25A
V
GE
= 15V.
250s PULSE TEST
<0.5 % DUTY CYCLE
I
C
= 100A
I
C
= 50A
I
C
= 25A
0
2
4
6
8
10
12
0
2
4
6
8
10
12
14
0
2
4
6
8
10
12
14
0
50
100 150 200 250 300 350
8
10
12
14
16
-50 -25
0
25
50
75 100 125
-50 -25
0
25
50
75
100 125
-50 -25
0
25 50 75 100 125 150
160
140
120
100
80
60
40
20
0
16
14
12
10
8
6
4
2
0
3
2.5
2
1.5
1
0.5
0
180
160
140
120
100
80
60
40
20
0
Lead Temperature
Limited
Lead Temperature
Limited
050-7602 Rev C 10-2005
APT50GN120B2(G)
V
GE
=15V,T
J
=25C
V
CE
=
800V
R
G
=
2.2
L = 100 H
SWITCHING ENERGY LOSSES (J)
E
ON2
, TURN ON ENERGY LOSS (J)
t
r,
RISE TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
SWITCHING ENERGY LOSSES (J)
E
OFF
, TURN OFF ENERGY LOSS (J)
t
f,
FALL TIME (ns)
t
d
(OFF)
, TURN-OFF DELAY TIME (ns)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
FIGURE 10, Turn-Off Delay Time vs Collector Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
FIGURE 12, Current Fall Time vs Collector Current
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
FIGURE 14, Turn Off Energy Loss vs Collector Current
R
G
, GATE RESISTANCE (OHMS)
T
J
, JUNCTION TEMPERATURE (C)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
FIGURE 16, Switching Energy Losses vs Junction Temperature
V
CE
= 800V
V
GE
= +15V
R
G
= 2.2
R
G
=
2.2, L
=
100
H, V
CE
=
800V
V
CE
= 800V
T
J
= 25C
,
T
J
=125C
R
G
= 2.2
L = 100 H
35
30
25
20
15
10
5
0
120
100
80
60
40
20
0
25000
20000
15000
10000
5000
0
50000
40000
30000
20000
10000
0
V
GE
= 15V
V
GE
=15V,T
J
=125C
V
CE
= 800V
V
GE
= +15V
R
G
= 2.2
V
CE
= 800V
V
GE
= +15V
R
G
= 2.2
E
on2,
100A
E
off,
100A
E
off,
50A
E
on2,
50A
E
on2,
25A
E
off,
25A
E
on2,
100A
E
off,
100A
E
on2,
50A
E
off,
50A
E
on2,
25A
E
off,
25A
V
CE
= 800V
V
GE
= +15V
T
J
= 125C
R
G
=
2.2, L
=
100
H, V
CE
=
800V
500
400
300
200
100
0
300
250
200
150
100
50
0
14000
12000
10000
8000
6000
4000
2000
0
22000
20000
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
T
J
=
125C, V
GE
=
15V
T
J
=
25C, V
GE
=
15V
T
J
=
25C,V
GE
=
15V
T
J
=
125C,V
GE
=
15V
20 30 40 50 60 70 80 90 100 110
20 30 40 50 60 70 80 90 100 110
20 30 40 50 60 70 80 90 100 110
20 30 40 50 60 70 80 90 100 110
20 30 40 50 60 70 80 90 100 110
20 30 40 50 60 70 80 90 100 110
0
10
20
30
40
50
0
25
50
75
100
125
T
J
=
25 or 125C,V
GE
=
15V
T
J
=
125C, V
GE
=
15V
T
J
=
25C, V
GE
=
15V
050-7602 Rev C 10-2005
APT50GN120B2(G)
TYPICAL PERFORMANCE CURVES
0.25
0.20
0.15
0.10
0.05
0
Z
JC
, THERMAL IMPEDANCE (C/W)
0.3
0.9
0.7
SINGLE PULSE
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
-5
10
-4
10
-3
10
-2
10
-1
1.0
6,000
1,000
500
100
160
140
120
100
80
60
40
20
0
C, CAPACITANCE (
P
F)
I
C
, COLLECTOR CURRENT (A)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 17, Capacitance vs Collector-To-Emitter Voltage
Figure 18,Minimim Switching Safe Operating Area
0
10
20
30
40
50
0
200 400 600 800 1000 1200 1400
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
10 20 30 40 50 60 70 80 90 100
F
MAX
, OPERATING FREQUENCY (kHz)
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
120
50
10
5
1
C
0es
C
res
0.5
0.1
0.05
F
max
=
min (f
max
, f
max2
)
0.05
f
max1
=
t
d(on)
+ t
r
+ t
d(off)
+ t
f
P
diss
- P
cond
E
on2
+ E
off
f
max2
=
P
diss
=
T
J
- T
C
R
JC
C
ies
T
J
= 125
C
T
C
= 75
C
D = 50 %
V
CE
= 800V
R
G
= 2.2
Peak TJ = PDM x ZJC + TC
Duty Factor D =
t1
/
t2
t2
t1
P
DM
Note:
0.115
0.115
0.0088F
0.188F
Power
(watts)
RC MODEL
Junction
temp. (C)
Case temperature. (C)
050-7602 Rev C 10-2005
APT50GN120B2(G)
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 23, Turn-off Switching Waveforms and Definitions
T
J
= 125C
Collector Current
CollectorVoltage
Gate Voltage
Switching Energy
5%
10%
t
d(on)
90%
10%
t
r
5%
T
J
= 125C
Collector Current
Gate Voltage
Switching Energy
0
90%
t
d(off)
10%
t
f
90%
*DRIVER SAME TYPE AS D.U.T.
I
C
V
CLAMP
100uH
V
TEST
A
A
B
D.U.T.
DRIVER*
V
CE
Figure 24, EON1 Test Circuit
I
C
A
D.U.T.
V
CE
Figure 21, Inductive Switching Test Circuit
V
CC
APT30DQ120
CollectorVoltage
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
4.50 (.177) Max.
19.81 (.780)
20.32 (.800)
20.80 (.819)
21.46 (.845)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
2.87 (.113)
3.12 (.123)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
2.21 (.087)
2.59 (.102)
0.40 (.016)
0.79 (.031)
Dimensions in Millimeters and (Inches)
2-Plcs.
Collector
Emitter
Gate
Collector (Cathode)
APT's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
e1 SAC: Tin, Silver, Copper
T-MAXTM (B2) Package Outline